ebook img

Interplay of Broken Symmetries and Quantum Criticality in Correlated Electronic Systems PDF

292 Pages·2016·16.98 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Interplay of Broken Symmetries and Quantum Criticality in Correlated Electronic Systems

Interplay of Broken Symmetries and Quantum Criticality in Correlated Electronic Systems A dissertation presented by Debanjan Chowdhury to The Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Physics Harvard University Cambridge, Massachusetts April 2016 c 2016 - Debanjan Chowdhury ⃝ All rights reserved. Thesis advisor Author Subir Sachdev Debanjan Chowdhury Interplay of Broken Symmetries and Quantum Criticality in Correlated Electronic Systems Abstract This thesis delves into a study of phases of strongly correlated quantum matter con- fined to two spatial dimensions. The thesis can broadly be divided into three parts. In the first part, comprising of chapters 2 and 3, we investigate some interesting as- pects of symmetry breaking and quantum criticality in the superconducting phase of the iron-based superconductors. In particular, motivated by tunneling microscopy measurements on FeSe, in chapter 2 we study the effect of spontaneously broken ro- tational symmetry on the structure of the superconducting vortex. In chapter 3, we study the critical singularities associated with the superfluid-density at a wide class of symmetry-breaking and topological phase transitions in a clean superconductor. Inspired by experiments on BaFe (As P ) , we also analyze the effect of quenched 2 1 x x 2 − disorder on the superfluid-density in the vicinity of magnetic quantum critical points. The second part of this thesis, consisting of chapters 4 and 5, is devoted to a study of the pseudogap phase in the underdoped cuprates. In chapter 4 we study the effect of thermal fluctuations of various competing order parameters, including preformed superconductivity and short-ranged charge-density wave, on the electronic excita- tions. In chapter 5 we analyze the feedback of pairing fluctuations on the landscape iii Abstract of various competing charge-density wave order parameters within the framework of fermi-liquid theory. In the final part of the thesis, consisting of chapters 6 and 7, we propose an alternative picture for describing the pseudogap metal. In chapter 6, we study a quantum-disordered phase of matter—the fractionalized fermi-liquid (FL*)—where the electrons are coupled to the fractionalized excitations of a strongly fluctuating antiferromagnet and propose it to be a candidate state for the pseudogap. We inves- tigate instabilities of the FL* to density-wave order and compare with experiments. Inchapter7, wedescribeaframeworkfordescribinganovelquantumphasetransition without any broken-symmetries—a Higgs transition—that describes a transition from a conventional fermi-liquid to a parent phase of the FL* state via an intermediate non-fermi liquid. We discuss its possible connection to the optimal doping critical point in the cuprates. iv Contents Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Citations to Previously Published Work . . . . . . . . . . . . . . . . . . . viii Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv 1 Introduction 1 1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Quantum Criticality . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Fermi-liquids and Luttinger’s theorem . . . . . . . . . . . . . 6 1.2 Beyond conventional condensed-matter physics . . . . . . . . . . . . . 13 1.2.1 High-temperature superconductivity . . . . . . . . . . . . . . 14 1.2.2 Quantum criticality in the pnictide superconductors . . . . . . 19 1.2.3 The enigma of the cuprate superconductors . . . . . . . . . . 24 1.3 Correlated antiferromagnetic metals . . . . . . . . . . . . . . . . . . . 38 1.3.1 Fractionalized Fermi liquid . . . . . . . . . . . . . . . . . . . . 39 1.3.2 Instabilities of a Fermi liquid with antiferromagnetic correlations 49 1.4 Organization of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2 Nematic order in the vicinity of a superconducting vortex 58 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.3.1 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.3.2 Vortex profile in the different regimes . . . . . . . . . . . . . . 66 2.3.3 Analytical Treatment . . . . . . . . . . . . . . . . . . . . . . . 70 2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3 Quantum Phase Transitions beneath the superconducting dome 79 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 v Contents 3.2 Singularity of the penetration depth at quantum critical points . . . . 81 3.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.3 Effect of quenched disorder in the vicinity of putative quantum critical points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.3.1 Insights from optical sum-rules . . . . . . . . . . . . . . . . . 99 3.3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 3.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4 Precursor thermal fluctuations in underdoped cuprates 110 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.2.1 Onset of charge-order and superconductivity . . . . . . . . . . 115 4.2.2 Order parameter fluctuations coupled to Fermi-surface . . . . 118 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5 Feedback of pairing fluctuations on charge-order 129 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.2.1 Instabilities of metal with antiferromagnetic exchange interaction133 5.2.2 Metal with SC and CDW fluctuations . . . . . . . . . . . . . . 139 5.2.3 Low-energy theory . . . . . . . . . . . . . . . . . . . . . . . . 140 5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.3.1 Linearized hot-spot theory . . . . . . . . . . . . . . . . . . . . 146 5.3.2 Effect of fermi-surface curvature . . . . . . . . . . . . . . . . . 156 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 6 Fractionalized Fermi-liquids 164 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 6.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 6.2.1 Fractionalized Fermi liquid (FL*) . . . . . . . . . . . . . . . . 173 6.2.2 Charge-order instabilities via T-matrix . . . . . . . . . . . . . 175 6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 7 Quantum phase transitions in metals without broken symmetries 187 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 7.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 7.2.1 Field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 vi Contents 7.2.2 DC transport . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 7.2.3 SU(2) gauge theory of antiferromagnetic metals . . . . . . . . 200 7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 7.3.1 Mean field phase diagram . . . . . . . . . . . . . . . . . . . . 203 7.3.2 Low-energy field theory . . . . . . . . . . . . . . . . . . . . . . 205 7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 A Appendices for Chapter 2 219 A.1 Instabilities of the free energy . . . . . . . . . . . . . . . . . . . . . . 219 A.2 Effect of boundary terms . . . . . . . . . . . . . . . . . . . . . . . . . 220 A.3 Asymptotics of φ in the critical case . . . . . . . . . . . . . . . . . . . 222 B Appendices for Chapter 3 224 B.1 Superfluid-density for one-band problem . . . . . . . . . . . . . . . . 224 B.2 Numerical computation of λ2(0) . . . . . . . . . . . . . . . . . . . . . 224 L B.3 Estimate of λ2(0) from Homes’ law . . . . . . . . . . . . . . . . . . . 225 L C Appendices for Chapter 4 227 C.1 Saddle point equations of the O(6) Model . . . . . . . . . . . . . . . 227 C.2 Bosonic self-energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 C.3 Real and imaginary part of Fermion self-energy . . . . . . . . . . . . 230 D Appendices for Chapter 5 231 D.1 Feynman diagrams for linearized hot-spot theory . . . . . . . . . . . . 231 D.2 Feynman diagrams for hot-spot theory with a finite curvature . . . . 238 E Appendices for Chapter 6 245 E.1 CDW instabilities of FL . . . . . . . . . . . . . . . . . . . . . . . . . 245 E.2 Instabilities in the presence of strong Coulomb repulsion . . . . . . . 246 F Appendices for Chapter 7 249 F.1 Spiral order and Z gauge theory . . . . . . . . . . . . . . . . . . . . 249 2 F.2 Feynman diagram computations . . . . . . . . . . . . . . . . . . . . . 251 F.2.1 Self-energy: Gauge-field . . . . . . . . . . . . . . . . . . . . . 251 F.2.2 Self-energy: Higgs’ field . . . . . . . . . . . . . . . . . . . . . 251 F.2.3 Fermion self-energy at the hot-spot . . . . . . . . . . . . . . . 252 F.2.4 Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Bibliography 254 vii Citations to Previously Published Work Most of the chapters of this thesis have appeared in print elsewhere. By chapter number, they are: Chapter 1: • Partly based on “The Enigma of the Pseudogap Phase of the Cuprate Super- conductors,” in Quantum criticality in condensed matter, 50th Karpacz Winter SchoolofTheoreticalPhysics, editedbyJ.Jedrzejewski(WorldScientific, 2015), ISBN: 978-981-4704-08-3; arXiv:1501.00002. Chapter 2: • “Nematic order in the vicinity of a vortex in superconducting FeSe,” Debanjan Chowdhury, E. Berg and Subir Sachdev, Phys. Rev. B 84, 205113 (2011); arXiv:1109.2600 Chapter 3: • “Singularity of the London penetration depth at quantum critical points in su- perconductors,” Debanjan Chowdhury, B. Swingle, E. Berg and Subir Sachdev, Phys. Rev. Lett. 111, 157004 (2013); arXiv:1305.2918. “Phase transition beneath the superconducting dome in BaFe (As P ) ,” De- 2 1 x x 2 − banjan Chowdhury, J. Orenstein, S. Sachdev and T. Senthil, Phys. Rev. B 92, 081113 (R) (2015); arXiv:1502.04122. Chapter 4: • Partly based on “Connecting high-field quantum oscillations to zero-field elec- tron spectral functions in the underdoped cuprates,” A.Allais, DebanjanChowd- huryandSubirSachdev,NatureCommunications5, 5771(2014); arXiv:1406.0503. Chapter 5: • “Feedback of superconducting fluctuations on charge order in the underdoped cuprates,” Debanjan Chowdhury and Subir Sachdev, Phys. Rev. B 90, 134516 (2014); arXiv:1404.6532. Chapter 6: • “Density wave instabilities of fractionalized Fermi liquids,” Debanjan Chowd- huryandSubirSachdev,Phys. Rev. B90, 245136(2014); arXiv:1409.5430. Chapter 7: • “Higgs criticality in a two-dimensional metal,” Debanjan Chowdhury and Subir viii Contents Sachdev, Phys. Rev. B 91, 115123 (2015); arXiv:1412.1086. Some additional work, which is not presented in this thesis, has appeared in: “Breakdown of Fermi liquid behavior at the (π,π) = 2k spin-density wave F • quantum critical point: the case of electron-doped cuprates,” D. Bergeron, De- banjan Chowdhury, M. Punk, S. Sachdev and A.-M.S. Tremblay, Phys. Rev. B 86, 155123 (2012); arXiv:1207.1106. “Multipoint correlators of conformal field theories: implications for quantum • critical transport,” Debanjan Chowdhury, S. Raju, S. Sachdev, A. Singh and P. Strack, Phys. Rev. B 87, 085138 (2013); arXiv:1210.5247. “Topological excitations and the dynamic structure factor of spin liquids on • the kagome lattice,” M. Punk, Debanjan Chowdhury and S. Sachdev, Nature Physics 10, 289-293 (2014); arXiv:1308.2222. “Fluctuating charge order in the cuprates: spatial anisotropy and feedback from • superconductivity,”Y.Wang, DebanjanChowdhuryandA.V.Chubukov, Phys. Rev. B 92, 161103(R) (2015); arXiv:1508.03636. “Confinement transition to density wave order in metallic doped spin liquids”, • A.A. Patel, Debanjan Chowdhury, A. Allais and S. Sachdev, Phys. Rev. B 93, 165139 (2016); arXiv:1602.05954. Electronic preprints (shown in typewriter font) are available on the Internet at the following URL: http://arXiv.org ix Acknowledgments IthasbeenalmostsixyearssinceIcametoHarvardanditonlyfeelslikeyesterday! My journey in graduate school has been an enriching experience, with its fair share of bittersweet moments. We were told at the outset that the pursuit of a PhD is not a sprint but a marathon. A number of people have helped me reach the finish line and the least I can do now is express my gratitude towards them. Omissions, if any, are entirely unintentional! Theworkreportedinthisthesiswouldnothavebeenpossiblewithouttheguidance of my advisor Professor Subir Sachdev. I consider myself to be extremely fortunate to have been his student. Subir’s intuition for any given problem, combined with his extraordinary technical skills are awe-inspiring. I must thank him for igniting my interest in superconductivity and spin-liquids from early on, since it has been great fun thinking about these subjects! Subir has supported me in far too many endeavors to list here and I will remain eternally grateful to him for them. I hope that our association will continue in the future and lead to many more successful collaborations. I would also like to thank Subir and Usha for having been wonderful hosts of several get-togethers that kept us in good spirits during this arduous journey! I thank the other members of my thesis committee: Professor Eugene Demler, Professor Amir Yacoby and Professor Philip Kim. They have always provided useful feedback during the course of my PhD. In particular, I would like to thank Eugene for teaching us three advanced quantum many-body courses during my first two years at Harvard; my training in the subject would have remained incomplete had it not been for these courses. I also thank Professor Bertrand Halperin for giving me multiple opportunities to be a teaching fellow in his courses. It has been an honor to learn x

Description:
sanity, include Kartiek Agarwal, Shubhayu Chatterjee, Ilya Feige, Lauren Forbes, Lederer, Akash Maharaj, Laimei Nie, Yoni Schattner and Yuxuan Wang. tion, by a Purcell fellowship from the Physics department and by a
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.