ebook img

Interpolation between Banach spaces and continuity of Radon-like integral transforms PDF

0.87 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Interpolation between Banach spaces and continuity of Radon-like integral transforms

Interpolation between Banach spaces and continuity of Radon-like integral transforms adiplomathesisby Pavel Zorin-Kranich 3 1 0 Abstract 2 Wepresenttheabstractframeworkandsomeapplicationsofinterpola- n tiontheory. ThemainnewresultconcernsinterpolationbetweenH1and Lp a estimatesforanalyticfamiliesofoperatorsactingonSchwartzfunctions. J 6 ] A C . h t a m [ 1 v 5 2 0 1 . 1 0 3 1 : v i X r EberhardKarlsUniversitätTübingen a MathematischesInstitut Advisors: Prof.F.Ricci(ScuolaNormaleSuperiorediPisa,Italy) Prof.R.Nagel(UniversitätTübingen,Germany) PresentedinJanuary2011 Copyright information Copyright (cid:13)c 2010–2013 Pavel Zorin-Kranich. Permission is granted to copy, distributeand/ormodifythisdocumentunderthetermsoftheGNUFreeDocu- mentationLicense,Version1.3oranylaterversionpublishedbytheFreeSoftware Foundation;withnoInvariantSections,noFront-CoverTexts,andnoBack-Cover Texts. AcopyofthelicenseisembeddedintothePDFfile. Why GNU FDL? IchosetheGNUFDLlicencebecauseitrequires“transparent”copiesofanydoc- uments derived from the present one to be made available. In case of a LATEX documentsuchasthisonethismeansthatthefullunobfuscatedLATEXsourcecode mustbemadeavailabletothepublic. Contents Contents iii Introduction v 1 Realinterpolation 1 1.1 TheK-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 TheJ-methodandtheequivalencetheorem . . . . . . . . . . . . . . 2 1.3 Thereiterationtheorem,caseθ <θ . . . . . . . . . . . . . . . . . . 5 0 1 1.4 Lorentzspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 Thereiterationtheorem,caseθ =θ . . . . . . . . . . . . . . . . . . 11 0 1 1.6 TheHardy-Littlewoodmaximalfunction. . . . . . . . . . . . . . . . . 13 1.7 Interpolationbetweendualspaces . . . . . . . . . . . . . . . . . . . . 15 1.8 Supplement: Maximalinequalityinlargedimension . . . . . . . . . 20 2 Complexinterpolation 25 2.1 Harmonicmajoration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2 Thethreelineslemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3 Analyticityofvector-valuedfunctions . . . . . . . . . . . . . . . . . . 30 2.4 Intermediatespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.5 Interpolationbetween Lp spaces. . . . . . . . . . . . . . . . . . . . . . 36 3 Fractionalintegration 41 3.1 Rieszpotentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 CompositionofRieszpotentials . . . . . . . . . . . . . . . . . . . . . . 43 3.3 InverseofaRieszpotential . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4 Supplement: Localoperatorsaredifferential . . . . . . . . . . . . . . 47 4 TheRadontransform 51 4.1 Thesupporttheorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2 Theinversionformula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3 Lp discontinuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.4 Lp estimatesbycomplexinterpolation . . . . . . . . . . . . . . . . . . 57 4.5 ALorentzspaceestimateatthecriticalpoint . . . . . . . . . . . . . . 59 4.6 Radontransformasaconvolutionoperator . . . . . . . . . . . . . . . 62 5 Rearrangementinequalities 65 6 TheHardyspace H1 71 6.1 Atomicdecomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 iii 6.2 Finiteatomicdecompositionandextensionofoperators . . . . . . . 78 6.3 BMO,thedualspaceofH1 . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.4 VMO,apredualofH1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.5 Thesharpfunctionandtheinverse Lp inequality . . . . . . . . . . . 86 6.6 Interpolationbetween Lp andH1 . . . . . . . . . . . . . . . . . . . . . 88 6.7 Whitneydecomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.8 Calderón-Zygmunddecomposition . . . . . . . . . . . . . . . . . . . . 92 7 The k-planetransform 95 7.1 Measureequivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7.2 Estimatesbyrearrangement . . . . . . . . . . . . . . . . . . . . . . . . 97 7.3 Estimatesbyinductiononk . . . . . . . . . . . . . . . . . . . . . . . . 101 7.4 EstimatesusingtheHardyspace. . . . . . . . . . . . . . . . . . . . . . 103 7.5 Thecomplexk-planetransform . . . . . . . . . . . . . . . . . . . . . . 108 8 Convolutionkernelssupportedonsubmanifolds 111 8.1 Sobolevspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.2 Transportofmeasure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.3 Lp improvement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Zusammenfassung 119 Index 123 iv Introduction Theinterpolationtheorydealswiththequestionwhatisagoodmethodtodefine an interpolation space “between” two given Banach spaces both contained in a largertopologicalvectorspace(e.g.two Lp spacesinsidethespaceofmeasurable functions). Themethodshouldhavetheinterpolationproperty: givencompatible (i.e.agreeingontheintersection)continuousoperatorsonbothspaces,onewould likethemtoinduceacontinuousoperatorontheinterpolationspace. Thehopeis thattheseoperatorsareeasiertoanalyzewhenconsideredontheboundaryspaces. Theapplicationswehaveinmindareto Lp continuityofintegraloperatorsof theform ˆ Tf(y)= K(y,x)f(x), M where M is a manifold and the kernel K(y,·) is a distribution supported on a submanifoldofstrictlypositivecodimension,e.g.onalinein(cid:82)n,n≥2. Thefirstchaptersummarizesthestandardresultsonlinearrealinterpolation byPeetre’sK-method(1963)andrelatedresultsforinterpolationofestimatesfor multilinear forms. The first notable application of the abstract theory is the Lp continuityoftheHardy-Littlewoodmaximaloperator, p>1. Inchapter2wediscussCalderón’scomplexinterpolationmethod(1964)along withprerequisitesfromcomplexanalysis,includingthecharacterizationofanalyt- icityofvectorvaluedfunctionsonthecomplexplane. Wethenrelaxthehypothesis oftheSteininterpolationtheorem(ageneralizationoftheRiesz-Thorintheorem) as to include operators with small initial domain. This straightforward step is essentialinwhatfollows. Weimmediatelyverifythatthisversionisapplicableto thecomplexinterpolationspace[Lp0,Lp1]θ over(cid:82)n. ThethirdchapterisabriefaccountofpropertiesofRiesztransforms. Theycan bethoughtofasdifferentialoperatorsofnon-integerorder,inthesensethatthey constituteananalyticfamilyofoperatorsandhappentobeordinarydifferential operatorsforsomeintegerarguments. The fourth chapter begins with the basic properties of the classical Radon transform as an operator on the Schwartz space of test functions. We then find therangeofexponentsinwhichtheRadontransformis Lp-continuous. Theproof requires complex interpolation and we address the technical issues which were leftimplicitintheoriginalliterature. WealsoconnecttheRadontransformtoa convolutionoperatorontheHeisenberggroup. In chapter 5 we clarify in which sense it is possible to transform a bounded measurablesubset T of(cid:82)n intoaballbymeansofrearrangement. Thestandard referenceforthistrickseemstobeFederer’sbook,whichonlyprovidesconvergence tosomeballintheHausdorffdistance. Ourquantitativeargumentshowsthatthis ballmusthavethesamemeasureas T. TheBrunn-Minkowskiinequality,themain v ingredientintheproofofarearrangementinequalityduetoBrascamp,Lieband Luttinger(1974),isanimmediatecorollary. ThenextchapterdealswiththeHardyspaceH1,whichisausefulsubstitute for L1 ininterpolationtheory. Wearemostlyinterestedintheatomicstructureof H1,i.e.thefactthateveryfunctioninH1 isalinearcombinationoffunctionswith particularlyniceproperties. Weprovidethemostrefinedversionofthisdecompo- sition. Therequiredmodificationstotheoriginalproofseemtobeknowntothe expertsbuthavenotbeenwrittendownanywhere. Wementiontherecentresult ofMeda,Sjögren,andVallarino(2008)clarifyinghowtheatomicdecomposition isrelatedtothecontinuityofoperatorsonH1. TheclassicalproofthatH1 isthe dualofVMO,thespaceoffunctionswithvanishingmeanoscillation,ispresented in a simplified form. Our central result is the Proposition 6.37, which allows to interpolatebetweenH1((cid:82)n)and Lp((cid:82)n)bymeansofSchwartzfunctions. Chapter7containsapplicationsofrearrangementandinterpolationmethodsto thek-planetransform. Wesimplifysomeargumentsandcarryoutanextensionto thecomplexcase. Thelastchapterdealswithcontinuityofconvolutionoperatorswithkernels supportedonsubmanifoldsofLiegroups. Herethecentrallemmaregardstransport ofmeasurebyasmoothmap. Werecastitinthelanguageofinterpolationtheory. Acknowledgment TheworkonthisthesisstartedattheScuolaNormaleSuperiorediPisawhereI havespenttheacademicyear2009–2010thankstoanexchangeprogramofthe UniversityofTübingen. IamgratefultoProf.FulvioRicciforthemotivationand theguidancehehasprovidedmewithaswellasforhispatience. Thesupportof Prof.RainerNagelwasinvaluablenotonlyinrelationtothistext. Online version InthepresentversionIhavecorrectedsometypographicalerrorspresentinthe originalandcleaneduptheLATEXcode. Ihavealsotakenthelibertytoremovesome unnecessaryfluffandaddanabstractinanefforttomakethetextmoreuseful. vi Chapter 1 Real interpolation We review two equivalent real-variable methods for constructing interpolation spaces between an appropriate couple of Banach spaces, mostly following the expositionin[BS88]. TheMarcinkiewiczinterpolationtheoremthenallowsonetotransportestimates onoperatorsontheendpointspacestointerpolationspaces. Itismostusefulin conjunctionwiththeknowledgeofexplicitexpressionsforthenormsofthespaces in question. These norms will be computed for interpolation spaces between various Lp’s. 1.1 The K-method Whenappliedto Lp spaces,theK-methodultimatelyboilsdowntodecomposition ofafunctionintwopartsbyabsolutevalue. Theabstractapproachhereisdueto Peetre[Pee63]. Itwillcomeinhandyintheproofsofthereiterationtheoremsfor interpolation. LetX andX beBanachspacescontainedinatopologicalvectorspace. The 0 1 K-functionalisdefinedby K(f,t,X ,X )=inf{||f || +t||f || ,f = f +f }, for f ∈X +X . 0 1 0 X0 1 X1 0 1 0 1 Forevery0<θ <1and1≤q≤∞,the(θ,q;K,X ,X )-normonX +X isdefined 0 1 0 1 by ´ (cid:40)(cid:128) ∞(t−θK(f,t,X ,X ))qdt(cid:138)1/q, q<∞, ||f||θ,q;K,X0,X1 = sup0 t−θK(f,t,X0 ,X1 ), t q=∞. t>0 0 1 We will call it just K-norm if the supplementary information is clear from the context. Theusefulnessofthisdefinitionstemsfromthefollowinginterpolationtheorem foroperators. Theorem1.1(Marcinkiewicz). Let T :X +X →Y +Y bealinearoperatorsuch 0 1 0 1 that ||Tf|| ≤M ||f|| ,j=0,1. Y j X j j Then,forevery0<θ <1and1≤q≤∞, ||Tf||θ,q;K,Y0,Y1 ≤M01−θM1θ||Tf||θ,q;K,X0,X1. 1 2 CHAPTER1. REALINTERPOLATION Proof. Bylinearitywehavethat K(Tf,t,Y ,Y )≤ inf ||Tg|| +t||Th|| 0 1 f=g+h Y0 Y1 ≤ inf M ||g|| +M t||h|| =M K(f,tM /M ,Y ,Y ). f=g+h 0 X0 1 X1 0 1 0 0 1 Insertingthisintothedefinitionofthe(θ,q;K,Y ,Y )-normyields 0 1 ˆ (cid:18) ∞ dt(cid:19)1/q ||Tf||θ,q;K,Y0,Y1 ≤ (t−θM0K(f,tM1/M0,X0,X1))q t 0 ˆ (cid:18) ∞ dt(cid:19)1/q =M (M /M )−θ (t−θK(f,t,X ,X ))q 0 1 0 0 1 t 0 =M01−θM1θ||f||θ,q;K,X0,X1. IfY andY areordered(say,Banachfunctionspaces),thentheassumptionsof 0 1 thetheoremmaybeweakenedastoincludesubadditiveoperators T. Thisstronger versionwillbeusefulintheproofoftheHardy-Littlewoodmaximalinequality. 1.2 The J-method and the equivalence theorem The J-method is modeled on dyadic decomposition by absolute value. Let X 0 and X beBanachspacescontainedinatopologicalvectorspaceanddefinethe 1 J-functionalby J(f,t,X ,X )=max{||f|| ,t||f || }, for f ∈X ∩X . 0 1 X0 1 X1 0 1 Forevery0<θ <1and1≤q≤∞,the(θ,q;J,X ,X )-norm(orjustJ-norm)on 0 1 X +X isdefinedby 0 1 ´ (cid:40)(cid:128) ∞(t−θJ(u(t),t,X ,X ))qdt(cid:138)1/q, q<∞, ||f||θ,q;J,X0,X1 =inuf sup0 t−θJ(u(t),t,X0 ,X1 ), t q=∞, t>0 0 1 wher´etheinfimumistakenovermeasurablefunctionsu:(0,∞)→X ∩X such that ∞u(t)dt/t= f withconvergenceinX +X . 0 1 0 0 1 Wenowshowthatthe K-andthe J-normareequivalent. Thisfactfurnishes powerfulestimatesneededtoprovethereiterationtheorems. Theestimatesbelow for f ∈X ∩X followimmediatelyfromthedefinitions. 0 1 K(f,t,X ,X )≤||f|| ≤J(f,s,X ,X ) forall t,s, (1.2) 0 1 X0 0 1 K(f,t,X ,X )≤t||f|| ≤t/sJ(f,s,X ,X ) forall t,s, (1.3) 0 1 X1 0 1 J(f,t,X ,X )≤J(f,s,X ,X ) for t≤s, (1.4) 0 1 0 1 J(f,t,X ,X )≤t/sJ(f,s,X ,X ) for t≥s. (1.5) 0 1 0 1 TheotheringredientsintheproofareHardy’sinequalitiesanddyadicversionsof theK-andtheJ-norm. 1.2. THEJ-METHODANDTHEEQUIVALENCETHEOREM 3 Lemma1.6(Hardy’sinequalities). Letλ>0,1≤q<∞and f beameasurable functionon[0,∞). Then ˆ ˆ ˆ (cid:130) ∞(cid:18) ∞ ds(cid:19)q dt(cid:140)1/q 1(cid:18) ∞ dt(cid:19)1/q tλ f(s) ≤ (tλf(t))q , (1.7) s t λ t 0 t 0 ˆ ˆ ˆ (cid:130) ∞(cid:18) t (cid:19)q dt(cid:140)1/q 1(cid:18) ∞ dt(cid:19)1/q t−λ f(s)ds ≤ (t1−λf(t))q . (1.8) t λ t 0 0 0 Proof. Toshow(1.7)inthecaseq>1,write f(s)s−1=s−(λ+1)/q(cid:48)(s(λ+1)/q(cid:48)f(s)s−1). ApplyingtheHölderinequalitytotheinnerintegralweobtain ˆ ˆ ˆ ∞ ds (cid:18) ∞ (cid:19)1/q(cid:48)(cid:18) ∞ (cid:19)1/q f(s) ≤ s−λ−1ds [s(λ+1)/q(cid:48)f(s)s−1]qds s t t ˆ t (cid:18) ∞ (cid:19)1/q =λ−1/q(cid:48)t−λ/q(cid:48) s(λ+1)(q−1)−qf(s)qds . t Theleft-handsideof(1.7)maythereforebeestimatedby ˆ ˆ (cid:18) ∞ ∞ dt(cid:19)1/q ...≤ tqλλ−q/q(cid:48)t−qλ/q(cid:48) s(λ+1)(q−1)−qf(s)qds t 0 ˆ ˆ t (cid:18) ∞ ∞ (cid:19)1/q =λ−1/q(cid:48) tλ−1 s(λ+1)(q−1)−qf(s)qdsdt ˆt=0ˆ s=t (cid:18) ∞ s (cid:19)1/q =λ−1/q(cid:48) tλ−1dts(λ+1)(q−1)−qf(s)qds ˆ s=0 t=0 (cid:18) ∞ (cid:19)1/q =λ−1 sλs(λ+1)(q−1)−qf(s)qds ˆ s=0 1(cid:18) ∞ ds(cid:19)1/q = [sλf(s)]q . λ s=0 s Thecaseq=1issimilarbuttheHölderinequalityisnotneeded. Theproofof(1.8) isanalogousifwedecompose f as f(s)=s(λ−1)/q(cid:48)(s(1−λ)/q(cid:48)f(s)). WearenowreadytoestimatetheK-normwiththeJ-norm. Letubeasabove. Then ˆ ˆ ∞ ∞ K(f,t,X ,X )≤ K(u(s),t,X ,X )ds/s≤ min{1,t/s}J(u(s),s,X ,X )ds/s 0 1 0 1 0 1 0 0 by(1.2)and(1.3). Inthecaseq<∞thisimpliesthat ˆ ˆ (cid:130) ∞(cid:18) t (cid:19)q dt(cid:140)1/q ||f||θ,q;K,X0,X1 ≤ t−θ J(u(s),s,X0,X1)ds/s t 0 0 ˆ ˆ (cid:18) ∞(cid:18) ∞ (cid:19)q dt(cid:19)1/q + t−θ t/sJ(u(s),s,X ,X )ds/s 0 1 t 0 tˆ (cid:18)1 1 (cid:19)(cid:18) ∞ dt(cid:19)1/q ≤ + (t−θJ(u(t),t,X ,X ))q θ 1−θ 0 1 t 0 4 CHAPTER1. REALINTERPOLATION by the Hardy inequalities (1.8) and (1.7) for the former and the latter term, respectively. Ontheotherhand,inthecaseq=∞wehavethat ||f||θ,q;K,X0,X1 =stu>p0 t−θK(ˆf,t,X0,X1) ˆ (cid:20) t ∞ t (cid:21) ≤supt−θ J(u(s),s,X ,X )ds/s+ J(u(s),s,X ,X )ds/s t>0 0 0 1 ˆ t s ˆ 0 1 (cid:20) t ∞ t (cid:21) ≤supr−θJ(u(r),r,X ,X )supt−θ sθds/s+ sθds/s r 0 1 t>0 0 t s (cid:18)1 1 (cid:19) ≤ + supr−θJ(u(r),r,X ,X ). θ 1−θ 0 1 r Takingtheinfimumoveruyieldstheclaimedestimateinbothcases. InordertoobtaintheconverseweconsiderthedyadicversionsoftheK-and theJ-norm. Letλθ,q denotethespaceofsequences(aν)∞ν=−∞ suchthat ||(aν)ν||θ,q=(cid:40)(cid:128)su(cid:80)pν∞ν=2−−∞θν(a2ν−,θνaν)q(cid:138)1/q, qq=<∞∞, (1.9) isfiniteanddefinethedyadicK-andJ-normsby ||f||θd,q;K,X0,X1 =||(K(f,2ν,X0,X1))ν||θ,q and ||f||θd,q;J,X0,X1 =infνf||(J(fν,2ν,X0,X1))ν||θ,q, theinfimumthistimebeingtakenoverdecompositions f =(cid:80)ν fν with fν ∈X0∩X1 andconvergenceinX +X . Theequivalence 0 1 ||f||θ,q;K,X0,X1 ≤C||f||θd,q;K,X0,X1 ≤C(cid:48)||f||θ,q;K,X0,X1 isclearfromthefactthatK(f,t)ismonotonousinitssecondargument. Further- more,restrictingtheinfimumontheleft-handsidetopiecewiseconstantfunctions, weobtain ||f||θ,q;J,X0,X1 ≤||f||θd,q;J,X0,X1. InordertoestimatethedyadicJ-normandthuscompletetheproofofequivalence of the norms we need to establish the existence of a particular decomposition f =(cid:80)ν fν. Lemma 1.10 (Fundamentallemmaofinterpolationtheory). Let f ∈X +X be 0 1 suchthatK(f,t)→0as t →0andK(f,t)/t →0as t →∞. Thenforeveryε>0 thereexistsadecomposition f =(cid:80)∞ν=−∞ fν withconvergencein X0+X1 suchthat J(fν,2ν)≤3(1+ε)K(f,2ν)foreveryν ∈(cid:90). Proof. BydefinitionoftheK-functionalthereexist fj,ν, j=0,1suchthat ||f0,ν||X0+2ν||f1,ν||X1 ≤(1+ε)K(f,2ν). Bytheassumptions||f0,ν||X0 →0asν →−∞and||f1,ν||X1 →0asν →∞. Let fν := f0,ν−f0,ν−1= f1,ν−1−f1,ν ∈X0∩X1.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.