ebook img

Interplay between quantum dissipation and an in-plane magnetic field in the spin ratchet effect PDF

0.31 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Interplay between quantum dissipation and an in-plane magnetic field in the spin ratchet effect

Interplay between quantum dissipationand anin-plane magneticfieldinthe spinratchet effect Sergey Smirnov,1 Dario Bercioux,2 Milena Grifoni,1 and Klaus Richter1 1Institut fu¨r Theoretische Physik, Universita¨t Regensburg, D-93040 Regensburg, Germany 2PhysikalischesInstitutandFreiburgInstituteforAdvancedStudies,Universita¨tFreiburg,D-79104Freiburg,Germany (Dated:January14,2009) Weinvestigatetheexistenceofthepurespinratcheteffectinadissipativequasi-one-dimensionalsystemwith Rashbaspin-orbitinteraction. Thesystemisadditionallyplacedintoatransverseuniformstationaryin-plane magneticfield.Itisshownthattheeffectexistsatlowtemperaturesandpurespincurrentscanbegeneratedby 9 applyinganunbiasedacdrivingtothesystem. Ananalyticalexpressionfortheratchetspincurrentisderived. 0 Fromthisexpressionitfollowsthatthespinratcheteffectappearsasaresultofthesimultaneouspresenceof 0 thespin-orbitinteraction,couplingbetweentheorbitaldegreesoffreedomandspatialasymmetry.Inthispaper 2 weconsiderthecaseofabrokenspatialsymmetrybyvirtueofasymmetricperiodicpotentials. Itturnsoutthat n anexternalmagneticfielddoesnothaveanyimpactontheexistenceofthespinratcheteffect,butitinfluences a itsefficiencyenhancingorreducingthemagnitudeofthespincurrent. J 4 PACSnumbers:72.25.Dc,03.65.Yz,73.23.-b,05.60.Gg 1 ] I. INTRODUCTION aparticleinsteadofonlythechargeone. Oneessentialdiffer- l l encebetweenspinandchargeisthataparticlecanhavemore a thanonespin state while ithasonlyonechargestate. In the h Itiswellknownthatadirectedstationaryflowofparticles - in a system can be created by unbiased external forces. In contextoftransportitisimportantthatthespinstateofaparti- s clecanstronglydependonthetransportconditions,inparticu- e generalthispossibilityariseswhenthesystemisnotinvariant m under reflections in real space. This fact is mainly indepen- laronthetransportdirection,asithappensforexampleinsys- temswithspin-orbitinteraction. Thisfacthasfoundedanew . dent of the mechanics which underpins the particle motion, t arena for different spin devices used to store, transform and a classicalorquantum.However,themicroscopicoriginofthis m effect, conventionallycalled the ratcheteffect, is differentin transfermiscellaneousinformation.Thepossibilitytotransfer thespinseparatelyfromchargeplaysanimportantrole. This - the classicalandquantumcase. One principlesourceof that d differenceis quantummechanicaltunnellingwhich does not can be implemented by so-called pure spin currents, that is n spincurrentswhicharenotaccompaniedbychargecurrents. haveanalogsintheclassicalmechanics.Correspondingly,one o Thus the generation of such currents has been extensively usually distinguishes between classical and quantum ratchet c discussed. Among different mechanisms of spin-orbit inter- [ effects. Inthispaperweconcentrateonthelatteroneinadis- sipativesystem. SuchdissipativeratchetsystemsactasBrow- action Rashba spin-orbit interaction (RSOI)8 plays a distin- 2 nian motors1,2 turning Brownian into directed motion. The guishedrolebecauseitprovidesanopportunitytocontrolthe v spin-orbitcouplingstrengthbyanexternalelectricfield. The existence of the ratchet effect in a quantum dissipative one- 6 changeinthebandstructurespawnedbythespin-orbitinter- dimensional (1D) system which lacks the spatial symmetry 9 actionleadstooneofthemostremarkableeffectsinspintron- 2 hasbeenfirsttheoreticallypredictedinRef.3. Later,withina ics,theintrinsicspin-Halleffect,firstpredictedbyMurakami 1 tight-bindingmodelwherethelowestbandsarenarrow,ithas et al.9 for hole-dopedsemiconductorswith the spin-orbitin- . beendisclosedthataratchetstateoftheparticletransportcan 9 teraction of the effective Luttingermodel for holes and later 0 only be achieved when at least the two lowest Bloch bands 8 contribute to transport4. To obtain the ratchet effect in sys- by Sinova et al.10 in a high-mobility two-dimensional elec- tron gas (2DEG) with RSOI. The spin current which results 0 temswithweakperiodicpotentialsatleasttwoharmonicsof : thepotentialshouldenterthedynamicalequations5.Rectifica- fromtheintrinsicspin-Halleffectispureanditsexperimental v detectionwasdiscussed,e.g.,byWunderlichetal.11 Another i tioncanalsotakeplaceina single-bandtight-bindingmodel X kindofspin-Halleffect,theextrinsicspin-Halleffect,isare- where the spatial asymmetry is concealed from the electron sult of the spin-orbit interaction as well. The spin currents r dynamics.Onewaytoachievethisistouseunbiasedexternal a forceswithharmonicmixing6. related to the extrinsic spin-Hall effect are also pure. Such pure spin currentswere experimentallydetected throughop- Coherentchargeratchetsbasedonmolecularwireswithan ticalmeasuringofelectronspinaccumulationattheedgesof asymmetric level structure of the orbital energies were pro- thesamples12 andthroughthereciprocalspin-Halleffect13,14 posedinRef.7.Inthiscaseweakdissipationoriginatesfroma inRef.15. Anotherapproachtocreatepurespincurrentsisto weakcouplingbetweenthewireedgesandleadswhichrepre- usepolarizedlight.Forexampleinnoncentrosymmetricsemi- sentfermionicreservoirs.Incontrasttothesystemsdescribed conductorsone-photonabsorption of linearly polarized light abovein this system there is no dissipation in the wire. The inducespurespincurrents16. Thepurespin currentresponse ratcheteffectisaresultofthedissipativecouplingofthewire to linearly and circularly polarized light irradiation, exciting tofermionicbaths. electronsfromvalencebandsintotheconductionbands,was In a different branch of condensed matter a new research studied by Li et al.17 and by Zhou et al.18 for 2DEGs with fieldhasemergedduringthelastdecade,namelyspintronics, RSOI. An alternativetechniqueof getting purespin currents whereonetriestomakeuseofthespindegreeoffreedomof 2 isquantumspinpumping.Theideaofquantumspinpumping where Hˆ is the Hamiltonianof the isolated periodic system, comesfromthegeneralideaofelectronpumping19. Electron Hˆ (t)describesanexternaldrivingandHˆ representsthe ext bath pumping assumes that in a given system any voltage bias is termresponsiblefordissipativeprocesses. absentandtheparticleflowisaresultofacyclicvariationof Theisolatedquasi-1Dperiodicsystemisformedina2DEG atleasttwoparametersofthissystem. Whentheelectronspin (x−zplane)withRSOIusingaperiodicpotentialalongthex- is involved due to some mechanisms, various quantum spin axisandaharmonicconfinementalongthez-axis.Thewhole pumpsemerge. Forexamplespinpumpsbasedonelectronic system isin a uniformstationarymagneticfield alongthez- interactions20, magnetic barriers21, carbon nanotubes22 have axis: been discussed. A spin pump based on a quantum dot was experimentallyimplementedbyWatsonetal.23Thepurespin Hˆ = ~2kˆ2 + mω02zˆ2 − ~2kso σˆ kˆ −σˆ kˆ + x z z x currentgenerationusingthespinratcheteffectincoherentand 2m 2 m (2) dissipative systems with RSOI was investigated in Refs. 24 zˆ2 (cid:0) (cid:1) +U(xˆ) 1+γ −gµ σˆ H , and25,respectively.Thespinratcheteffectinthepresenceof L2 B z 0 (cid:18) (cid:19) a non-uniform static magnetic field without spin-orbit inter- where H is the z-component of the magnetic field H = action, the Zeemanratcheteffect, was studied in Ref. 26 for 0 0 (0,0,H ), andwehaveusedthegaugeinwhichthecompo- coherentquantumwiresformedina2DEG.However,thespin 0 nentsofthevectorpotentialareA = −H y,A = A = 0 ratcheteffectin a dissipative system in an externalmagnetic x 0 y z (Landaugauge).Additionally,wehavetakenintoaccountthe fieldhasnotbeenconsidereduptonow. factthatina2DEGy =0. InEq. (2)theoperatorkˆisrelated In this paper we extendthe results of Ref. 25 to includea tothemomentumoperatorpˆ aspˆ = ~kˆ, ω istheharmonic transversein-planeuniformstationarymagneticfield.Specifi- 0 cally,weconsidernon-interactingelectronsinaquantumwire confinementstrength, kso the spin-orbit interaction strength, γ thestrengthofthecouplingbetweentheorbitaldegreesof formedbyaharmonictransverseconfinementina2DEGwith RSOI. Theelectronsarealsosubjecttoa1D periodicpoten- freedom x and z, g the electron spin g-factor, µB the Bohr magneton, and U(xˆ) denotes the periodic potential with pe- tial along the wire direction and the in-plane magnetic field perpendicular to the wire. An orbital coupling between this riodL, originallyisolatedsystemandanexternalenvironmentcauses U(x+L)=U(x). (3) dissipative processes affecting indirectly the spin dynamics throughRSOI. In the following we assume that the periodic structure is An externalac drivingoriginatesin our work from an ap- subject to an external homogeneous time-dependent electric pliedacelectricfield. Weshowthatforsuchadrivingthenet field.Onlythex-componentoftheelectricfieldvectorisnon- stationary charge current is strongly suppressed if the trans- zero,thatistheelectricfieldisparalleloranti-paralleltothe portisgovernedonlybyelectronsoftheBlochsub-bandsre- x-axis. Experimentallythiscanbeimplementedusingforex- lated to the same Bloch band which would result from the amplelinearlypolarizedlight.Theexternalforcethuscouples correspondingtruly 1D problem without RSOI. However, at onlytothex-componentoftheelectroncoordinateoperator: thesametimeandunderthesameconditionsanetstationary Hˆ =−F(t)xˆ, (4) spincurrentturnsouttobeactivatedina spatiallyasymmet- ext ric situation and for finite values of the spin-orbit coupling where the force F(t) is unbiased. In this work we use the strengthandthecouplingstrengthbetweentheorbitaldegrees time-dependence offreedom. Themagneticfielddoesnotdestroythispicture, F(t)=Fcos(Ω(t−t )). (5) butitcanpartlyreduceoronthecontraryenhancetheratchet 0 effect. The term ”unbiased external force” should not be confused Thepaperisorganizedasfollows.InSectionIIwedescribe with voltage bias. An external force is called unbiased if it amodelwithinwhicharatchetlikebehaviorofthespintrans- isperiodicintimeanditsmeanvalue,thatisitsaverageover portcanbeachievedandpresentamasterequationintermsof one period, is equal to zero. It is obviously our case as one populationsandtransitionratesbetweenthebasisstatesused canseefromEq.(5). to calculate the charge and spin currents. These basis states The system is also coupled to an external bath. In the arethenthoroughlydiscussedinSectionIII. Atight-binding present work we assume the transverse confinement to be modelis formulatedin Section IV. In Section V we present strongenoughso thatthe probabilitiesof directbath-excited the transition rates and their properties. Finally, in Section transitionsbetweenthetransversemodesarenegligiblysmall. VI we derive analytical expressions for the charge and spin In other words, the wire is truly 1D from the point of view currentsandexplorethespinratcheteffectinthesystem. of the bath which directly changes only the dynamics along the wire. Thus in our model the external environment cou- plestotheelectronicdegreesoffreedomonlythroughxˆ. The II. FORMULATIONOFTHEPROBLEM bathitselfaswellasitsinteractionwiththequantumwireare describedwithintheCaldeira-Leggettmodel27,28, ThefullHamiltonianofourproblemis 1 NO pˆ2 c 2 Hˆ = α +m ω2 xˆ − α xˆ . (6) Hˆfull(t)=Hˆ +Hˆext(t)+Hˆbath, (1) bath 2α=1(cid:20)mα α α(cid:18) α mαωα2 (cid:19) (cid:21) X 3 Thebathisfullycharacterizedbyitsspectraldensitydefined that is when the system turns into an insulator, the spin cur- as rentgivenbyEq. (11)goestozero. Belowwewillcalculate only the spin current polarized along the z-axis and denote π NO c2 this current as J , i.e., J (t) ≡ Jz(t). The components of J(ω)≡ α δ(ω−ω ). (7) S S S 2 m ω α thespin currentpolarizedalongthe xandy axesare zeroas α α αX=1 shown in Appendix B. The discussion of the difference be- Itisimportanttoemphasizethat,duetothespin-orbitinterac- tween the conventionaldefinitionof the spin currentand the tionandorbit-orbitcoupling,thedirectdissipativeinteraction spincurrentdefinitionusedinourworkcanalsobefoundin betweenthelongitudinaldynamicsinthewireandtheexter- AppendixB. nalenvironmenthasanindirectimpactonthetransitionrates It is convenientto calculate the traces in (9) and (11) us- betweendifferenttransversemodes.Thetransversedynamics ingthebasiswhichdiagonalizesbothxˆandσˆz, becausethis in the wire indirectly feels the presence of the external bath requires to determine only the diagonal elements of the re- throughthespin-orbitinteractionandorbit-orbitcoupling. duced density matrix. In a quasi-1D periodic system with Thedynamicalquantitiesofinterestarethechargeandspin RSOI the energy spectrum can be related to the one of the currents. Specifically, the longitudinal charge current J (t) correspondingtruly 1D problemwithoutRSOI34. This links C is given (see for example Ref. 4) as a statistical average of the Bloch bands of that truly 1D problem to the Bloch sub- thelongitudinalchargecurrentoperatorJˆ (t), i.e. the prod- bandsofthe quasi-1Dproblem. The generalstructureof the C uctofthevelocityoperatorvˆ(t)andtheelementaryelectronic results obtained in Ref. 34 is retained in the presence of the charge−e, orbit-orbit coupling and a uniform stationary magnetic field along the z-axis. A slight change of the theory is given in Jˆ (t)=−evˆ(t), (8) AppendixC. Weshallconsiderelectrontransportundersuch C conditionswhenonlyafinitenumberoftheBlochsub-bands isinvolved. Thebasiswhichdiagonalizesxˆandσˆ becomes z d inthiscasediscrete. ThetotalnumberoftheBlochsub-bands J (t)=−e Tr[xˆρˆ(t)], (9) C dt isequaltotheproductofthenumber,N ,oftheBlochbands B from the corresponding truly 1D problem without magnetic where ρˆ(t) = Tr Wˆ(t) is the reducedstatistical operator bath fieldandwithoutspin-orbitcoupling,thenumber,N , ofthe ofthesystem,thatisthefulloneWˆ(t)withthebathdegrees t transverse modes and the number of the spin states. In this offreedomtracedout. work we shall use the model with N = 1, N = 2. Since B t For the longitudinalspin currentoperatorwe use the defi- there are only two spin states, the totalnumberof the Bloch nitionsuggestedbyShietal.29, sub-bandsinourproblemisequaltofour. Therepresentation in terms of the eigen-states of the coordinate operator for a d Jˆi(t)= σˆ xˆ , (10) model with discrete x-values is called discrete variable rep- S dt i resentation (DVR)35. Let us call σ-DVR the representation (cid:0) (cid:1) which was further developed and applied to a two- inwhichboththecoordinateandspinoperatorsarediagonal. dimensionalholegasbyZhangetal.30 Theadvantageofthis Denotingtheσ-DVRbasisstatesas{|αi}andeigen-valuesof definitionovertheconventionalone(JˆSi = σˆivˆ)isthatusing xˆ and σˆz in a state |αi throughxα and σα, respectively, the thecorrespondingspincurrent, chargeandspincurrents(9)and(11)arerewrittenas d JSi(t)= ddtTr σˆixˆρˆ(t) , (11) JC(t)=−eXα xαdtPα(t), (12) (cid:0) (cid:1) d thecontinuityequationforthespindensitycanoftenbewrit- J (t)= σ x P (t), S α α α tenwithouta sourceterm,whichmeansthatthespincurrent dt α X definedinthiswayisconserved. Thisconservedspincurrent where P (t) ≡ hα|ρˆ(t)|αi is the population of the σ-DVR canbeuniquelyrelatedto thespinaccumulationata sample α state|αiattimet. boundary. Theout-of-planepolarizedspin accumulationcan We are interested in the long-time limit of the currents experimentallybemeasuredwithKerrrotationmicroscopy31 J¯ (t)andJ¯ (t)averagedoverthedrivingperiodT = 2π/Ω ortheFaradayrotationtechnique32. Thein-planespinpolar- C S with the time average of a time dependentfunctionf(t) de- izationisnotdirectlymeasuredbyKerrrotationmicroscopy, butitcanstillbescannedbyamagneto-opticKerrmicroscope finedasf¯(t)≡(1/T) t+T dt′f(t′). From(12)itfollows t using, e.g.,the cleavededgetechnologyasdiscussed byKo- R d tissek et al.33 Even when the continuity equation contains a J¯ (t)=−e x P¯ (t), C α α dt source term, there is still one advantage of the spin current Xα (13) operator definition (10). This definition leads to a very rea- d J¯ (t)= σ x P¯ (t). sonablephysicalresult:thecorrespondingspincurrentin(11) S α αdt α vanishes in insulators. In Section VI we will return to this Xα pointand analyticallyprovethat when the periodicpotential Theadvantageofworkingintheσ-DVRbasisisthatreal- gets stronger and as a result the energy bands get narrower, timepathintegraltechniquescanbeusedtoexactlytraceout 4 the bath degrees of freedom36,37. Moreover, at driving fre- for example, the system is divided into the elementary cells quencies larger than the ones characterizing the internal dy- in such a way that the origin of coordinates is at the center namicsofthequasi-1Dsystemcoupledtothebath,theaver- of an elementary cell, then −L/2 < d 6 L/2. In Eq. γ;ζ,j aged populationsP¯ (t) can be found from the master equa- (18) we have taken into account that the periodic potential α tion, U (x),introducedinAppendixC,dependsonγ andj,and γ,j thus the eigen-values distributed within one elementary cell d P¯ (t)= Γ¯ P¯ (t)− Γ¯ P¯ (t), (14) alsoacquireadependenceonγ andj. α αβ β βα α dt From(16)and(18)itfollowsthatonecanlabeltheeigen- β β X X (β6=α) (β6=α) states of xˆ with the quantum numbers ζ, m, j, σ, that is as |ζ,m,j,σi , and in the {|l,k ,j,σi } representation valid at long times. In Eq. (14) Γ¯ is an averaged transi- γ,j B γ,j αβ theseeigen-stateshavetheform: tionratefromthestate|βitothestate|αi. Inordertoobtain concreteexpressionsfortheaveragedcurrentstheσ-DVRba- γ,j′hl,kB,j′,σ′|ζ,m,j,σiγ,j = (19) sis must be found explicitly. This is the subject of the next =δj′,jδσ′,σ γ,jhl,kB,j,σ|ζ,m,j,σiγ,j. section. The corresponding eigen-values are x = x . γ;ζ,m,j,σ γ;ζ,m,j Fromtheeigen-valueequation III. DIAGONALIZATIONOFσˆz ANDxˆ:THEσ-DVR xˆ|ζ,m,j,σiγ,j =xγ;ζ,m,j|ζ,m,j,σiγ,j (20) BASIS writteninthe{|l,k ,j,σi }representationthroughtheuse B γ,j of(16), The eigen-statesof the σˆ operatorwere foundin Ref. 34 z (see Eq. (12) therein) for a model without coupling be- hl,k +σk |xˆ|l′,k′ +σk i × γ,j B so B so γ,j tweentheorbitaldegreesoffreedomandmagneticfield. The lX′,kB′ (21) changesnecessaryto includethose two effectsare discussed × hl′,k′ ,j,σ|ζ,m,j,σi = inAppendixC. Theeigen-valueequationfortheσˆ operator γ,j B γ,j z =x hl,k ,j,σ|ζ,m,j,σi , is γ;ζ,m,j γ,j B γ,j itfollowsthat σˆ |l,k ,j,σi =σ|l,k ,j,σi . (15) z B γ,j B γ,j hl,k ,j,σ =1|ζ,m,j,σ =1i = γ,j B γ,j InEq. (15)l,kB,j,σ standfortheBlochbandindex,quasi- = γ,jhl,kB+kso|ζ,miγ,j, (22) momentum, transverse mode index and z-projection of the hl,k ,j,σ =−1|ζ,m,j,σ =−1i = γ,j B γ,j spin,respectively.Sinceinthepresenceoftheorbit-orbitcou- = hl,k −k |ζ,mi . plingtheperiodicpotentialU (x)(seeAppendixC)depends γ,j B so γ,j γ,j onγandj,wehavelabeledtheket-symbolwiththesubscript Since |ζ,m,j,σi is also the eigen-state of σˆ corre- γ,j z γ,j. Intheensuinganalysiswe followthesameruleandla- sponding to the eigen-value σ = σ, we infer that the ζ,m,j,σ belallthebra-andket-symbolswiththesubscriptγ,j,thatis σ-DVRbasisstates|αifromtheprevioussectionarejustthe γ,jh···|and|···iγ,j. |ζ,m,j,σiγ,j states,thatis{|αi}≡{|ζ,m,j,σiγ,j}. Itisconvenienttostartthediagonalizationofthecoordinate operatorwritingitsmatrixinthe{|l,k ,j,σi }representa- B γ,j tion: IV. σ-DVRREPRESENTATIONANDITSTIGHT-BINDING MODEL γ,j′hl′,kB′ ,j′,σ′|xˆ|l,kB,j,σiγ,j = (16) =δj′,jδσ′,σ γ,jhl′,kB′ +σkso|xˆ|l,kB+σksoiγ,j. Let us represent the Hamiltonian Hˆ in the σ-DVR basis obtainedintheprevioussectioninordertoderiveaneffective Thediagonalblocks, tight-bindingmodel. γ,jhl′,kB′ ,j,σ =1|xˆ|l,kB,j,σ =1iγ,j = Usingthe{|ζ,m,j,σiγ,j}basistheHamiltonianHˆ canbe = hl′,k′ +k |xˆ|l,k +k i , ∀j, writtenas γ,jhγl′,,jkB′ ,j,Bσ =s−o1|xˆ|l,kBB,j,sσo=γ,j−1iγ,j = (17) Hˆ = γ,j′hζ′,m′,j′,σ′|Hˆ|ζ,m,j,σiγ,j× = γ,jhl′,kB′ −kso|xˆ|l,kB−ksoiγ,j, ∀j, ζ′ζ,m,Xm′,,jj,′σ,σ′ (23) areunitaryequivalentforagivenvalueoftheindexjandthus ×|ζ′,m′,j′,σ′iγ,j′ γ,jhζ,m,j,σ|, theeigen-valuesofxˆdonotdependonσ. withthematrix AsitisshowninAppendixA,theeigen-valuesofthema- trix hl′,k′ |xˆ|l,k i are γ,j′hζ′,m′,j′,σ′|Hˆ|ζ,m,j,σiγ,j = εγ;l,η(kB)× γ,j B B γ,j l,XkB,η xγ;ζ,m,j =mL+dγ;ζ,j, (18) × γ,j′hζ′,m′|l,kB+σ′ksoiγ,j′× (24) where m = 0,±1,±2..., ζ = 1,2,...,NB and the eigen- × γ,jhl,kB+σkso|ζ,miγ,j θγ;l,kB,η(j′,σ′)× values d are distributed within one elementary cell. If, ×θ∗ (j,σ). γ;ζ,j γ;l,kB,η 5 Thetight-bindingapproximationof(23)isobtainedifone wefinallyhave assumesthatthematrixelements(24)with|m′−m|>1are 4 negligiblysmall. Hˆ = ε |m,ξi hm,ξ|+ We consider temperatures low enough and assume that γ;ξ γ,ξ γ,ξ m (cid:20)ξ=1 electronspopulateonlythelowestBlochsub-bandswithl=1 X X (i.e.,N =1).Underthisconditiontheperiodicpotentialcan 4 beofarBbitraryshapeandtheonlylimitationonitisthevalid- + ∆iγn;tξr′a,ξ(m)|m,ξ′iγ,ξ′ γ,ξhm,ξ|+ ityofthetight-bindingapproximation. ξ6=Xξ′=1 (31) Below we thoroughly study the case where the four low- 4 est Bloch sub-bands are the ones with l = 1, η = 1,2,3,4 + ∆iγn;tξe′r,ξ,b(m)|m,ξ′iγ,ξ′ γ,ξhm+1,ξ|+ and the only ones which are populated with electrons. For ξ,ξ′=1(cid:18) X simplicity we consider weak orbit-orbit coupling and calcu- late the corresponding eigen-energies ε (k ) and eigen- +∆iγn;tξe′r,ξ,f(m)|m+1,ξ′iγ,ξ′ γ,ξhm,ξ| . γ;l,η B spinors θ (j,σ) retaining only the first two transverse (cid:19)(cid:21) modes,thγa;tl,iksBj,η=0,1. InthiscaseHˆ hastheform Equation(31)representsatight-bindingmodelwhichcannow beusedtoperformactualcalculationsofquantumtransportin adissipativesystem. Hˆ = εγ;j,σ|m,j,σiγ,j γ,jhm,j,σ|+ Toconcludethissection,wewouldliketonotethatbecause m (cid:20)j,σ ofthesimultaneouspresenceoftheharmonicconfinementand X X + ∆iγn;tjr,σa′;j,σ(m)|m,j,σ′iγ,j γ,jhm,j,σ|+ RsySsOteImthise csyhsatreamctesrpizlietds ibnytoξtw=o1s,u4bsaynsdtemthse.seTchoendfirostnesubby- j,σ′6=σ X ξ = 2,3. Thesesubsystemsaretotallydecoupled:thereisno + ∆iγn;tjr′a,σ′;j,σ(m)|m,j′,σ′iγ,j′ γ,jhm,j,σ|+ (25) electronexchangebetweenthem. Sucha state ofaffairsper- j′6=j,σ′,σ sistsifoneconsidersmorethantwotransversemodes. Inthis X work,forsimplicity,weonlyconsideronesubsystem,namely + ∆iγn;tje′r,σ,b′;j,σ(m)|m,j′,σ′iγ,j′ γ,jhm+1,j,σ|+ theonewithξ =1,4.Suchuncoupledsubsystemsalsoappear j′,j,σ′,(cid:18)σ withinthehardwallmodelofthetransverseconfinement38. X +∆iγn;tje′r,σ,f′;j,σ(m)|m+1,j′,σ′iγ,j′ γ,jhm,j,σ| , (cid:19)(cid:21) V. TRANSITIONRATES where The tight-binding model introduced in Section IV relies |m,j,σi ≡|ζ =1,m,j,σi , (26) uponthefactthatthehoppingmatrixelements(27)aresmall. γ,j γ,j Inthiscasethesecond-orderapproximationfortheaveraged and we have defined the on-site energies ε and hop- transitionratesinEq. (14)canbeusedgiving4,39 γ;j,σ ∆piniγng;tje′r,mσ,f′a;jt,rσix(me)leamsefonltlsow∆siγn;tjr′a,σ′;j,σ(m), ∆iγn;tje′r,σ,b′;j,σ(m) and Γ¯mγ;ξ′,′m,ξ = |∆mγ~;ξ′2,′m,ξ|2× ∞ εγ;j,σ ≡ γ,jhm,j,σ|Hˆ|m,j,σiγ,j, × dτe−[(xγ;m,ξ−xγ;m′,ξ′)2/~]Q(τ)+i[(εγ;ξ−εγ;ξ′)/~]τ× (32) ∆iγn;tjr′a,σ′;j,σ(m)(j′,σ′≡)6=(j,σ)γ,j′hm,j′,σ′|Hˆ|m,j,σiγ,j, (27) Z−∞ ×J 2F(xγ;m,ξ−xγ;m′,ξ′)sin Ωτ , ∆iγn;tje′r,σ,b′;j,σ(m)≡ γ,j′hm,j′,σ′|Hˆ|m+1,j,σiγ,j, 0(cid:20) ~Ω (cid:18) 2 (cid:19)(cid:21) ∆iγn;tje′r,σ,f′;j,σ(m)≡ γ,j′hm+1,j′,σ′|Hˆ|m,j,σiγ,j. w∆hmγe;ξ′r,′em,ξx≡γ;mγ,,ξξ′≡hmx′γ,;ξζ′=|H1ˆ,m|m,ξ,=ξiγm,ξLth+ehdoγp;ξpwinigthmdaγt;rξix≡eldeγm;1e,njt, Notethat betweenthestates |m′,ξ′iγ,ξ′ and|m,ξiγ,ξ, J0(x) the zero- orderBesselfunctionandQ(τ)thetwiceintegratedbathcor- [∆iγn;tjr′a,σ′;j,σ(m)]∗ =∆iγn;tjr,σa;j′,σ′(m), (28) relationfunction37: 1 ∞ J(ω) ~ωβ Q(τ)= dω coth × π ω2 2 [∆inter,b (m)]∗ =∆inter,f (m). (29) Z0 (cid:20) (cid:18) (cid:19) (33) γ;j′,σ′;j,σ γ;j,σ;j′,σ′ ×[1−cos(ωτ)]+isin(ωτ) , Introducingthenotations (cid:21) whereJ(ω)isgivenbyEq. (7)andβ istheinversetempera- {ξ}≡{(j,σ)}, ture. ξ =1⇔(0,1), ξ =2⇔(0,−1), (30) The transition rates are functions of the orbit-orbit cou- ξ =3⇔(1,1), ξ =4⇔(1,−1), pling strength γ because the Bloch amplitudes as well as 6 the difference ∆d ≡ d −d depend on γ. Within ∆inter,b(m) and ∆inter,f(m) only through a phase factor as γ γ;1,0 γ;1,1 γ;ξ′,ξ γ;ξ′,ξ thecontextofthetight-bindingmodeltheeigen-valuesd itisshowninAppendixD. From(29)and(36)itfollowsthat γ;1,0 and d tend to zero and fulfil ∆d /l ≪ 1, where l = γ;1,1 γ r r min[L, ~/mω0,~Ω/F,...]. Consequently, the transition Γ¯iγn;tξe,rξ,b =Γ¯iγn;tξe,rξ,f, (38) rates depend on γ predominantly through the Bloch ampli- p tudes, and in this work we pay no regard to terms of order O(∆d /l ). Thisisalsoconsistentwithourmodeltakinginto γ r Γ¯inter,bΓ¯inter,b =Γ¯inter,fΓ¯inter,f. (39) account only the first two transverse modes. Keeping terms γ;ξ′,ξ γ;ξ,ξ′ γ;ξ′,ξ γ;ξ,ξ′ of order O(∆d /l ) would mean that the strength γ of the γ r orbit-orbitcouplingislargeenoughsothatonewouldneedto To calculate the charge and spin currents we additionally considermorethanjustthefirsttwotransversemodesbecause needthetransitionrates in this case the non-diagonalelementswould be comparable withthediagonalones. Γ¯γ;ξ,ξ′ ≡Γ¯iγn;tξe,rξ,′f +Γ¯iγn;tξr,aξ′ +Γ¯iγn;tξe,rξ,′b. (40) Usingthenotations, As pointed out at the end of Section IV, the system is split Γ¯mγ;ξ,m′,ξ ≡Γ¯iγn;tξr′a,ξ, ξ′ 6=ξ, intotwosubsystemsisolatedfromeachother. Sinceelectron exchangebetweenthesubsystemsisabsentonecanwrite Γ¯m,m+1 ≡Γ¯inter,b, (34) γ;ξ′,ξ γ;ξ′,ξ Γ¯m+1,m ≡Γ¯inter,f, Γ¯ =Γ¯ =Γ¯ =Γ¯ = γ;ξ′,ξ γ;ξ′,ξ γ;1,2 γ;1,3 γ;2,1 γ;2,4 (41) =Γ¯ =Γ¯ =Γ¯ =Γ¯ =0. from(32)oneobtains γ;3,1 γ;3,4 γ;4,2 γ;4,3 Γ¯iγn;tξr′a,ξ =0, (35) Tsihgenilfiacsatnetqlyuasliimtipeslifayrethveeeryxpurseesfsuiolnbsefcoarustheethcheyargaleloawndusspitno and currentswhicharederivedinthenextsection. Γ¯iγn;tξe′r,ξ,b =|∆iγn;tξe′r,ξ,b(m)|2Jγ;ξ′,ξ, (36) VI. CHARGEANDSPINCURRENTS Γ¯iγn;tξe′r,ξ,f =|∆iγn;tξe′r,ξ,f(m)|2Jγ;ξ′,ξ, where Theexpressionsforthestationaryaveragedchargeandspin currents, Jγ;ξ′,ξ = ~12 Z−∞∞dτe−L~2Q(τ)+i[(εγ;ξ−εγ;ξ′)/~]τ× (37) J¯C∞ ≡tl→im∞J¯C(t), J¯S∞ ≡tl→im∞J¯S(t), (42) 2FL Ωτ ×J sin . 0 ~Ω 2 can be found from the averaged master equation (14) which (cid:20) (cid:18) (cid:19)(cid:21) we rewrite here using the σ-DVR indices and tight-binding Note that Γ¯inter,b and Γ¯inter,f do not depend on m due approximationintroducedinSectionIVandutilizingtheno- γ;ξ′,ξ γ;ξ′,ξ to the Bloch theorem which leads to an m-dependence of tationsofSectionVforthetransitionrates: 4 4 d dtP¯γm;ξ(t)= Γ¯iγn;tξe,rξ,′fP¯γm;ξ−′1(t)+Γ¯iγn;tξr,aξ′P¯γm;ξ′(t)+Γ¯iγn;tξe,rξ,′bP¯γm;ξ+′1(t) − Γ¯iγn;tξe′r,ξ,b+Γ¯iγn;tξr′a,ξ+Γ¯iγn;tξe′r,ξ,f P¯γm;ξ(t)+ (ξξX′′=6=1ξ)(cid:2) (cid:3) (ξξX′′6==ξ1)(cid:2) (cid:3) (43) + Γ¯inter,fP¯m−1(t)+Γ¯inter,bP¯m+1(t) − Γ¯inter,b+Γ¯inter,f P¯m(t), γ;ξ,ξ γ;ξ γ;ξ,ξ γ;ξ γ;ξ,ξ γ;ξ,ξ γ;ξ (cid:2) (cid:3) (cid:2) (cid:3) 4 From(12)and(43)onefinds J¯S∞ = dγ;ξσξ −dγ;ξ′σξ′ Γ¯iγn;tξe,rξ,′f +Γ¯γin;tξe,rξ,′b + (45) ξ,ξ′=1 X (cid:2)(cid:0) (cid:1)(cid:0) (cid:1) +Lσξ Γ¯iγn;tξe,rξ,′f −Γ¯iγn;tξe,rξ,′b p∞γ;ξ′, (cid:0) (cid:1)(cid:3) 4 where we have used Eq. (18). To derive Eq. (45) we have J¯C∞ =−eL Γ¯iγn;tξe,rξ,′f −Γ¯iγn;tξe,rξ,′b p∞γ;ξ′, (44) additionallymadeuseofEq. (35). InEq. (45)σξ ≡σζ=1,m,ξ ξ,ξ′=1 andσ1 =σ3 =1, σ2 =σ4 =−1asitfollowsfromEq.(30). X (cid:2) (cid:3) 7 Thequantitiesp∞ aredefinedas couplingtoanexternalenvironment.TogetEq. (53)wehave γ;ξ eliminatedfromJ¯∞ theequilibriumspincurrentarisingdue S p (t)≡ P¯m(t), p∞ ≡ limp (t), (46) tothenon-compensation40ofthespincurrentsfromdifferent γ;ξ γ;ξ γ;ξ γ;ξ t→∞ bandsoftheRashba-Blochspectrumoftheisolatedsystem.It m X turnsoutthatthiseffectisstrongenoughtoindentureinadis- andtheysatisfytheconstraint sipativesystem. Belowweonlyconsiderthenon-equilibrium spincurrent,J¯∞ ,andnotthefullone,J¯∞. p (t)+p (t)+p (t)+p (t)=1, ∀ t. (47) n−e,S S γ;1 γ;2 γ;3 γ;4 Let us at this point also mention the dependence of the spincurrentJ¯∞ onthemagneticfieldH . Sincethemag- AsalreadymentionedattheendofSectionIV,weonlycon- n−e,S 0 neticfieldisappliedalongthez-axis,itcouplestothesystem siderthesubsystemwithξ = 1,4. Thepropertiesofthesta- throughtheσˆ operatorandthusthehoppingmatrixelements tionaryaveragedtransportdonotdependoninitialconditions. z ∆inter,f (m)donotdependonH . Itthenfollowsthatthe Wechoosethefollowingones: γ;1(4),4(1) 0 spin current depends on the magnetic field only through its pγ;1(t=0)=1, pγ;4(t=0)=0. (48) dissipativeprefactor. ThedependenceonH0 comesintoplay throughtheon-siteenergiesε . Thedifferenceε −ε γ;1(4) γ;4 γ;1 Becauseoftheconstraint(47)pγ;2(t=0)=pγ;3(t=0)=0 whichenterstheintegralsJ andJ(0) canbe and since there is no electron exchangebetween the subsys- γ;1(4),4(1) γ;1(4),4(1)) writtenas: tems,thestatesofthesubsystemwithξ = 2,3remainempty at any time, p (t) = p (t) = 0, ∀t. This leads to 1 γ;2 γ;3 ε −ε = ε(0) (k )−ε(0) (k ) + p∞ = p∞ = 0. Then from the master equation (43) with γ;4 γ;1 N γ,1;1 B γ,0;1 B γ;2 γ;3 (54) theinitialconditions(48)andusing(40),(41)oneobtains XkB (cid:2) (cid:3) +~ω +2gµ H , 0 B 0 Γ¯ Γ¯ p∞γ;1 = Γ¯γ;1,4γ+;1,Γ¯4γ;4,1, p∞γ;4 = Γ¯γ;1,4γ+;4,Γ¯1γ;4,1. (49) whereN isthenumberoftheelementarycellsandε(γ0,)j;l(kB) aretheeigen-valuesofthetruly1DHamiltonian UsingEqs. (35),(38)-(40)and(49)itfollowsfrom(44) ~2kˆ2 ~ 1 J¯C∞ =0, (50) Hˆ01;Dγ,j ≡ 2mx +U(xˆ) 1+γmω L2 j+ 2 . (55) (cid:20) 0 (cid:18) (cid:19)(cid:21) thatistheabsenceofthestationaryaveragedchargetransport. Therefore,inthepresenceofatransversein-planeuniform However,usingEqs.(35),(38),(40)and(49)wegetfromEq. stationary magnetic field the existence of the spin current is (45) possible under the same conditionswhich were discussed in Ref.25. Forcompletenesswelisttheseconditionsbelow. 2L J¯∞= Γ¯inter,fΓ¯inter,b−Γ¯inter,bΓ¯inter,f . (51) From(53)onefinds,asmentionedinSectionII,thatwhen S Γ¯ +Γ¯ γ;1,4 γ;4,1 γ;1,4 γ;4,1 γ;1,4 γ;4,1 theelectronicstatesbecomelocalized,thestationaryaveraged (cid:0) (cid:1) spincurrentvanishes.Indeed,inthisinsulatinglimitthefunc- The last expressioncan be rewritten in termsof the hopping matrixelements∆iγn;tξe′r,ξ,f(m). MakinguseofEqs. (29),(35), tkio′nanFdγ;EkBq,.k(B′53d)oegsivneostzdeerop.endonthequasi-momentakB and (36)and(40)wederivethestationaryaveragedspincurrent: B When the spin-orbitinteractionis absent, that is k = 0, so J J wegetfrom(53) J¯∞ =2L γ;1,4 γ;4,1 × S Jγ;1,4+Jγ;4,1 (52) J¯∞ =0. (56) × |∆inter,f(m)|2−|∆inter,f(m)|2 . n−e,S kso=0 γ;1,4 γ;4,1 (cid:12) Further, if the orbital degr(cid:12)ees of freedom x and z are not UsingEqs. (52(cid:0))and(D2)thenon-equilibrium(cid:1)stationaryav- coupled,thatisγ =0,itfollowsfromEqs. (53)and(D6)that eragedspincurrentcanbewrittenas J¯∞ =0. (57) J J J(0) J(0) n−e,S γ=0 J¯∞ =−2 γ;1,4 γ;4,1 − γ;1,4 γ;4,1 × (cid:12) n−e,S (cid:18)Jγ;1,4+Jγ;4,1 Jγ(0;1),4+Jγ(0;4),1(cid:19) (53) amFpilnitaulldye,siafrethreeaplearnioddwicepfiont(cid:12)denftrioaml isEqsys.m(5m3e)traincd, t(hDe4)Bloch L~3k2 ω × mso 0 sin[(kB−kB′ )L]Im[Fγ;kB,kB′ ], J¯n∞−e,S =0, for symmetric periodic potentials. (58) kXB,kB′ Summarizingtheresultsofthissectionweconcludethatin whereJ(0) isgivenbyEq. (37)withF = 0andthefunc- ordertogenerateafinitestationaryaveragedspincurrentthree γ;ξ′,ξ tionFγ;kB,kB′ isdefinedbyEq.(D3).NotethestructureofEq. conditionsmustsimultaneouslybefulfilled:1)presenceofthe (53). Itistheproductoftwofactorsofdifferentphysicalori- spin-orbitinteractionintheisolatedsystem;2)finitecoupling gin.Thefactorinthesecondlinedescribestheisolatedsystem betweentheorbitaldegreesoffreedomxandz;3)absenceof andthe factorin thefirst line ispurelydueto thedissipative therealspaceinversioncenterintheisolatedsystem. 8 Amongthesethreeconditionsthesecondconditionisper- hapsless transparentand a simplified physicalinterpretation ] 4 isnecessary. Weproposethefollowingphysicalexplanation. ω 0 gµH = 0.0 The orbit-orbit coupling leads to the situation in which the L gµΒH0 = -0.05 ttswhrtorierenenw.ggirTtrhoehueoapnfpdvtehergleiooectpdsieitcsyritporioosdntilecganreptgrioeactrleloiinsnsteieatrqhluteovacalierttisnoetserUadalg(cxrereos)g.siisnTonththhuoeesfqctthuehenaesteeiw-lre1iorcDe-f ∞- 5J [10n-e,S 02 gggµµµΒΒΒΒHHH0000 === 0-00..03.35 anddecreasesclosertotheedges. Atthesametimetheelec- nt e trondistributionacrossthechanneldependsonthetransverse rr -2 u modej. ItisgivenbytheHermitepolynomials.Forj =0the c n electronspopulatethecenterofthewirewhileforj =1they pi S -4 aredistributedinregionsclosertotheedges. Hence,theelec- tronswithj = 0arefasterthanthosewithj =1. Becauseof themixingbetweentheconfinementandRSOIdifferenttrans- 0 1 2 3 4 Amplitude of the driving force, F [ h¯ ω/L ] verse modes carry different spin states. Therefore, we con- 0 cludethatdifferentspinstateshavedifferentgroupvelocities alongthewire. Thisdifferenceresultsinafinitelongitudinal FIG. 1: (Color online) Non-equilibrium spin current, J¯n∞−e,S, as a spincurrent. functionoftheamplitude, F, ofthedrivingforcefordifferent val- Finally,oneobservesthatatransversein-planeuniformsta- uesofthez-projectionofthemagneticfieldH0.Furtherparameters: tionarymagneticfieldaloneisnotenoughtoproducethespin temperature kBoltz.T = 0.5, spin-orbit coupling strength kso with k L = π/2, orbit-orbit coupling strength γ = 0.08, driving fre- currentinadrivendissipativesystem. Themagneticfieldcan so quencyΩ=0.2,viscositycoefficientη=0.08. onlyaffectthemagnitudeofthespin currentwhenthe prop- ertiesoftheisolatedsystemmeetthethreeconditionsderived above. 0.5 ] ω 0 L 0 VII. RESULTS - 40 1 [ forInthtehitsheseocretitoicnawlmeoshdoelwdseovmeleopreedsuilntstohbetapirneevdionuusmseecrtiicoanllsy. ∞J n-e,S -0.5 Astrsucatnureex.amThpelevawlueecsoonfsitdheercaonrreInspGoanAdsin/IgnPpaqraumanettuemrs uwsierde rrent -1 ggµµΒΒHH00 == 0-0.0.05 to get the results are similar to the ones from the work of n cu ggµµΒHH0 == 0-0.0.35 ~S2ckha¨p/emrs=et9a.9l.441×I1n0−p1a2rteicVu·lmar,(w~hωic0hg=ive0s.k225=m4e.V8,2×α10≡6 Spi -1.5 gµΒΒH00 = 0.3 so so m−1), m = 0.037m (m is the free-electron mass). The 0 0 value, g = 7.5, of the electron spin g-factor (in our nota- 0 1 2 tionsg ≡ −g∗/2,whereg∗ istheeffectivegyroscopicfactor Spin-orbit coupling strength, k L/π so measuredexperimentally)istakenfromRef.42. Fromthese parametersandforexamplefortheperiodofthesuper-lattice FIG. 2: (Color online) Non-equilibrium spin current, J¯n∞−e,S, as a L = 2.5 ~/mω0 ≈ 0.24 µm, which is easily achievable functionofthespin-orbitcouplingstrength,kso,fordifferentvalues technologicallyatpresent43,itfollowsthatksoL≈0.368π. ofthez-projectionofthemagneticfieldH0. Thedrivingamplitude Theasypmmetricperiodicpotentialis isF =1.0~ω0/L.TheotherparametersareasinFig.1. 2πx U(x)=~ω0 2.6 1−cos −1.9 + Topresentthe resultswe usein allthe figurestheunitsof L (cid:26) (cid:20) (cid:18) (cid:19)(cid:21) (59) ~ω0 and ω0 for energies and frequencies, respectively. The 4πx viscositycoefficientistakeninunitsofmω . +1.9cos . 0 L Letusdiscusspossiblevaluesofthedrivingparameters.In (cid:18) (cid:19)(cid:27) adissipationlesssystem(orinasystemwithweakdissipation) ThebathisassumedtobeOhmicwithexponentialcutoff: of size L one should restrict possible values of the driving amplitudeandfrequency,0<FL<~ω and0<Ω<ω ,in 0 0 ω ordertostaywithinthevalidityofthemodelwiththefirsttwo J(ω)=ηωexp − , (60) ω transversemodesopened. Inastronglydissipativesystem,as (cid:18) c(cid:19) in our case, it is not necessary to fulfil the last inequalities where η is the viscosity coefficient and ω the cutoff fre- because an electron loses a huge amount of its energy due c quency.Weuseω =10ω . to intensive dissipative processes. In general, our model of c 0 9 a driven strongly dissipative system taking into account the first four Bloch sub-bandsremains valid if at long times the 10 F = 0.5 h¯ ω / L electronenergyaveragedoveroneperiodofthedrivingforce, ω ]0 F = 0.8 h¯ ω00 / L ǫav(F,Ω,η)(whichisafunctionofthedrivinganddissipation 5L F = 1.0 h¯ ω0 / L parameters), is smaller than ~ω0, ǫav(F,Ω,η) < ~ω0. This - 10 acctoannsustucamhkeedprmilvaaicnjoegretavhmeenosuitfrnoFtnogLfdt>hises~eipωlea0ctitaornondn(leΩanreg>regyvω.a0lubeescaoufsηe)ewveilnl ∞J [n-e,S 5 InFig. 1the non-equilibriumspincurrentasa functionof nt e r 0 the amplitude of the external driving is shown for different ur c valuesofthez-projectionofthemagneticfield.Forsmallval- n ues of the driving amplitude and small magnetic fields it is Spi seen that if the magnetic field has the same direction as the -5 z-axis, the spin current decreases, while the opposite direc- -0.4 -0.2 0 0.2 0.4 tionofthemagneticfieldamplifiesthespincurrent. Thisbe- Magnetic field, gµH[ h¯ ω ] haviorcanbe physicallyunderstoodfromEq. (54). Positive Β 0 0 valuesofH canbe equivalentlyconsideredaslargervalues of~ω , that0isofthedistancebetweenthetransversemodes. FIG. 3: (Color online) Non-equilibrium spin current, J¯n∞−e,S, as a 0 function of the magnetic field, gµBH0, for different values of the Thisinturnleadstoadecreaseofthetransitionprobabilities amplitude of the driving force, F. The other parameters are as in whichsuppressesthespin current. On the contrary,negative Fig.1. valuesof H correspondto smaller valuesof ~ω leadingto 0 0 anincreaseofthetransitionratesandthusthespincurrentis enhanced. Anotherphysicalexplanationisthatthemagnetic fieldalignsthespinsalongitsdirection. Therefore,whenH 0 is positiveor negativethe spinsare forcedto pointinthe di- themagneticfield. When|H0|increasesfurther,thespincur- rectionofthez-axisorintheoppositedirection,respectively. rentdependsnon-linearlyonH0 andacomplicatedinterplay Thespincurrentgetsmorepolarizedinthedirectionofthez- betweenthemagneticfield,drivinganddissipativeprocesses axisforH >0orintheoppositedirectionforH <0. Asa develops.Thisdependenceofthespincurrentonthemagnetic 0 0 consequenceitsmagnitudedecreasesforH >0orincreases fieldisdepictedinFig.3fordifferentvaluesoftheamplitude 0 forH < 0sinceitwaspolarizedinthedirectionoppositeto ofthedrivingforce.Inordertostaywithinthevalidityofour 0 theoneofthez-axisintheabsenceofthemagneticfield. model,whereonlythefirsttwotransversemodesareopened, themagnitudeofthemagneticfieldmustsatisfythecondition: The same dependenceof the spin currenton the magnetic fieldwithsmallvaluesofitsmagnitude(aswellasforasmall value of the driving amplitude FL = 1.0~ω ) is found in 0 Fig.2inviewofitsdependenceonthespin-orbitinteraction gµ |H |60.5(~ω +∆ε ), (61) B 0 0 γ;4,1 strength k . Again for H > 0 the magnitude of the spin- so 0 currentgetssmallerandforH < 0itgetslarger. Addition- 0 ally,onecansee thatthepresenceofthemagneticfielddoes not change the locations of minima and maxima of the spin where∆ε ≡ ε(0) (k )−ε(0) (k ) /N. Forthe currentas a functionof kso. Thishas the followingphysical valuesoftγh;4e,1paramekteBrsuγ,s1e;d1 toBobtainγ,t0h;1e nuBmericalresults explanation. The minima and maxima in Fig. 2 are related wehave∆ε =P−0(cid:2).07~ω . Thusgµ |H | (cid:3)6 0.465~ω . γ;4,1 0 B 0 0 to the periodicity of the energy spectrum in the k-space. In AsitcanbeseenfromFig.3themagnitudeofthespincurrent terms of the band energy versus the quasi-momentumk de- decaysforlargepositivevaluesofH . Thishappensbecause 0 pendence RSOI produces a horizontal (that is the energy of thedistancebetweentheBlochsub-bandsbecomeslargeand the bandsdoesnotchange)split of the energybandsaswell thus the transition processes are less probable. For a certain astheirhybridization. Duetotheperiodicitythissplitcanbe negative value of H the magnitude of the spin current has 0 minimalormaximalforsomevaluesofksowhichleadstothe a maximum after which it starts to decrease and vanishes at correspondingminimaandmaximainFig.2. Theroleofthe some point H(0) < 0. After this point and for H < H(0) 0 0 0 hybridizationisthatthesplitisneverzeroandthustheminima the spincurrentreversesits sign andits magnitudeincreases ofthespincurrentarenotexactlyequaltozero.Incontrastto again. This behavior clearly demonstrates that the magnetic thishorizontalsplitthemagneticfieldproducesavertical(that fieldcan,withoutchangingitsdirection,actinphase(i.e. de- isalongtheenergyaxis)splitanditalsoproduceshybridiza- stroythespintransport)withthedissipativeprocessesaswell tion. This verticalsplit is notcorrelatedwith the periodicity as out-of-phase (i.e. intensify the spin kinetics) with them. of the energybands in the k-space and thus the locations of MathematicallyitcomesfromthefactthatinEq. (32)forthe minimaandmaximaremainuntouchedbythemagneticfield. transitionratesthe magneticfield H andtheimaginarypart 0 However,thepictureexplainedaboveisonlyvalidforsmall ofthetwiceintegratedbathcorrelationfunctionIm[Q(τ)]en- valuesofthedrivingamplitudeF andmagnitudeofthemag- ter the argumentsof the same trigonometric functions. This neticfield|H |wherethespincurrenthasalinearresponseto isclarified byEq. (37) appropriatelyrewrittenbelowforthe 0 10 0.20 1.5x10-4 η = 0.03 ω ]0 ηη == 00..0058 0.18 1.0 L 10 η = 0.1 5 - 0 0.16 0.5 Sp ∞Jnt [1n-e,S 0 Coefficient 00..1142 -00..05 in Current e y n curr scosit 0.10 -1.0 pi Vi 0.08 S -10 0.06 -0.4 -0.2 0 0.2 0.4 Magnetic field, gµH[ h¯ ω ] 0.04 Β 0 0 -0.4 -0.2 0.0 0.2 0.4 FIG. 4: (Color online) Non-equilibrium spin current, J¯n∞−e,S, as a Magnetic Field function of the magnetic field, gµBH0, for different values of the viscositycoefficient, η. Thedrivingamplitude isF = 1.0~ω0/L. FIG. 5: (Color online) Contour plot of the non-equilibrium spin TheotherparametersareasinFig.1. current, J¯n∞−e,S [Lω0], asafunctionof themagnetic field, gµBH0 [~ω0], and viscosity coefficient, η. The other parameters areas in Fig.1. caseξ′ =1,ξ =4: Jγ;1,4 = ~22 ∞dτe−L~2QR(τ)× distancebetweenthecorrespondingBlochsub-bands. Z0 ∆ε 2gµ H L2 TheminimainFigs.3and4atnegativevaluesofH0appear ×cos γ;4,1 +ω + B 0 τ − Q (τ) × (62) asaresultofacooperativeactionoftheorbit-orbitcoupling, ~ 0 ~ ~ I (cid:20)(cid:18) (cid:19) (cid:21) confinement,magneticfield,drivinganddissipation.Itsloca- 2FL Ωτ tionchangeswhenthestrengthofthedrivinganddissipation ×J sin , 0 ~Ω 2 varies. (cid:20) (cid:18) (cid:19)(cid:21) For completeness in Fig. 5 we also show the spin current where Q (τ) ≡ Re[Q(τ)], Q (τ) ≡ Im[Q(τ)]. The phys- R I as a contour plot using the variables H and η. The main ical explanation of why in our system the magnetic field in- 0 effect of the interaction between the electrons and external teracts only with the friction part of the dissipation and not environmentis the electron dressing. The dressed electrons with its noise part is rooted in the roles which the magnetic areheavierandasaresultlessmobile.Sincethespindegreeof fieldanddissipationplayforquantumcoherence. Ontheone freedomiscarriedbythesedressedelectrons,thespincurrent sidequantumcoherenceinadissipativesystemdiesoutdueto decreaseswhentheviscositycoefficientgrows. thenoisepartoftheFeynman-Vernoninfluenceweightfunc- tional. On the other side, within the Feynman path integral formalism,weseethatinoursystematransversein-planeuni- formstationarymagneticfield cannotproducethe additional VIII. CONCLUSION phase due to the integral of the vector potential along the Feynmanpaths(seeAppendixC). Thusinoursystemquan- In conclusion, we have studied averaged stationary quan- tumcoherenceistotallyinsensitivetothemagneticfieldand tum transport in a driven dissipative periodic quasi-one- asaresultcannotinteractwiththenoisepartoftheFeynman- dimensional (1D) system with Rashba spin-orbit interaction Vernoninfluenceweightfunctional. (RSOI)andplacedinatransversein-planeuniformstationary Themutualimpactofthemagneticfieldandquantumdis- magneticfield. Forthecaseofmoderate-to-strongdissipation sipativeprocessesonthespincurrentinthesystemisshown it has been shown that the averaged stationary charge trans- inFig.4wherethespincurrentisplottedversusthemagnetic port is well suppressed as soon as it is restricted within the field,H ,andtheviscositycoefficient,η,playsaroleofapa- Blochsub-bandsgrownoutofthesameBlochbandofthecor- 0 rameter.AgainforlargepositivevaluesofH thespincurrent respondingtruly 1D problemwithoutRSOI. Howeverin the 0 vanishes.Asexpected,thespincurrentgetssmallerifthedis- same situation the averaged stationary spin transport is acti- sipationinthesystemgetsstronger.Whenthedissipationgets vated. Theanalyticalexpressionforthespincurrenthasbeen weaker(η=0.05andη =0.03curves)theoscillationsofthe derived and its behavior as a function of the driving param- spincurrentbecomeobservable.Theseoscillationsarerelated eters, dissipation, spin-orbit interaction strength, orbit-orbit totheinteractionbetweenthemagneticfieldanddrivingand coupling strength and a transverse in-plane uniform station- can be described in terms of the photon emission/absorption arymagneticfieldhasbeenanalyzed. Ourresultsonthespin processes36 since changingH is equivalentto changingthe transport in the system have been presented and thoroughly 0

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.