ebook img

Interpretation of MUSIC for location detecting of small inhomogeneities surrounded by random scatterers PDF

0.41 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Interpretation of MUSIC for location detecting of small inhomogeneities surrounded by random scatterers

Interpretation of MUSIC for location detecting of small inhomogeneities surrounded by random scatterers Won-Kwang Park Departmentof Mathematics,Kookmin University, Seoul,02707, RepublicofKorea. 6 1 e-mail: [email protected] 0 2 n a Abstract J 7 Inthispaper,weconsidertheMUltipleSIgnalClassification(MUSIC)algorithmforidenti- fyingthelocationsofsmallelectromagneticinhomogeneitiessurroundedbyrandomscatter- ] A ers. Forthispurpose,werigorouslyanalyzethestructureofMUSIC-typeimagingfunctionby N establishingarelationshipwithzero-orderBesselfunctionofthefirstkind. Thisrelationship . shows certain properties of the MUSIC algorithm, explains some unexplained phenomena, h andprovidesamethodforimprovements. t a m [ 1 Introduction 1 v Oneof thepurposesof theinversescatteringproblemis to identifythecharacteristics(location, 1 1 shape,materialproperties,etc.) ofsmallinhomogeneitiesfromthescatteredfieldorfar-fieldpat- 9 tern. Thisproblem,whicharisesinfieldssuchasphysics,engineering,andbiomedicalscience,is 1 0 highlyrelevant tohumanlife; thus,itremainsan importantresearch area. Related works can be 1. foundin[1,2,3,4,5]andreferencestherein. 0 Attemptsto address theproblem described abovehaveled to thedevelopmentof theMUlti- 6 pleSIgnalClassification(MUSIC)-typealgorithmtofindunknowninhomogeneitiesandthealgo- 1 : rithmhasbeenappliedtovariousproblems,e.g.,detectionofsmallinhomogeneitiesinhomoge- v i neousspace[6,7,8,9],locationidentificationofsmallinhomogeneitiesembeddedinahalf-space X or multi-layered medium [10, 11, 12], reconstructing perfectly conducting cracks [13, 14], imag- r a ing of internal corrosion [15], shape recognition of crack-like thin inhomogeneities [16, 17, 18] andvolumetricextendedtargets[19,20,21], andapplicationtothebiomedicalimaging[22]. We also refer to [23, 24] for a detailed and concise description of MUSIC. Several research efforts have contributed to confirming that MUSIC is a fast and stable algorithm that can easily be ex- tendedto multipleinhomogeneities,and thatdoes notrequirespecificregularizationtermsthat are highly dependent on the problem at hand. However, its feasibility is only confirmed when the background medium is homogeneous, i.e., the imaging performance of MUSIC when un- knowninhomogeneitiesaresurroundedbyrandomscatterersremainsunknown.Inseveralworks [25, 26, 27, 28], an inverse scattering problem in random media has been concerned. Specially, mathematical theory of MUSIC for detecting point-like scatterers embedded in an inhomoge- neous medium has been concerned in [29]. Motivated these remarkable works, a more careful investigationofthemathematicaltheorystillrequired. 1 Motivated by the above, MUSIC algorithm has been applied for detecting the locations of small electromagnetic inhomogeneities when they are surrounded by electromagnetic random scatterers and confirmed that it can be applied satisfactorily. However, this only relied on the results of numerical simulations, i.e., a heuristic approach to some extent, which is the motiva- tion for the current work. In this contribution, we carefully analyze the mathematical structure of a MUSIC-type imaging function and discover some properties. This work is based on the re- lationshipbetween thesingularvectorsassociatedwith nonzero singularvalues ofa multi-static response(MSR)matrixandasymptoticexpansionformuladuetotheexistenceofsmallinhomo- geneities,referto[23]. Thispaperisorganizedasfollows. Section2introducesthetwo-dimensionaldirectscattering problemandanasymptoticexpansionformulainthepresenceofsmallinhomogeneities. InSec- tion3,aMUSIC-typeimagingfunctionisintroduced. InSection4,weanalyzethemathematical structureoftheMUSIC-typeimagingfunctionanddiscussitsproperties. InSection5,wepresent the results of numerical simulations to support the analyzed structure of MUSIC and Section 6 presentsashortconclusion. 2 Two-dimensional direct scattering problem In thissection,wesurveyatwo-dimensionaldirectscatteringproblemandintroduceanasymp- toticexpansionformula.Foramoredetaileddescriptionwerecommend[18,23,30]. LetΣ ,m m = 1,2, ,M, be an electromagnetic inhomogeneity with a small diameter r in two-dimensional m ··· spaceR2. Throughoutthispaper,weassumethateveryΣ isexpressedas m Σ z r B , m m m m = + where z denotes the location of Σ and B is a simple connected smooth domain containing m m m theorigin. Forthesakeofsimplicity,weletΣbethecollectionofΣ . Throughoutthispaper,we m assumethatinhomogeneitiesarewellseparatedfromeachothersuchthat 1 ωz z 1 0.75, (1) m m | − ′|≫ −4 = forallm,m 1,2, ,M andm m . ′ ′ = ··· 6= Letusdenote∆ ,s 1,2, ,S,astherandomscattererwithsmallradiusr r andlet∆bethe s s = ··· < collectionof∆ . Similarly,weassumethat∆ isoftheform: s s ∆ y r B . s s s m = + As before, suppose that ∆ ∆ for all s,s 1,2, ,S and s s and the positions of y are s s ′ ′ s ∩ ′ =; = ··· 6= randombuttheyarefixedforallfrequenciesdiscussedlater. Inthiswork,weassumethateveryinhomogeneityischaracterizedbyitsdielectricpermittivity and magneticpermeabilityat a given positiveangularfrequency ω 2π/λ, where λ denotes the = wavelength. Letε ,ε ,andε betheelectricpermittivitiesofΣ ,∆ ,andR2,respectively. Then, m s 0 m s wecanintroducethepiecewise-constantelectricpermittivityε(x)andmagneticpermeabilityµ(x) suchthat ε for x Σ m m ∈ ε(x)  εs for x ∆s = ∈   ε for x R2\(Σ ∆) 0 ∈ ∪    2 and µ for x Σ m m ∈ µ(x)  µs for x ∆s = ∈   µ for x R2\(Σ ∆), 0 ∈ ∪  respectively. For the sake of simplicity, we let ε0 µ0 1, εm εs, and µm µs for all m and s. = = > > Hence,wecansetthewavenumberk ωpε0µ0 ω. = = Foragivenfixedfrequencyω,wedenote uinc(x,θ) eiωθ·x = to be a plane-wave incident field with the incident direction θ S1, where S1 denotes the two- ∈ dimensionalunitcircle. Letu(x,θ)denotethetime-harmonictotalfieldthatsatisfiesthefollowing Helmholtzequation 1 u(x,θ) ω2ε(x)u(x,θ) 0 ∇· µ(x)∇ + = µ ¶ with transmission conditions on the boundaries of Σ and ∆ . This configuration is associated m s withascalarscatteringproblemforanE polarized(TransverseMagnetic-TM-polarization/cor- − responding to dielectric contrasts) field–the H polarized (Transverse Electric-TE-polarization/ − corresponding to magnetic contrasts) case could be dealt with per duality. It is well known that u(x,θ)canbedecomposedas u(x,θ) u (x,θ) u (x,θ), inc scat = + whereu (x,θ)denotestheunknownscatteredfieldthatsatisfiestheSommerfeldradiationcon- scat dition ∂u (x,θ) scat lim x iωu (x,θ) 0 scat x 0 | | ∂x − = | |→ µ | | ¶ p uniformlyinalldirectionsϑ x S1.Thefar-fieldpatternu (ϑ,θ)ofthescatteredfieldu (x,θ) = x ∈ far scat isdefinedonS1. Itcanbeexpr|e|ssedas eiωx 1 | | u (x,θ) u (ϑ,θ) o , x . scat far = px + p x | |−→+∞ | | µ | |¶ Then by virtue of [31], the far-field pattern u (ϑ,θ) can be written as the following asymptotic far expansion formula,which plays a key rolein theMUSIC-typealgorithmthatwill be designed in thenextsection. ω2(1 i) M µ u (ϑ,θ) + r2 (ε ε )B 0 (p2ϑ) (p2θ) eiω(θ ϑ)zm far = 4pωπ (mX=1 m³ m− 0 | m|−µm+µ0 · ´ − · S ε ε µ r2 s− 0 B 0 (p2ϑ) (p2θ) eiω(θ ϑ)ys . (2) +sX=1 s µpε0µ0| s|−µs+µ0 · ¶ − · ) 3 3 MUSIC-type imaging algorithm Inthissection,weintroducetheMUSIC-typealgorithmfordetectingthelocationsofsmallinho- ω2(1 i) mogeneities. Forthesakeofsimplicity,weexcludetheconstantterm + from(2). Forthis,let 4pωπ usconsidertheeigenvaluestructureoftheMSRmatrix u (ϑ ,θ ) u (ϑ ,θ ) u (ϑ ,θ ) far 1 1 far 1 2 far 1 N ··· u (ϑ ,θ ) u (ϑ ,θ ) u (ϑ ,θ ) far 2 1 far 2 2 far 2 N K= ... ... ·.·.·. ... .    u (ϑ ,θ ) u (ϑ ,θ ) u (ϑ ,θ )   far N 1 far N 2 ··· far N N    Supposethatϑ θ forall j,thenKisacomplexsymmetricmatrixbutnotaHermitian. Thus, j j =− instead of eigenvalue decomposition, we perform singularvalue decomposition (SVD) of K (see [24]forinstance) 3M 3M 3S K σ U V + σ U V , (3) ≈ m m ∗m+ s s ∗s m 1 s 3M 1 X= =X+ wheresuperscript isthemarkofaHermitian. Then,{U ,U , ,U }istheorthogonalbasis 1 2 3M 3S forthesignalspace∗ofK.Therefore,onecandefinetheprojecti·o·n· opera+torontothenull(ornoise) subspace,P :CN 1 CN 1. Thisprojectionisgivenexplicitlyby noise × × −→ 3M 3S P : I + U U , (4) noise = N− m ∗m m 1 X= whereI denotestheN N identitymatrix. Foranypointx R2 andsuitablevectorsc R3\{0}, N n × ∈ ∈ n 1,2, ,N,defineatestvectorf(x) CN 1 as × = ··· ∈ T f(x) c [1,θ ]Teiωθ1x,c [1,θ ]Teiωθ2x, ,c [1,θ ]TeiωθN x . (5) 1 1 · 2 2 · N N · = · · ··· · h i Then,byvirtueof[23],thereexistsN NsuchthatforanyN N ,thefollowingstatementholds: 0 0 ∈ ≥ f(x) Range(KK) ifandonlyif x z ,y m s ∈ ∈ for m 1,2, ,M and s 1,2, ,S. This means that if x Σ© or x ª ∆ then, P (f(x)) 0. m s noise = ··· = ··· ∈ ∈ | | = Thus,thelocationsofΣ and∆ followfromcomputingtheMUSIC-typeimagingfunction m s 1 F(x) . (6) = P (f(x)) noise | | TheresultingplotofF(x)willhavepeaksoflargemagnitudesatz Σ andy ∆ . m m s s ∈ ∈ Remark 3.1. Based on several works [17, 18, 20], selection of c in (5) is highly depending on the n shapeofΣ . Unfortunately,theshapeofΣ isunknown,itisimpossibletofindpropervectorsc . m m n Due to this fact, following from [20], we assumethat c [1,θ ]T 1 for all n, i.e., we consider the n n · = followingtestvectorinsteadof(5) 1 T f(x) eiωθ1x,eiωθ2x, ,eiωθN x · · · = pN ··· h i andanalyzethemathematicalstructureofF(x). 4 4 Structure of imaging function Henceforth,weanalyzethemathematicalstructureofF(x)andexaminecertainofitsproperties. Beforestarting,werecallausefulresultderivedin[32]. Lemma4.1. Assumethat{θ :n 1,2, ,N}spans S1. Then,for sufficientlylarge N, ξ S1, and n = ··· ∈ x R2,thefollowingrelationholds: ∈ 1 N 1 eiωθn x eiωθxdS(θ) J (ωx ), · · 0 N nX=1 = 2πZS1 = | | (7) 1 N 1 x (ξ θ )eiωθn x (ξ θ)eiωθxdS(θ) i ξ J (ωx ), n · · 1 N nX=1 · = 2πZS1 · = µ|x|· ¶ | | where J denotesBesselfunctionofordern ofthefirstkind. n Now,weintroducethemainresult. Theorem 4.2. For sufficiently large N 3M 3S and ω, F(x) can be represented as follows: for > + e [1,0]T ande [0,1]T, 1 2 = = M M 2 (x z ) e 2 F(x) 1 J (ωx z )2 − m · h J (ωx z )2 0 m 1 m ≈à −mX=1 | − | −mX=1hX=1³ |x−zm| ´ | − | 1/2 S S 2 (x y ) e 2 − J (ωx y )2 − s · h J (ωx y )2 . 0 s 1 s −sX=1 | − | −sX=1hX=1³ |x−ys| ´ | − | ! Proof. Based on the asymptotic expansion formula (2) and results in [13], P can be repre- noise sentedas 3M 3S M 3 S 3 P I U U U U I W (z )W (z ) W (y )W (y ) , noise= N− m ∗m− s ∗s ≈ N− h m h m ∗− h s h s ∗ m 1 s 1 m 1h 1 s 1h 1 X= X= X= X= X= X= where 1 T W (x) eiωθ1x,eiωθ2x ,eiωθN x , 1 · · · = pN ··· h i p2 T W2(x) (e1 θ1)eiωθ1·x,(e1 θ2)eiωθ2·x, ,(e1 θN)eiωθN·x , = pN · · ··· · h i p2 T W (x) (e θ )eiωθ1x,(e θ )eiωθ2x, ,(e θ )eiωθN x . 3 2 1 · 2 2 · 2 N · = pN · · ··· · h i Withthis,applying(7)andperformingatediouscalculation,wearriveat 1 M S P (f(x)) f(x) (A(z ) B (z ) B (z )) (A(y ) B (y ) B (y )) , noise m 1 m 2 m s 1 s 2 s = − NpN Ãm 1 + + −s 1 + + ! X= X= where eiωθ1ξJ (ωx ξ ) · 0 | − |  eiωθ2ξJ (ωx ξ )  · 0 A(ξ): | − | , = ..   .       eiωθN ξJ (ωx ξ )   · 0 | − |    5 and (x ξ) e i(e θ ) − · h eiωθ1ξJ (ωx ξ ) h 1 · 1 · x ξ | − |  µ | − | ¶  (x ξ) e i(e θ ) − · h eiωθ2ξJ (ωx ξ )  h 2 · 1   · x ξ | − |  B (ξ):  µ | − | ¶  h = .   ..       (x ξ) e   i(e θ ) − · h eiωθN ξJ (ωx ξ )   h N · 1   · x ξ | − |   µ | − | ¶    forξ R2andh 1,2.Byimplementingelementarycalculus,wecanshowthat ∈ = 1 N 8 P (f(x))2 P (f(x))P (f(x)) 1 Φ , noise noise noise h | | = = N − n 1 h 1 X= ³ X= ´ where M Φ eiωθn (x zm) e iωθn (x zm) J (ωx z ), 1 · − − · − 0 m = + | − | m 1 X= ³ ´ M M Φ2 eiωθn·zmJ0(ωx zm ) e−iωθn·zm′J0(ωx zm ) , =−Ãm 1 | − | !Ãm 1 | − ′| ! X= X′= M 2 (x z ) e Φ i (e θ ) − m · h eiωθn (x zm) e iωθn (x zm) J (ωx z ) 3 h n · − − · − 1 m =− · x z − | − | mX=1hX=1 µ | − m| ¶³ ´ M 2 (x z ) e Φ (e θ ) − m · h eiωθn zmJ (ωx z ) 4 h n · 1 m =−Ãm 1h 1 · µ |x−zm| ¶ | − | ! X= X= M 2 (x z ) e (eh θn) − m′ · h eiωθn·zm′J1(ωx zm ) , ×ÃmX′=1hX=1 · µ |x−zm′| ¶ | − ′| ! S Φ eiωθn (x ys) e iωθn (x ys) J (ωx y ), 5 · − − · − 0 s = + | − | s 1 X= ³ ´ S S Φ6 eiωθn·ysJ0(ωx ys ) e−iωθn·ys′J0(ωx ys ) , =−Ãs 1 | − | !Ãs 1 | − ′| ! X= X′= M 2 (x y ) e Φ i (e θ ) − s · h eiωθn (x ys) e iωθn (x ys) J (ωx y ) 7 h n · − − · − 1 s =− · x y + | − | sX=1hX=1 µ | − s| ¶³ ´ M 2 (x y ) e Φ8 (eh θn) − s · h eiωθn·ysJ1(ωx ys ) =−ÃsX=1hX=1 · µ |x−ys| ¶ | − | ! M 2 (x z ) e (eh θn) − s′ · h eiωθn·zs′J1(ωx zs ) . ×ÃsX′=1hX=1 · µ |x−zs′| ¶ | − ′| ! First,applying(7),wecanobtain 1 N M M eiωθn (x zm)J (ωx z ) J (ωx z )2. · − 0 m 0 m N | − | = | − | n 1m 1 m 1 X= X= X= 6 Thisleadsusto 1 N 1 N M M Φ1 eiωθn·(x−zm) e−iωθn·(x−zm) J0(ωx zm ) 2 J0(ωx zm )2 (8) N = N + | − | = | − | n 1 n 1m 1 m 1 X= X= X= ³ ´ X= andsimilarlyto 1 N 1 N S S Φ eiωθn (x ys) e iωθn (x ys) J (ωx y ) 2 J (ωx y )2. (9) 5 · − − · − 0 s 0 s N = N + | − | = | − | n 1 n 1s 1 s 1 X= X= X= ³ ´ X= Next, based on the orthonormal property of singular vectors, relations (1) and (7), and the followingasymptoticform 2 π J (ωz z ) cos ωz z , 0 m m | − ′| ≈sωz zm π | − ′|− 4 | − ′| ³ ´ wecanderive 1 N 1 N M M Φ2 eiωθn·zmJ0(ωx zm ) e−iωθn·zm′J0(ωx zm ) N n 1 =−N n 1Ãm 1 | − | !Ãm 1 | − ′| ! X= X= X= X′= M M 1 N eiωθn·(z−zm′)J0(ωx zm )J0(ωx zm ) =−m 1m 1ÃN n 1 | − | | − ′| ! X= X′= X= (10) M M J (ωz z )J (ωx z )J (ωx z ) 0 m 0 m 0 m =− | − ′| | − | | − ′| m 1m 1 X= X′= M J (ωx z )2. 0 m =− | − | m 1 X= andsimilarly 1 N S Φ J (ωx y )2. (11) 6 0 s N =− | − | n 1 s 1 X= X= ForevaluatingΦ ,letusperformanelementarycalculus 3 1 N M 2 (x z ) e i (e θ )eiωθn (x zm) − m · h J (ωx z ) h n · − 1 m N nX=1à mX=1hX=1 · !µ |x−zm| ¶ | − | M 2 1 N (x z ) e i (e θ )eiωθn (x zm) − m · h J (ωx z ) h n · − 1 m =mX=1hX=1à N nX=1 · !µ |x−zm| ¶ | − | M 2 (x z ) e 2 − m · h J (ωx z )2. 1 m =− x z | − | mX=1hX=1µ | − m| ¶ Then,wecanconcludethat 1 N M 2 (x z ) e 2 Φ 2 − m · h J (ωx z )2 (12) 3 1 m N = x z | − | nX=1 mX=1hX=1µ | − m| ¶ and 1 N S 2 (x y ) e 2 Φ 2 − s · h J (ωx y )2. (13) 7 1 s N = x y | − | nX=1 sX=1hX=1µ | − s| ¶ 7 Finally,forΦ ,byapplyingfollowingintegral:forθ ,θ,ξ S1, 4 n ∈ 1 N 1 1 (θ ξ)2 (θ ξ)2dθ , n N n 1 · ≈ 2πZS1 · = 2 X= wecanderivethefollowing: 1 N 1 N M 2 (x z ) e Φ4 (eh θn) − m · h eiωθn·zmJ1(ωx zm ) N nX=1 =−N nX=1ÃmX=1hX=1 · µ |x−zm| ¶ | − | ! M 2 (x z ) e (eh θn) − m′ · h′′ eiωθn·zm′J1(ωx zm ) ×ÃmX′=1hX′′=1 ′′· µ |x−zm′| ¶ | − ′| ! (14) 2 M 1 N 2 2 (x z ) e 2 (e θ )2 − m · s J (ωx z ) s n 1 m =−mX=1ÃN nX=1hX=1 · ! hX=1½³ |x−zm| ´ | − | ¾ M 2 (x z ) e 2 m h − · J (ωx z ) . 1 m =− x z | − | mX=1hX=1½³ | − m| ´ ¾ Correspondingly, 1 N S 2 (x y ) e 2 Φ − s · h J (ωx y ) . (15) 8 1 s N =− x y | − | nX=1 sX=1hX=1½³ | − s| ´ ¾ Hence,bycombining(8)–(15),wecanobtainthefollowingmathematicalstructure M M 2 (x z ) e 2 P (f(r))2 1 J (ωx z )2 − m · h J (ωx z )2 noise 0 m 1 m | | = − | − | − x z | − | mX=1 mX=1hX=1³ | − m| ´ S S 2 (x y ) e 2 J (ωx y )2 − s · h J (ωx y )2. 0 s 1 s − | − | − x y | − | sX=1 sX=1hX=1³ | − s| ´ Thisenablesustoobtainthedesiredresult.Thiscompletestheproof. Remark 4.3 (Applicability of MUSIC). Since J (0) 1, the value of F(x) will be sufficiently large 0 = when x z or y for all m and s. Hence, based on the resultin Theorem4.2, the locations of Σ m s m = and ∆ can be identified via the map of F(z). This is the reason why it is possible to detect the s locationsofsmallinhomogeneitiesaswellasrandomscatterers.Notethatforasuccessfuldetection, basedonthehypothesisinTheorem4.2,thevalueofN (atleast,greaterthan3M 3S)andωmust + be sufficiently large enough. If applied frequency is low or total number of N is small, poor result wouldappearinthemapofF(x). Remark4.4(Discriminationofsingularvalues). Theoretically,ifthesize,permittivity,andperme- abilityoftherandomscatterersaresmallerthanthoseoftheinhomogeneities,thenσ σ forall s m < m and s. This meansthatif itwerepossible to discriminatesingular valuesassociated with small inhomogeneitiesthen,thestructureofF(z)wouldbecome 1/2 M M 2 (x z ) e 2 − F(x) 1 J (ωx z ) − m · h J (ωx z )2 . 0 m 1 m ≈à −mX=1 | − | −mX=1hX=1³ |x−zm| ´ | − | ! Hence, it is expected that more good results can be obtained. Our approach presents an improve- ment. However, if the relation σ σ were no longer valid, the locations of random scatterers s m < wouldhavetobeidentifiedviaMUSICsuchthatpoorresultswouldappearinthemapofF(x). 8 5 Results of numerical simulations Selected results of numerical simulations are presented here to support the identified structure oftheMUSIC-typeimagingfunction. Inthissection,we onlyconsiderthedielectricpermittivity contrastcase,i.e.,wesetε 3,ε 1,andµ µ µ forallm ands. TheradiusofallΣ and m 0 m s 0 m = = = = ∆ aresetto0.1and0.05,respectively. Theappliedangularfrequencyisω 2π/λandatotalofN s = numberofincidentdirectionsareappliedsuchthat 2π(j 1) 2π(j 1) T θ cos − , − , j 1,2, ,N. j =− N N = ··· · ¸ M 3 smallinhomogeneitiesare selected with locationsz [0.25,0]T, z [ 0.4,0.5]T, and 1 2 = = = − z [ 0.3, 0.7]T. We set S 100 number of small scatterers as being randomly distributed in 3 = − − = Ω [ 1,1] [ 1,1] R2suchthat = − × − ⊂ y [η ( 1,1),η ( 1,1)]T s 1 2 = − − foralls andalsoselectthepermittivitiesrandomlyas ε η (1,2), s 3 = whereη (a,b),andp 1,2,and3,isanarbitraryrealvaluewithin[a,b]. RefertoFig.1forasketch p = ofthedistributionofthethreeinhomogeneitiesandrandomscatterers. Distribution of inhomogeneities 1 0.5 s axi 0 − y −0.5 −1 −1 −0.5 0 0.5 1 x−axis Figure1:Distributionofinhomogeneities(red-coloreddots)andrandomscatterers(blue-colored ‘ ’mark). × Thefar-fieldelementsofMSRmatrixKisgeneratedbymeansoftheFoldy-Laxframeworkto avoidaninversecrime.Afterthegeneration,asingularvaluedecompositionofKisperformedvia theMATLABcommandsvd. ThenonzerosingularvaluesofKarediscriminatedasfollows: first, a 0.1 thresholdscheme (by first choosing the j singularvalues σ such that σj 0.1) is applied − j σ1 ≥ basedon[18]andsecond,thefirst3 singularvaluesareselected. − Fig.2exhibitsthedistributionofthenormalizedsingularvaluesofKandmapsofF(x)withthe 0.1 thresholdschemeandwithselectionofthefirst3 singularvalueswhenλ 0.3and N 32. − − = = 9 Note that due to the huge number of artifacts it is very hard to identify the locations of Σ with m the 0.1 threshold scheme but, fortunately in this example, one can discriminate three nonzero − singularvaluessuchthat,basedonthefollowingRemark4.4,thelocationsofΣ canbeidentified m moreclearly. ThisresultsupportsthederivedmathematicalstructureinTheorem4.2. Singular values of the MSR matrix 1 1 0.7 X: 3 es 0.8 Y: 0.7197 u 0.5 val 0.6 d singular 0.6 y−axis 0 0.5 e 0.4 z 0.4 ali m Nor 0.2 −0.5 0.3 0.2 0 −1 0 5 10 15 20 25 30 −1 −0.5 0 0.5 1 Index of singular values x−axis Singular values of the MSR matrix 1 1 1.4 1.2 es 0.8 u 0.5 al d singular v 0.6 y−axis 0 01.8 e 0.4 z ali 0.6 m Nor 0.2 XY:: 201.1006 −0.5 0.4 0 −1 0 5 10 15 20 25 30 −1 −0.5 0 0.5 1 Index of singular values x−axis Figure 2: Distribution of normalized singular values (left column) and maps of F(x) with first 3 singularvalues(top,right)andwith0.1 thresholdscheme(bottom,right). − − Now, let us examinetheeffect of totalnumberofdirections N in theextremecases. Figure3 exhibits normalizedsingularvalues and map of F(x) with smallnumber of N 5 when λ 0.4. = = BasedonRemark4.3,thevalueofN mustbesufficientlylargeso,asweexpected,locationsofΣ m cannotbeidentifiedviathemapofF(x)withsmallN. Oppositetothepreviousresult,Figure4displaysnormalizedsingularvaluesandmapsofF(x) with large number of N 256 when λ 0.4. Similar to the results in Figure 2, locations of Σ m = = can beexaminedclearlyvia theselectionoffirst 3 singularvalues. Applying0.1 threshold,it is − − veryhardtoidentifylocationsofΣ but,oppositetotheresultinFigure2,theirlocationscanbe m recognizedeventhoughsomeartifactsarestillexist. Onthebasisofrecentworks[13,20],ithasbeenconfirmedthatMUSICisrobustwithrespectto therandomnoise. Inordertoexaminetherobustness,assumethat10dBGaussianrandomnoise is added to the unperturbed data u (ϑ ,θ ). Throughout results in Figure 5 when N 32 and far j l = λ 0.3, although some blurring appears in the map of F(x), we can easily find proper singular = 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.