ebook img

Interpolation by entire functions with growth conditions PDF

0.16 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Interpolation by entire functions with growth conditions

INTERPOLATION BY ENTIRE FUNCTIONS WITH GROWTH CONDITIONS MYRIAMOUNAIES 8 0 0 INTRODUCTION 2 n Letp:C→[0,+∞[beaweight(seeDefinition1.1)andA (C)thevectorspaceofallentirefunctions a p J 9 satisfying supz∈C|f(z)| ≤ exp(−Bp(z)) < ∞ for some constant B > 0. For instance, if p(z) = |z|, 1 A (C)isthespaceofallentirefunctionsofexponentialtype. p ] V Following[3],theinterpolationproblemweareconsideringis: letV = {(z ,m )} beamultiplicity C j j j . h variety, that is, {zj}j is a sequence of complex numbers diverging to ∞, |zj| ≤ |zj+1| and {mj}j is t a m a sequence of strictly positive integers. Let {wj,l}j,0≤l<mj be a doubly indexed sequence of complex [ numbers. 1 v Underwhatconditionsdoesthereexistanentirefunctionf ∈A (C)suchthat 1 p 4 0 f(l)(z ) j 3 =wj,l, ∀j, ∀0≤l<mj? l! . 1 0 8 Inotherwords,ifwedenotebyρtherestrictionoperatordefinedonAp(C)by 0 : v fl(z ) j Xi ρ(f)={ l! }j,0≤l<mj, r a whatistheimageofA (C)byρ? p WesaythatV isan”interpolatingvariety”whenρ(A (C))isthespaceofalldoublyindexedsequence p W ={w }satisfyingthegrowthcondition j,l |w |≤Aexp(Bp(z )) ∀j, ∀0≤l <m , j,l j j forcertainconstantsA,B >0. Date:February2,2008. 1991MathematicsSubjectClassification. 30E05,42A85. Keywordsandphrases. discreteinterpolatingvarieties,entirefunctions. 1 2 M.OUNA¨IES Letusmentiontheimportantfollowingresult: Theorem0.1. [2,Corollary4.8] V isaninterpolatingvarietyforA (C)ifandonlyifthefollowingconditionshold: p (i) ∀R>0, N(0,R)≤Ap(R)+B (ii) ∀j ∈N, N(z ,|z |)≤Ap(z )+B, j j j forsomeconstantsA,B >0. Here, N(z,r) denotes the integrated countingfunctionof V in the disc of center z and radius r (see Definition1.3below). In [3], Berenstein and Taylor describe the space ρ(A (C)) in the case where there exists a function p g ∈ A (C) such that V = g−1(0). They used groupingsof the pointsof V with respect to the connex p components of the set {|g(z)| ≤ εexp(−Bp(z))}, for some ε,B > 0 and the divided diffrences with respecttothisgrouping. The main aim of this paper is to determine more explicitely the space ρ(A (C)) in the more general p casewherecondition(i)issatisfied. ItisclearthatitisthecasewhenV isnotauniquenesssetforA (C), p thatis,whenthereexistsf ∈A (C)notidenticallyequaltozerosuchthatV ⊂f(−1)(0). p Wereferto[6]and[10]forsimilarresultsinthecasewherep(z)=|z|α. Asin[3]and[6],thedivideddifferenceswillbeimportanttools. Ourconditionwillinvolvethedivided differenceswithrespecttotheintersectionsofV withdiscscenteredattheorigin. Tobemoreprecise,the maintheorem,statedinthecasewhereallthemultiplicitiesareequaltoone,forthesakeofsimplicity,is thefollowing: Theorem0.2. AssumethatV verifiescondition(i). ThenW = {w } ∈ ρ(A (C))ifandonlyifforall j j p R>0, | w R/(z −z )|≤AexpBp(R), k k m |zXk|<R |zm|<YR,m6=k whereA,B >0arepositiveconstantsonlydependingonV andW. INTERPOLATIONBYENTIREFUNCTIONSWITHGROWTHCONDITIONS 3 WewilldenotebyA˜ (V)thespaceofsequencesW = {w } satisfyingtheabovecondition. Wewill p j j showthatingeneralρ(A (C))⊂A˜ (V),thus,wecanconsiderρ :A (C)→A˜ (V). Inthiscontext,the p p p p theoremstatesthatcondition(i)impliesthesurjectivityofρ. On the other hand, we will prove that condition (i) is actually equivalent to saying that V is not a uniquenesssetor,inotherwords,itisequivalenttothenon-injectivityofρ. As a corollary of the main theorem, we will find the sufficency in the geometric characterization of interpolatingvarietiesgiveninTheorem0.1. The difficultpartof the proofof the main theoremis the sufficiency. As in [4, 7, 11], we will follow a Bombieri-Ho¨rmanderapproach based on L2-estimates on the solution to the ∂¯-equation. The scheme willbe thefollowing: the conditiononW givesa smoothinterpolatingfunctionF with a goodgrowth, usinga partitionof the unityandNewtonpolynomials(see Lemma2.5). Thenwe areled to solve the∂¯ equation: ∂¯u=−∂¯F withL2-estimates,usingHo¨rmandertheorem[8]. Todoso,weneedtoconstructa subharmonicfunctionU withaconvenientgrowthandwithprescribedsingularitiesonthepointsz (see j Lemma2.6). FollowingBombieri[5],thefactthate−U isnotsummablenearthepoints{z }forcesuto j vanishonthepointsz andwearedonebydefiningtheinterpolatingentirefunctionbyu+F. j Afinalremarkaboutthenotations: A, B andC will denotepositiveconstantsand theiractualvaluemay changefromone occurrenceto thenext. A(t) . B(t)meansthatthereexistsaconstantC > 0, notdependingont suchthatA(t) ≤ CB(t). A≃BmeansthatA.B .A. The notation D(z,r) will be used for the euclidean disk of center z and radius r. We will denote ∂f ∂f ∂f = ,∂¯f = . Then∆f =4∂∂¯f denotesthelaplacianoff. ∂z ∂z¯ 1. PRELIMINARIES AND DEFINITIONS. Definition1.1. Asubharmonicfunctionp : C −→ R , iscalledaweightif, forsomepositiveconstants + C, (a) ln(1+|z|2)≤Cp(z), 4 M.OUNA¨IES (b) p(z)=p(|z|), (c) thereexistsaconstantC >0suchthatp(2z)≤Cp(z). Property(c)isreferredtoasthe”doublingpropertyoftheweightp”. Itimpliesthatp(z)=O(|z|α)for someα>0. LetA(C)bethesetofallentirefunctions,weconsiderthespace A (C)= f ∈A(C), ∀z ∈C, |f(z)|≤AeBp(z) forsomeA>0,B >0 . p n o Remark1.2. (i) Condition(a)impliesthatA (C)containsallpolynomials. p (ii) Condition(c)impliesthatA (C)isstableunderdifferentiation. p Examples: • p(z)=ln(1+|z|2). ThenA (C)isthespaceofallthepolynomials. p • p(z)=|z|. ThenA (C)isthespaceofentirefunctionsofexponentialtype. p • p(z)=|z|α,α>0. ThenA (C)isthespaceofallentirefunctionsoforder≤αandfinitetype. p LetV ={(zj,mj)}j∈N beamultiplicityvariety. Forafunctionf ∈A(C),wewillwriteV =f−1(0)whenf vanishesexactlyonthepointsz withmul- j tiplicitym andV ⊂ f−1(0)whenf vanishesonthepointsz (butpossiblyelsewhere)withmultiplicity j j atleastequaltom . j We will say that V is a uniquenessset for A (C) if there is no functionf ∈ A (C), exceptthe zero p p function,suchthatV ⊂f−1(0). Weneedtorecallthedefinitionsofthecountingfunctionsandtheintegratedcountingfunctions: Definition1.3. LetV ={(z ,m )} beamultiplicityvariety. Forz ∈Candr >0, j j j n(z,r)= m , j |z−Xzj|≤r r n(z,t)−n(z,0) r N(z,r)= dt+n(z,0)lnr = m ln +n(z,0)lnr, j t |z−z | Z0 0<|zX−zj|≤r j INTERPOLATIONBYENTIREFUNCTIONSWITHGROWTHCONDITIONS 5 An application of Jensen’s formula in the disc D(0,R) shows that, if V is not a uniqueness set for A (C),thenthefollowingconditionholds: p (1) ∃A,B >0, ∀R>0, N(0,R)≤Ap(R)+B Wewilllatelyshowthattheconversepropertyholds. ByanalogywiththespacesA(C)andA (C),wedefinethefollowingspaces p A(V)={W ={w } ⊂C} j,l j,0≤l<mj and mj−1 A (V)= W ={w } ⊂C, ∀j, |w |≤AeBp(zj) forsomeA>0,B >0 . p j,l j,0≤l<mj j,l n Xl=0 o ThespaceA (C)canbeseenastheunionoftheBanachspaces p A (C)={f ∈A(C), kfk :=sup|f(z)|e−Bp(z) <∞} p,B B z∈C and has a structure of an (LF)-space with the topology of the inductive limit. The analog is true about A (V). p Remark1.4. (see[1,Proposition2.2.2]) Letf beafunctioninA (C). Then,forsomeconstantsA>0andB >0, p ∞ f(k)(z) ∀z ∈C, ≤AeBp(z). k! k=0(cid:12) (cid:12) X(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Asaconsequenceofthisremark,weseethattherestrictionmap: ρ:A(C)−→A(V) fl(z ) j f 7→ { } l! j,0≤l≤mj−1 maps A (C) into A (V), but in general, the space A (V) is larger than ρ(A (C)). It is clear that ρ is p p p p injectiveifandonlyifV isauniquenesssetforA (C). p 6 M.OUNA¨IES When ρ(A (C))=A (V), we say that V is an interpolating variety for A (C). As mentioned in the p p p introduction,BerensteinandLigaveageometriccharacterizationofthesevarieties: Theorem1.5. [2,Corollary4.8] V isaninterpolatingvarietyforA (C)ifandonlyifconditions(1)and p (2) ∃A>0, ∃B >0 ∀j ∈N, N(z ,|z |)≤Ap(z )+B j j j hold. In this paper, we are concerned by determining the subpace ρ(A (C)) of A(V) in the case where p condition(1)isverified. To any W = {w } ∈ A(V), we associate the sequenceof divideddifferencesΦ(W) = j,l j,0≤l≤mj−1 {φ } definedbyinductionasfollows: j,l j,0≤l≤mj−1 Wewilldenoteby q Πq(z)= (z−zk)mk,forallq ≥1. k=1 Y φ =w ,forall 0≤l≤m −1, 1,l 1,l 1 w −P (z ) q,0 q−1 q φ = , q,0 Π (z ) q−1 q w − Pq(−l)1(zq) − l−1 1 Π(l−j)(z )φ q,l l! j=0 (l−j)! q−1 q q,j φ = for1≤l≤m −1 q,l q Π (z ) Pq−1 q where q−1 mj−1 j−1 P (z)= φ (z−z )l (z−z )mt . q−1 j,l j t ! j=1 l=0 t=1 X X Y Remark1.6. Actually,P isthepolynomialinterpolatingthevaluesw atthepointsz withmultiplicity q j,l j m ,for1≤j ≤q. Itistheuniquepolynomialofdegreem +···+m −1suchthat j 1 q P(l)(z ) q j =w j,l l! forall1≤j ≤qand0≤l ≤m −1. j INTERPOLATIONBYENTIREFUNCTIONSWITHGROWTHCONDITIONS 7 Examples. • LetW ={δ δ } . 0 1,j l,m1−1 j,0≤l<mj j−1 UsingthefactthatPj(z)mustcoincidewith(z−z1)m1−1 (z−zj)mj andidentifyingthe k=2 Y coefficientinfrontofzm1+···+mj−1+l−1,wefind: φ =φ =···=φ =0, φ =1, 1,1 1,2 1,m1−2 1,m1−1 and,forj ≥2,0≤l ≤m −1, j j−1 φl,j =(z1−zj)−(l+1) (z1−zk)−mk. k=2 Y • Inthespecialcasewherem =1forallj andW ={w } ,wehaveforallj ≥1, j j j j φ = w (z −z )−1. j k k l k=1 1≤l≤j,l6=k X Y To compute the coefficients, we may use the fact that P (z) must coincide with the Lagrange j j (z−z ) polynomial w k andidentifythecoefficientinfrontofzj−1. n (z −z ) n k n=1 1≤k≤j,k6=n X Y Let us denote by A˜ (V) the subspace of A(V) consisting of the elements W ∈ A(V) such that the p followingconditionholds: (3) foralln≥0, |zj|≤2n and0≤l ≤mj −1, |φj,l|2n(l+m1+...+mj−1) ≤Aexp(Bp(2n)), whereAandBarepositiveconstantsonlydependingonV andW. WehavechosentouseacoveringofthecomplexplanebydiscsD(0,2n),butwecanreplace2nbyany RnwithR>1. Lemma1.7. Assumez =0. Then,condition(1)holdsifandonlyif 1 W ={δ δ } ∈A˜ (V). 0 1,j l,m1−1 j,0≤l<mj p 8 M.OUNA¨IES Proof. Supposethat(1)isverified.Letn∈N,0<|z |≤2nand0≤l ≤m −1. Wehavebydefinition, j j 2n j N(0,2n)= mkln +m1ln(2n)≥ln 2n(m1+···+mj) |zk|−mk , |z | k ! 0<|Xzk|≤2n kY=2 j j |φj,l|=|zj|mj−l−1 |zk|−mk ≤2n(mj−l−1) |zk|−mk ≤exp(N(0,2n))2−n(m1+···+mj−1+l+1). k=2 k=2 Y Y Wereadilyobtaintheestimate(3),usingthatN(0,2n)≤Ap(2n)+B. Conversely,letnbeaninteger.Usingtheestimate(3)whenj ≥2isthenumberofdistinctpoints{z } k inD(0,2n)andl =m −1,wehave j j N(0,2n)=ln 2n(m1+···+mj) |zk|−mk =ln(2n(m1+···+mj)|φj,mj−1|)≤Ap(2n)+B. ! k=2 Y Then, we deduce the estimate for N(0,R) using the aboveone with 2n−1 ≤ R < 2n and the doubling propertyofp. (cid:4) Wedefinethefollowingnorm: kWk =supkW(n)k exp(−Bp(2n)) B n n where kW(n)kn = sup sup |φj,l|2−n(l+m1+...+mj−1), |zj|≤2n0≤l≤mj−1 ThespaceA˜ (V)canalsobeseenasan(LF)-spaceasaninductivelimitoftheBanachspaces p A˜ (V)={W ∈A(V), kWk <∞}. p,B B Wearenowreadytostatethemainresults. Proposition1.8. TherestrictionoperatorρmapscontinouslyA (C)intoA˜ (V). p p Proposition1.9. Undertheassumptionofcondition(1),A˜ (V)isasubspaceofA (V). p p Proposition1.10. Ifconditions(1)and(2)areverified,thenA˜ (V)=A (V). p p INTERPOLATIONBYENTIREFUNCTIONSWITHGROWTHCONDITIONS 9 Theorem1.11. Ifcondition(1)holds,then A˜ (V)=ρ(A (C)). p p Inotherwords,condition(1)impliesthatthemapρ:A (C)→A˜ (V)issurjective. p p ThecombinationofProposition1.10andTheorem1.11showseasilythesufficiencyinTheorem1.5. Usingtheresultsgivensofar,wecandeducenexttheorem: Theorem1.12. Thefollowingassertionsareequivalent: (i) V isnotauniquenesssetforA (C). p (ii) Themapρisnotinjective. (iii) V verifiescondition(1). (iv) ThesequenceW ={δ δ } belongstoρ(A (C)). 0 1,j l,m1−1 j,0≤l<mj p Inparticular,itshowsthatcondition(1)isequivalenttotheexistenceofafunctionf ∈A (C)suchthat p V ⊂ f−1(0). Combinedwith Theorem1.11, it shows that, if ρ is notinjective, then it is surjectiveand that,iftheimagecontainsW ,thenitcontainsthewholeA˜ (V). 0 p ProofofTheorem1.12. Aswementionedbefore,itisclearthat(i)isequivalentto(ii)andthat(i)implies (iii). (iv)implies(i): Wehaveafunctionf ∈A (C)notidenticallyequalto0suchthatf(l)(z )=0forall p j j 6=1andforall0≤l<mj. Thefunctiongdefinedbyg(z)=(z−z1)m1f(z)belongstoAp(C),thanks toproperty(i)oftheweightp,andvanishesoneveryz withmultiplicityatleastm . j j (iii)implies(iv): Up to a translation, we may suppose that z = 0. By Lemma 1.7, we know that W ∈ A˜ (C). By 1 0 p Theorem1.11,W ∈ρ(A (C)). 0 p (cid:4) 10 M.OUNA¨IES 2. PROOF OFTHE MAIN RESULTS. ProofofTheorem1.8. WewillfirstrecallsomedefinitionsaboutthedivideddifferencesanNewtonpoly- nomials.Wereferthereaderto[1,Chapter6.2]or[9,Chapter6]formoredetails. Letf ∈A(C)andx ,...,x bedistinctpointsofC. Theqthdivideddifferenceofthefunctionf with 1 q respecttothepointsx ,...,x isdefinedby 1 q q ∆q−1f(x ,...,x )= f(z ) (x −x )−1 1 q j j k j=1 1≤k≤q,k6=j X Y andtheNewtonpolynomialoff ofdegreeq−1is q j−1 P(z)= ∆j−1f(x ,...,x ) (z−x ). 1 j k j=1 k=0 X Y Itistheuniquepolynomialofdegreeq−1suchthatP (z)=f(x )forall1≤j ≤q. q j Whenx ,1≤j ≤qareeachonerepeatedl times,thedivideddifferencesaredefinedby j j ∆l1+···+lq−1f(x1,...,x1,...,xq−1,...,xq−1,xq,...,xq) l1 lq−1 lq | {z1 } ∂l1|+···+lj{z } | {z } = ∆q−1f(x ,··· ,x ). l1!···lq!∂xl11···∂xlqq 1 q ThecorrespondingNewtonpolynomialistheuniquepolynomialofdegreel +···l −1suchthat,for 1 q all0≤j ≤qand0≤l ≤l −1, j P(l)(x )=f(l)(x ). j j Wehavethefollowingestimate Lemma2.1. [1,Lemma6.2.9.] Letf ∈A(C),ΩanopensetofC,δ >0andx ,··· ,x inΩ ={z ∈Ω: d(z,Ωc)>δ}. Then 1 k 0 2k−1 |∆k−1f(x ,...,x )|≤ sup|f(z)|. 1 k δk−1 z∈Ω LetB >0befixedandf ∈A (C). p,B Letnbeafixedinteger. Let|z | ≤ 2n and0 ≤ l ≤ m −1. Weconsiderthedivideddifferencesoff j j withrespecttothepointsz ,··· ,z ,eachz ,1 ≤ k ≤ j−1repeatedm timesandz repeatedltimes.. 1 j k k j

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.