ebook img

Interpolation synthesis for quadratic polynomial inequalities and combination with EUF PDF

0.59 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Interpolation synthesis for quadratic polynomial inequalities and combination with EUF

Interpolation synthesis for quadratic polynomial inequalities and combination with EUF TingGan1,LiyunDai1,BicanXia1,NaijunZhan2,DeepakKapur3,andMingshuaiChen2 1 LMAM&SchoolofMathematicalSciences,PekingUniversity {gant,dailiyun,xbc}@pku.edu.cn, 6 2 StateKeyLab.ofComputerScience,InstituteofSoftware,CAS 1 [email protected] 0 2 3 DepartmentofComputerScience,UniversityofNewMexico [email protected] v o N Abstract. Analgorithmforgeneratinginterpolantsforformulaswhicharecon- 0 junctionsofquadraticpolynomialinequalities(bothstrictandnonstrict)ispro- 1 posed. The algorithm is based on a key observation that quadratic polynomial inequalitiescanbelinearizediftheyareconcave.AgeneralizationofMotzkin’s ] O transpositiontheoremisproved,whichisusedtogenerateaninterpolantbetween twomutuallycontradictoryconjunctionsofpolynomialinequalities,usingsemi- L definiteprogrammingintimecomplexityO(n3+nm))withagiventhreshold, . s wherenisthenumberofvariablesandmisthenumberofinequalities.Using c the framework proposed by [21] for combining interpolants for a combination [ ofquantifier-freetheorieswhichhavetheirowninterpolationalgorithms,acom- 3 binationalgorithmisgivenforthecombinedtheoryofconcavequadraticpoly- v nomialinequalitiesandtheequalitytheoryoveruninterpretedfunctionssymbols 2 (EUF).Theproposedapproachisapplicabletoallexistingabstractdomainslike 0 octagon,polyhedra,ellipsoidandsoon,thereforeitcanbeusedtoimprovethe 8 scalabilityofexistingverificationtechniquesforprogramsandhybridsystems.In 4 addition,wealsodiscusshowtoextendourapproachtoformulasbeyondconcave 0 quadraticpolynomialsusingGro¨bnerbasis. . 1 0 6 Keywords: Programverification,Interpolant,Concavequadraticpolynomials,Motzin’s 1 theorem,Semi-definiteprogramming. : v 1 Introduction i X InterpolantshavebeenpopularizedbyMcMillan[15]forautomaticallygenerating r invariantsofprograms.Sincethen,developingefficientalgorithmsforgeneratinginter- a polantsforvarioustheorieshasbecomeanactiveareaofresearch;inparticular,methods havebeendevelopedforgeneratinginterpolantsforPresburgerarithmetic(bothforin- tegers as well as for rationals/reals), theory of equality over uninterpreted symbols as wellastheircombination.Mostofthesemethodsassumetheavailabilityofarefutation proofofα∧βtogeneratea“reverse”interpolantof(α,β);calculihavebeenproposed to label an inference node in a refutational proof depending upon whether symbols of formulas on which the inference is applied are purely from α or β. For proposi- tional calculus, there already existed methods for generating interpolants from reso- lution proofs [11,16] prior to McMillan’s work, which generate different interpolants fromthosedonebyMcMillan’smethod.ThisledD’Silvaetal[6]tostudystrengthsof variousinterpolants. In Kapur, Majumdar and Zarba [10], an intimate connection between interpolants andquantifiereliminationwasestablished.Usingthisconnection,existenceofquantifier- free as well as interpolants with quantifiers were shown for a variety of theories over container data structures. A CEGAR based approach was generalized for verification of programs over container data structures using interpolants. Using this connection betweeninterpolantgenerationandquantifierelimination,Kapur[9]hasshownthatin- terpolantsformalatticeorderedusingimplication,withtheinterpolantgeneratedfrom αbeingthebottomofsuchalatticeandtheinterpolantgeneratedfromβ beingthetop ofthelattice. Nonlinearpolynomialsinequalitieshavebeenfoundusefultoexpressinvariantsfor softwareinvolvingsophisticatednumbertheoreticfunctionsaswellashybridsystems; an interested reader may see [27,28] where different controllers involving nonlinear polynomialinequalitiesarediscussedforsomeindustrialapplications. Weproposeanalgorithmtogenerateinterpolantsforquadraticpolynomialinequal- ities (including strict inequalities). Based on the insight that for analyzing the solu- tionspaceofconcavequadraticpolynomial(strict)inequalities,itsufficestolinearize them. We prove a generalization of Motzkin’s transposition theorem to be applicable for quadratic polynomial inequalities (including strict as well as nonstrict). Based on thisresult,weprovetheexistenceofinterpolantsfortwomutuallycontradictorycon- junctionsα,β ofconcavequadraticpolynomialinequalitiesandgiveanalgorithmfor computing an interpolant using semi-definite programming. The algorithm is recur- sivewiththebasisstepofthealgorithmrelyingonanadditionalconditiononconcave quadraticpolynomialsappearinginnonstrictinequalitiesthatanynonpositiveconstant combinationofthesepolynomialsisneveranonzerosumofsquarepolynomial(called NSOSC). In this case, an interpolant output by the algorithm is either a strict in- equalityoranonstrictinequalitymuchlikeinthelinearcase.Incase,thisconditionis notsatisfiedbythenonstrictinequalities,i.e.,thereisanonpositiveconstantcombina- tions of polynomials appearing as nonstrict inequalities that is a negative of a sum of squares,thennewmutuallycontradictoryconjunctionsofconcavequadraticpolynomi- als infewer variablesare derivedfrom the inputaugmented withthe equality relation deduced, and the algorithm is recursively invoked on the smaller problem. The out- putofthisalgorithmisingeneralaninterpolantthatisadisjunctionofconjunctionof polynomial nonstrict or strict inequalities. The NSOSC condition can be checked in polynomialtimeusingsemi-definiteprogramming. Wealsoshowhowseparatingtermst−,t+ canbeconstructedusingcommonsym- bols in α,β such that α ⇒ t− ≤ x ≤ t+ and β ⇒ t+ ≤ y ≤ t−, whenever (α∧β) ⇒ x = y. Similar to the construction for interpolants, this construction has thesamerecursivestructurewithconcavequadraticpolynomialssatisfyingNSOSCas thebasisstep.Thisresultenablestheuseoftheframeworkproposedin[17]basedon hierarchical theories and a combination method for generating interpolants by Yorsh andMusuvathi,fromcombiningequalityinterpolatingquantifier-freetheoriesforgen- erating interpolants for the combined theory of quadratic polynomial inequalities and theoryofuninterpretedsymbols. Obviously,ourresultsaresignificantinprogramverificationasallwell-knownab- stractdomains,e.g.octagon,polyhedra,ellipsoid andsoon,whicharewidelyusedin the verification of programs and hybrid systems, are quadratic and concave. In addi- tion,wealsodiscussthepossibilitytoextendourresultstogeneralpolynomialformu- lasbyallowingpolynomialequalitieswhosepolynomialsmaybeneitherconcavenor quadraticusingGro¨bnerbasis. Wedevelopacombinationalgorithmforgeneratinginterpolantsforthecombination ofconcavequadraticpolynomialinequalitiesanduninterpretedfunctionsymbols. In [5], Dai et al. gave an algorithm for generating interpolants for conjunctions of mutually contradictory nonlinear polynomial inequalities based on the existence of a witness guaranteed by Stengle’s Positivstellensatz [22] that can be computed using semi-definiteprogramming.Theiralgorithmisincompleteingeneralbutifeveryvari- ablesrangesoveraboundedinterval(calledArchimedeancondition),thentheiralgo- rithm is complete. A major limitation of their work is that formulas α,β cannot have uncommonvariables4.However,theydonotgiveanycombinationalgorithmforgener- atinginterpolantsinthepresenceofuninterpretedfunctionsymbolsappearinginα,β. Thepaperisorganizedasfollows.Afterdiscussingsomepreliminariesinthenext section, Section 3 defines concave quadratic polynomials, their matrix representation and their linearization. Section 4 presents the main contribution of the paper. A gen- eralizationofMotzkin’stranspositiontheoremforquadraticpolynomialinequalitiesis presented. Using this result, we prove the existence of interpolants for two mutually contradictoryconjunctionsα,β ofconcavequadraticpolynomialinequalitiesandgive analgorithm(Algorithm2)forcomputinganinterpolantusingsemi-definiteprogram- ming. Section 5 extends this algorithm to the combined theory of concave quadratic inequalitiesandEUFusingtheframeworkusedin[21,17].Implementationandexper- imentalresultsusingtheproposedalgorithmsarebrieflyreviewedinSection6,andwe concludeanddiscusfutureworkinSection7. 2 Preliminaries Let N, Q and R be the set of natural, rational and real numbers, respectively. Let R[x]bethepolynomialringoverRwithvariablesx=(x ,··· ,x ).Anatomicpoly- 1 n nomial formula ϕ is of the form p(x)(cid:5)0, where p(x) ∈ R[x], and (cid:5) can be any of =,>,≥,(cid:54)=;withoutanylossofgenerality,wecanassume(cid:5)tobeanyof>,≥.Anar- bitrarypolynomialformulaisconstructedfromatomiconeswithBooleanconnectives andquantificationsoverrealnumbers.LetPT(R)beafirst-ordertheoryofpolynomi- als with real coefficient, In this paper, we are focusing on quantifier-free fragment of PT(R). Laterwediscussquantifier-freetheoryofequalityoftermsoveruninterpretedfunc- tion symbols and its combination with the quantifier-free fragment of PT(R). Let Σ beasetof(new)functionsymbols.LetPT(R)Σ betheextensionofthequantifier-free theorywithuninterpretedfunctionsymbolsinΣ. Forconvenience,weuse⊥tostandforfalseand(cid:62)fortrueinwhatfollows. 4Seehoweveranexpandedversionoftheirpaperunderpreparationwheretheyproposeheuris- ticsusingprogramanalysisforeliminatinguncommonvariables. Definition1. AmodelM = (M,f )ofPT(R)Σ consistsofamodelM ofPT(R) M andafunctionf :Rn →Rforeachf ∈Σ witharityn. M Definition2. LetφandψbeformulasofaconsideredtheoryT,then – φisvalidw.r.t.T,writtenas|= φ,iffφistrueinallmodelsofT; T – φentailsψ w.r.t.T,writtenasφ |= ψ,iffforanymodelofT,ifψ istrueinthe T model,soisφ; – φ is satisfiable w.r.t. T, iff there exists a model of T such that in which φ is true; otherwiseunsatisfiable. Notethatφisunsatisfiableiffφ|= ⊥. T Craig showed that given two formulas φ and ψ in a first-order theory T such that φ |= ψ, there always exists an interpolant I over the common symbols of φ and ψ suchthatφ|=I,I |=ψ.Intheverificationliterature,thisterminologyhasbeenabused following[15],whereanreverseinterpolantI overthecommonsymbolsofφandψis definedforφ∧ψ |=⊥as:φ|=I andI∧ψ |=⊥. Definition3. Let φ and ψ be two formulas in a theory T such that φ∧ψ |= ⊥. A T formulaI saidtobea(reverse)interpolantofφandψifthefollowingconditionshold: i φ|= I; T ii I∧ψ |= ⊥;and T iii I onlycontainscommonsymbolsandfreevariablessharedbyφandψ. Ifψ isclosed,thenφ |= ψ iffφ∧¬ψ |= ⊥.Thus,I isaninterpolantofφand T T ψ iff I is a reverse interpolant of φ and ¬ψ. In this paper, we just deal with reveres interpolant,andfromnowon,weabuseinterpolantandreverseinterpolant. 2.1 Motzkin’stranspositiontheorem Motzkin’stranspositiontheorem[18]isoneofthefundamentalresultsaboutlinear inequalities; it also served as a basis of the interpolant generation algorithm for the quantifier-freetheoryoflinearinequalitiesin[17].Thetheoremhasseveralvariantsas well.Belowwegivetwoofthem. Theorem1 (Motzkin’s transposition theorem [18]). Let A and B be matrices and letαandβbecolumnvectors.ThenthereexistsavectorxwithAx≥αandBx>β, iff forallrowvectorsy,z≥0: (i)if yA+zB =0thenyα+zβ ≤0; (ii)if yA+zB =0andz(cid:54)=0thenyα+zβ <0. Corollary1. LetA ∈ Rr×n andB ∈ Rs×n bematricesandα ∈ Rr andβ ∈ Rs be columnvectors.DenotebyA ,i = 1,...,r theithrowofAandbyB ,j = 1,...,s i j thejthrowofB.ThentheredoesnotexistavectorxwithAx ≥ αandBx > β,iff thereexistrealnumbersλ ,...,λ ≥0andη ,η ,...,η ≥0suchthat 1 r 0 1 s r s (cid:88) (cid:88) λ (A x−α )+ η (B x−β )+η ≡0, (1) i i i j j j 0 i=1 j=1 s (cid:88) η >0. (2) j j=0 Proof. The“if”partisobvious.Belowweprovethe“onlyif”part. ByTheorem1,ifAx≥αandBx>βhavenocommonsolution,thenthereexist tworowvectorsy∈Rr andz∈Rswithy≥0andz≥0suchthat (yA+zB =0∧yα+zβ >0)∨(yA+zB =0∧z(cid:54)=0∧yα+zβ ≥0). Letλ =y ,i=1,...,r,η =z ,j =1,...,sandη =yα+zβ.Thenitiseasyto i i j j 0 checkthatEqs.(1)and(2)hold. (cid:116)(cid:117) 3 Concavequadraticpolynomialsandtheirlinearization Definition4 (ConcaveQuadratic).Apolynomialf ∈R[x]iscalledconcavequadratic (CQ),ifthefollowingtwoconditionshold: (i) f hastotaldegreeatmost2,i.e.,ithastheformf =xTAx+2αTx+a,whereA isarealsymmetricmatrix,αisacolumnvectoranda∈Risaconstant; (ii) thematrixAisnegativesemi-definite,writtenasA(cid:22)0.5 Example1. Letg =−x2+2x −x2+2x −y2,thenitcanbeexpressedas 1 1 1 2 2  T    T  x −1 0 0 x 1 x 1 1 1 g1 =x2  0 −1 0 x2+21 x2. y 0 0 −1 y 0 y   −1 0 0 Thedegreeofg1is2,andthecorrespondingA= 0 −1 0 (cid:22)0.Thus,g1isCQ. 0 0 −1 Itiseasytoseethatiff ∈ R[x]islinear,thenf isCQbecauseitstotaldegreeis1 andthecorrespondingAis0whichisofcoursenegativesemi-definite. Aquadraticpolynomialcanalsoberepresentedasaninnerproductofmatrices(cf. (cid:28) (cid:18)1 xT (cid:19)(cid:29) [13]),i.e.,f(x)= P, . xxxT 5A being negative semi-definite has many equivalent characterizations: for every vector x, xTAx ≤ 0;everykthminorofA≤ 0ifk isoddand≥ 0otherwise;aHermitianmatrix whoseeigenvaluesarenonpositive. 3.1 Linearization Considerquadraticpolynomialsf andg (i=1,...,r,j =1,...,s), i j f =xTA x+2αTx+a , i i i i g =xTB x+2βTx+b , j j j j whereA ,B aresymmetricn×nmatrices,α ,β ∈ Rn,anda ,b ∈ R;letP := i j i j i j i (cid:18)a αT(cid:19) (cid:18)b βT(cid:19) i i , Q := j j be(n+1)×(n+1)matrices,then α A j β B i i j j (cid:28) (cid:18)1 xT (cid:19)(cid:29) (cid:28) (cid:18)1 xT (cid:19)(cid:29) f (x)= P , , g (x)= Q , . i i xxxT j j xxxT ForCQpolynomialsf sandg sinwhicheachA (cid:22)0,B (cid:22)0,define i j i j K ={x∈Rn |f (x)≥0,...,f (x)≥0,g (x)>0,...,g (x)>0}. (3) 1 r 1 s (cid:28) (cid:18)1 xT (cid:19)(cid:29) Givenaquadraticpolynomialf(x)= P, ,itslinearizationisdefined xxxT (cid:28) (cid:18)1 xT(cid:19)(cid:29) (cid:18)1 xT(cid:19) asf(x)= P, ,where (cid:23)0. x X x X Let X =(X ,X ,X ,...,X ,...,X ,...,X ,...,X ) (1,1) (2,1) (2,2) (k,1) (k,k) (n,1) (n,n) be the vector variable with n(n+1) dimensions corresponding to the matrix X. Since 2 (cid:28) (cid:18)1 xT(cid:19)(cid:29) X isasymmetricmatrix, P, isalinearexpressioninx,X. x X Now,let (cid:18)1 xT(cid:19) (cid:28) (cid:18)1 xT(cid:19)(cid:29) K ={x| (cid:23)0, ∧r P , ≥0, 1 x X i=1 i x X (cid:28) (cid:18)1 xT(cid:19)(cid:29) ∧s Q , >0, forsomeX}, (4) j=1 j x X whichisthesetofallx∈Rnonlinearizationsoftheabovef sandg s. i j In[7,13],whenK andK aredefinedonlywithf withoutg ,i.e.,onlywithnon- 1 i j strictinequalities,itisprovedthatK =K . BythefollowingTheorem2,weshowthat 1 K =K alsoholdseveninthepresenceofstrictinequalitieswhenf andg areCQ.So, 1 i j whenf andg areCQ,theCQpolynomialinequalitiescanbetransformedequivalently i j toasetoflinearinequalityconstraintsandapositivesemi-definiteconstraint. Theorem2. Let f ,...,f and g ,...,g be CQ polynomials, K and K as above, 1 r 1 s 1 thenK =K . 1 Proof. Foranyx ∈ K,letX = xxT.Thenitiseasytoseethatx,X satisfy(4).So x∈K ,thatisK ⊆K . 1 1 Next,weproveK ⊆ K.Letx ∈ K ,thenthereexistsasymmetricn×nmatrix 1 1 (cid:18)1 xT(cid:19) X satisfying(4).Because (cid:23)0,wehaveX−xxT (cid:23)0.Thenbythelasttwo x X conditionsin(4),wehave (cid:28) (cid:18)1 xT (cid:19)(cid:29) (cid:28) (cid:18)1 xT(cid:19)(cid:29) (cid:28) (cid:18)0 0 (cid:19)(cid:29) f (x)= P , = P , + P , i i xxxT i x X i 0xxT −X =(cid:28)P ,(cid:18)1 xT(cid:19)(cid:29)+(cid:10)A ,xxT −X(cid:11)≥(cid:10)A ,xxT −X(cid:11), i x X i i (cid:28) (cid:18)1 xT (cid:19)(cid:29) (cid:28) (cid:18)1 xT(cid:19)(cid:29) (cid:28) (cid:18)0 0 (cid:19)(cid:29) g (x)= Q , = Q , + Q , j j xxxT j x X j 0xxT −X =(cid:28)Q ,(cid:18)1 xT(cid:19)(cid:29)+(cid:10)B ,xxT −X(cid:11)>(cid:10)B ,xxT −X(cid:11). j x X j j Since f and g are all CQ, A (cid:22) 0 and B (cid:22) 0. Moreover, X − xxT (cid:23) 0, i.e., i j i j xxT −X (cid:22)0.Thus,(cid:10)A ,xxT −X(cid:11)≥0and(cid:10)B ,xxT −X(cid:11)≥0.Hence,wehave i j f (x)≥0andg (x)>0,sox∈K,thatisK ⊆K. (cid:116)(cid:117) i j 1 3.2 Motzkin’stheoreminMatrixForm (cid:28) (cid:18)1 xT(cid:19)(cid:29) If P, is seen as a linear expression in x,X, then Corollary 1 can be x X reformulatedas: Corollary2. Let x be a column vector variable of dimension n and X be a n×n symmetricmatrixvariable.SupposeP ,P ,...,P andQ ,...,Q are(n+1)×(n+1) 0 1 r 1 s symmetricmatrices.Let (cid:28) (cid:18)1 xT(cid:19)(cid:29) (cid:28) (cid:18)1 xT(cid:19)(cid:29) W=ˆ{(x,X)|∧r P , ≥0,∧s Q , >0}, i=1 i x X i=1 j x X thenW =∅iffthereexistλ ,λ ,...,λ ≥0andη ,η ,...,η ≥0suchthat 0 1 r 0 1 s (cid:88)r (cid:28) (cid:18)1 xT(cid:19)(cid:29) (cid:88)s (cid:28) (cid:18)1 xT(cid:19)(cid:29) λ P , + η Q , +η ≡0, and i i x X j j x X 0 i=0 j=1 η +η +...+η >0. 0 1 s 4 AlgorithmforgeneratinginterpolantsforConcaveQuadraticPoly- nomialinequalities Problem1. Giventwoformulasφandψonnvariableswithφ∧ψ |=⊥,where φ=f ≥0∧...∧f ≥0∧g >0∧...∧g >0, 1 r1 1 s1 ψ =f ≥0∧...∧f ≥0∧g >0∧...∧g >0, r1+1 r s1+1 s inwhichf ,...,f ,g ,...,g areallCQ,developanalgorithmtogeneratea(reverse) 1 r 1 s CraiginterpolantI forφandψ,onthecommonvariablesofφandψ,suchthatφ|=I andI∧ψ |=⊥.Forconvenience,wepartitionthevariablesappearinginthepolynomials above into three disjoint subsets x = (x ,...,x ) to stand for the common variables 1 d appearinginbothφandψ,y=(y ,...,y )tostandforthevariablesappearingonlyin 1 u φandz=(z ,...,z )tostandforthevariablesappearingonlyinψ,whered+u+v = 1 v n. Sincelinearinequalitiesaretriviallyconcavequadraticpolynomials,ouralgorithm (Algorithm IGFQC in Section 4.4) can deal with the linear case too. In fact, it is a generalizationofthealgorithmforlinearinequalities. Theproposedalgorithmisrecursive:thebasecaseiswhennosumofsquares(SOS) polynomial can be generated by a nonpositive constant combination of nonstrict in- equalitiesinφ∧ψ.Whenthisconditionisnotsatisfied,i.e.,anSOSpolynomialcanbe generatedbyanonpositiveconstantcombinationofnonstrictinequalitiesinφ∧ψ,then itispossibletoidentifyvariableswhichcanbeeliminatedbyreplacingthembylinear expressionsintermsofothervariablesandthusgenerateequisatisfiableproblemwith fewervariablesonwhichthealgorithmcanberecursivelyinvoked. (cid:28) (cid:18)1 xT(cid:19)(cid:29) Lemma1. LetU ∈R(n+1)×(n+1) beamatrix.If U, ≤0foranyx∈Rn x X (cid:18)1 xT(cid:19) andsymmetricmatrixX ∈Rn×nwith (cid:23)0,thenU (cid:22)0. x X Proof. AssumethatU (cid:54)(cid:22)0.Thenthereexistsacolumnvectory=(y ,y ,...,y )T ∈ 0 1 n Rn+1suchthatc:=yTUy=(cid:10)U,yyT(cid:11)>0.DenoteM =yyT,thenM (cid:23)0. (cid:18)1 xT(cid:19) (cid:18)1 xT (cid:19) Ify (cid:54)=0,thenletx=(y1,...,yn)T,andX =xxT.Thus, = = 0 y0 y0 x X xxxT (cid:28) (cid:18)1 xT(cid:19)(cid:29) (cid:68) (cid:69) (cid:28) (cid:18)1 xT(cid:19)(cid:29) 1 M (cid:23),and U, = U, 1 M = c >0,whichcontradictswith U, ≤ y2 x X y2 y2 x X 0 0 0 0. If y = 0, then M = 0. Let M(cid:48) = |U(1,1)|+1M, then M(cid:48) (cid:23) 0. Further, let 0 (1,1) c   10···0 00···0 (cid:18)1 xT(cid:19) M(cid:48)(cid:48) =M(cid:48)+... ... ... ....ThenM(cid:48)(cid:48) (cid:23)0andM(cid:48)(cid:48)(1,1) =1.Let x X =M(cid:48)(cid:48),then 00···0   10···0 (cid:28) (cid:18)1 xT(cid:19)(cid:29) (cid:42) 00···0(cid:43) U, x X =(cid:104)U,M(cid:48)(cid:48)(cid:105)= U,M(cid:48)+... ... ... ... 00···0   10···0 (cid:42) (cid:43) |U |+1 00···0 = U, (1,1c) M +... ... ... ... 00···0 |U |+1 (1,1) = (cid:104)U,M(cid:105)+U c (1,1) =|U |+1+U >0, (1,1) (1,1) (cid:28) (cid:18)1 xT(cid:19)(cid:29) whichalsocontradictswith U, ≤ 0.Thus,theassumptiondoesnothold, x X thatisU (cid:22)0. (cid:116)(cid:117) Lemma2. LetA={y∈Rm |A y−α ≥0,B y−β >0, fori=1,...,r,j = i i j j 1,...,}beanonemptysetandB ⊆Rmbeannonemptyconvexclosedset.IfA∩B =∅ andtheredoesnotexistalinearformL(y)suchthat ∀y∈A,L(y)>0, and ∀y∈B,L(y)≤0, (5) thenthereisalinearformL (y)(cid:54)≡0andδ ,...,δ ≥0suchthat 0 1 r r (cid:88) L (y)= δ (A y−α )and ∀y∈B,L (y)≤0. (6) 0 i i i 0 i=1 Proof. Since A is defined by a set of linear inequalities, A is a convex set. Using the separation theorem on disjoint convex sets, cf. e.g. [1], there exists a linear form L (y)(cid:54)≡0suchthat 0 ∀y∈A,L (y)≥0, and ∀y∈B,L (y)≤0. (7) 0 0 From(5)wehavethat ∃y ∈A, L (y )=0. (8) 0 0 0 Since ∀y∈A,L (y)≥0, (9) 0 then A y−α ≥0∧...∧A y−α ≥0∧ 1 1 r r B y−β >0∧...∧B y−β >0∧−L (y)>0 1 1 s s 0 hasnosolutionw.r.t.y.UsingCorollary1,thereexistλ ,...,λ ≥ 0,η ,...,η ≥ 0 1 r 0 s andη ≥0suchthat r s (cid:88) (cid:88) λ (A y−α )+ η (B y−β )+η(−L (y))+η ≡0, (10) i i i j j j 0 0 i=1 j=1 s (cid:88) η +η >0. (11) j j=0 Applyingy in(8)to(10)and(11),itfollows 0 η =η =...=η =0, η >0. 0 1 s Fori=1,...,r,letδi = ληi ≥0,then r (cid:88) L (y)= δ (A y−α )and ∀y∈B,L (y)≤0. (cid:116)(cid:117) 0 i i i 0 i=1 The lemma below asserts the existence of a strict linear inequality separating A and B defined above, for the case when any nonnegative constant combination of the linearizationoff sispositive. i Lemma3. LetA={y∈Rm |A y−α ≥0,B y−β >0, fori=1,...,r,j = i i j j 1,...,}beanonemptysetandB ⊆Rmbeannonemptyconvexclosedset,A∩B =∅. ThereexistsalinearformL(x,X)suchthat ∀(x,X)∈A,L(x,X)>0, and ∀(x,X)∈B,L(x,X)≤0, whenevertheredoesnotexistλ ≥0,s.t.,(cid:80)r λ P (cid:22)0. i i=1 i i Proof. Proof is by contradiction. Given that A is defined by a set of linear inequal- ities and B is a closed convex nonempty set, by Lemma 2, there exist a linear form L (x,X)(cid:54)≡0andδ ,...,δ ≥0suchthat 0 1 r (cid:88)r (cid:28) (cid:18)1 xT(cid:19)(cid:29) L (x,X)= δ P , and ∀(x,X)∈B,L (x,X)≤0. 0 i i x X 0 i=1 I.e.thereexistsansymmetricalmatrixL(cid:54)≡0suchthat (cid:28) (cid:18)1 xT(cid:19)(cid:29) (cid:88)r (cid:28) (cid:18)1 xT(cid:19)(cid:29) L, ≡ δ P , , (12) x X i i x X i=1 (cid:28) (cid:18)1 xT(cid:19)(cid:29) ∀(x,X)∈B, L, ≤0. (13) x X

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.