ebook img

Interplay between electronic topology and crystal symmetry: Dislocation-line modes in topological band-insulators PDF

2.1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Interplay between electronic topology and crystal symmetry: Dislocation-line modes in topological band-insulators

Interplaybetweenelectronictopologyandcrystalsymmetry: Dislocation-linemodesintopological band-insulators Robert-Jan Slager,1 Andrej Mesaros,2 Vladimir Juricˇic´,3 and Jan Zaanen1 1Instituut-LorentzforTheoreticalPhysics,UniversiteitLeiden,P.O.Box9506,2300RALeiden,TheNetherlands 2Department of Physics, Boston College, Chestnut Hill, MA 02467, USA 3InstituteforTheoreticalPhysics,UtrechtUniversity,Leuvenlaan4,3584CEUtrecht,TheNetherlands We elucidate the general rule governing the response of dislocation lines in three-dimensional topological bandinsulators. AccordingtothisK-b-trule, thelatticetopology, representedbydislocationlinesoriented indirectiontwithBurgersvectorb,combineswiththeelectronic-bandtopology,characterizedbytheband- 4 inversionmomentumKinv,toproducegaplesspropagatingmodeswhentheplaneorthogonaltothedislocation 1 linefeaturesabandinversionwithanontrivialensuingfluxΦ=Kinv·b (mod 2π). Althoughithasalready 0 beendiscoveredbyY.Ranetal., NaturePhys. 5, 298(2009), thatdislocationlineshostpropagatingmodes, 2 the exactmechanism of their appearancein conjunction withthe crystal symmetries ofa topological stateis providedbytheK-b-trule. Finally,wediscusspossibleexperimentallyconsequentialexamplesinwhichthe c modesareobliviousforthedirectionofpropagation,suchastherecentlyproposedtopologically-insulatingstate e D inelectron-dopedBaBiO3. 2 PACSnumbers:71.10.Pm72.10.Fk73.20.-r73.43.-f ] l Topologicalband-insulators(TBIs)representanewclassof linesl(τ)(parametrizedbyτ ∈[0,1]),characterizedbyatan- l a quantum materials that, due to the presence of time-reversal gent vector t ≡ dl/dτ, with the discontinuity introduced to h symmetry(TRS),featureaninsulatingbulkbandgaptogether the crystalline order described by a Burgers vector b. Both - s with metallic edge or surface states protected by a Z topo- thesevectorscanonlybeorientedalongtheprincipalaxesof 2 e logical invariant[1–4]. This Z classification of topological the crystal, and a screw (edge) dislocation is obtained when m 2 insulatorsisapartoftheclassificationoffreegappedfermion b (cid:107) t (b ⊥ t), see Fig.1. Moreover, the Burgers vectors . t matter in the presence of the fundamental antiunitary time- areadditive, andinfullgeneralitywecanthusconsideronly a m reversal and particle-hole symmetries, the so-called tenfold dislocationswiththeBurgersvectorsequaltoBravaislattice way[5–7]. Ontheotherhand, topologically-insulatingcrys- vectors. The crucial observation is that translational lattice - d talsbreakcontinuoustranslationalandrotationalsymmetries symmetry is preserved along the dislocation line. Therefore, n downtodiscretesymmetriesmathematicallycharacterizedby the full lattice Hamiltonian in the presence of a dislocation o the space groups. By considering the crystal symmetries, an orientedalongthez-axis(t=e )canbewrittenas z c extralayerinthisZ classificationofTBIshasbeenrecently [ 2 (cid:88) uncovered[8]. ThisspacegroupclassificationofTBIsresults H (x,y,z)= eikzzH2D(x,y,k ). (1) 3D eff z 2 v intheenrichmentofthetenfoldwaywithextraphases,suchas kz crystalline (or “valley”) phases [9] and translationally-active 4 Notice that the above 2D lattice Hamiltonian possesses the phases,thelatterfeaturinganoddnumberofband-inversions 4 (wallpapergroup)symmetryofthecrystallographicplaneor- 0 at non-Γ points in the Brillouin zone (BZ) [8, 10]. Disloca- thogonaltothedislocationline,becausetheBurgersvectoris 4 tions are of central interest in this endeavor, being the topo- 1. logical defects exclusively related to the lattice translations. aBravaislatticevector. On the other hand, the electronic topology of a TBI is 0 In two dimensions (2D), the role of these lattice defects has 4 beenrecentlyelucidatedinTBIs[10,11],aswellasintopo- characterized by the band-inversions at time-reversal invari- 1 ant(TRI)momentaK intheBZ[8]. Adislocationdisturbs logical superconductors [12, 13] and interacting topological inv : the crystalline order only microscopically close to its core. v states [14–16]. In particular, it has been shown that these i lattice defects in two-dimensional TBIs act as probes of dis- Wecanthereforeuseelasticcontinuumtheorytodescribeits X effectatlowenergies. Theelasticdeformationofthecontin- tincttopologicalstatesthroughbindingofthelocalizedzero- r uousmediumisencodedbyadistortionfieldε oftheglobal a energymodesintheircore[10]. i Cartesian reference frame e , eα = δα, with i,α = 1,2,3 i i i Although early on it was identified that in three- [21,22]. Themomentumnearthetransitionfromatopologi- dimensional TBIs dislocation lines support propagating heli- callytrivialtoanontrivialphasewiththebandgapclosingat calmodes[17],thepreciseroleofdislocationshavenotbeen the momentum K is k = (e + ε ) · (K − q), with inv i i i inv explored thoroughly [18–20]. In particular, the relation be- q (cid:28) K ∼ 1/a as the momentum of the low-energy elec- inv tween the lattice symmetry and the electronic topology, as tronic excitations, ε ∼ a/r, a is the lattice constant, and r wellasthecharacterizationofthesetopologicalstatesthrough is the distance from the defect core. Therefore the disloca- the response of the dislocation lines has not been addressed. tion gives rise to a U(1) gauge field A = −ε · K that i i inv Dislocationsinthreedimensions(3D)aredefectswithricher minimallycouplestotheelectronicexcitations,q → q+A. structurethantheirtwo-dimensionalcounterparts. Theyform The translational symmetry then implies that the gauge field 2 FIG.1: (Coloronline)IllustrationoftheK-b-trulerelatingtheelectronictopologyinthemomentumspace,andtheeffectof dislocationsinrealspace. PanelsAtoDshowtheelectronic-bandtopologyoftheR[T-p3(4) ]andM [T-p3(4) ]phaseson R M asimplecubiclatticeandtheM −R(p4 )andX(cid:48)−R(p4 )weakphasesontetragonallattices. Adislocationwith M,R X(cid:48),R Burgersvectorb=e actsontheencircledTRImomentaintheplanesorthogonaltothedislocationline. Asaresult,the x coloredplaneshostaneffectiveπflux. TheresultingnumberofKramerspairsofhelicalmodesalongtheedgeandscrewparts oftheloopisindicatedwiththebluenumber. (A)ThesymmetricRphasehasatopologicallynontrivialplanehostingaπflux orthogonaltoanyofthethreecrystallographicdirectionsandhenceanydislocationloopbindsmodesalongtheentirecore,as shownforaloopinthexˆ−zˆplane,panelE.(B)IntheM phase,translationallyactivephasesintheTRIplanesorthogonalto k andacrystallinephaseink =πplanehostπfluxes. Hencethedislocationloopbindstwopairsofmodes,asdisplayedin z x panelF.Thesemodesaresymmetry-protectedagainstmixing. (C)IntheM −Rphase,onlytheTRIplanesnormaltok host z aneffectiveπ-fluxandhencethesamedislocationloopbindsmodesonlytotheedge-dislocationparts,asdisplayedinpanelG. Thesemodesarenotprotectedagainstmixing. (D)IntheX(cid:48)−RphaseallTRIplanesorthogonaltothedislocationslineshave atrivialflux,and,accordingtotheK-b-trule,neithertheedgenorthescrewdislocationoftheloopbindsmodes,asillustrated inpanelH. hasnontrivialcomponentsonlyintheplaneorthogonaltothe of the propagating helical modes along the dislocation line. dislocationline,consistentwithEq.(1),carryinganeffective For k ·ˆt = K ·ˆt, the system develops a Kramers pair inv fluxΦ=K ·b,aswedemonstratebelow. of true zero modes Ψ ≡ (ψ ,Tψ )(cid:62), with T as the time- inv 0 0 0 Consider an edge and a screw dislocation both oriented reversal operator and T2 = −1 [10]. This is a consequence along the z-axis. We use that for the edge dislocation with ofthefactthatbydefinitiontheK pointishostingaband inv Burgers vector b = ae , the dual basis in the tangent space inversion. Henceforth, the physics is essentially captured by x at the point r is Ex = (cid:0)1− ay (cid:1)ex + ax ey, Ey = aDiracHamiltonianwithnegativemass. Deviatingfromthis 2πr2 2πr2 ey, Ez = ez, whileforthescrewdislocationwithb = ae , ’parent’momentumbyq·ˆt,theeffectivelow-energyHamilto- z wehaveEx =ex, Ey =ey, Ez = b (−yex+xey)+ez; nianforthepropagatingmodesthengenerallydevelopsalin- 2πr2 r2 ≡ x2+y2 [21]. Thecorrespondingdistortionforbothan eargapH ∼q·ˆt,tolowestorder.ThegappedKramerspair eff edgeandascrewdislocationisthenreadilyobtainedtolead- ofdescendantstatesisthenpresentaslongasH (q)remains eff ingorderina/rtobeε = y b, ε = − x b(seeSup- topologicallynontrivial,andmaythenbecapturedbyH = x 2πr2 y 2πr2 eff plementalMaterialin[23]fordetails),andthecorresponding v Σ (q·ˆt)+O(q2).Here,thePaulimatrixΣ actsinthetwo- t 3 3 gaugepotentialA(r)hasnontrivialcomponentsintheplane dimensionalHilbertspaceofthedislocationmodes,whichare orthogonaltothedislocationline,A·t=0,and oftheformΨ ≡ (ψ ei(q·ˆt)(r·ˆt),(Tψ )e−i(q·ˆt)(r·ˆt))(cid:62),and qt 0 0 v isthecharacteristicvelocity,whichissetbythesymmetries t −ye +xe −ye +xe A= x y(K ·b)≡ x yΦ. (2) anddetailsofthebandstructure. 2πr2 inv 2πr2 We thus see how the dislocation line t, the Burgers vec- WhenthisfluxΦ(mod2π)isnonzero,thedislocationscarry tor b, and the TRI momenta K , through the K-b-t rule, inv propagatinghelicalmodesprovidedthatthe2DHamiltonian conspire into a precise condition determining the existence in a TRI plane orthogonal to the dislocation line, ˆt ≡ t/|t|, of the dislocation propagating modes in certain directions in hosts a band inversion. The lattice symmetry that relates the a topologically-insulating phase, consistent with the space band-inversion momenta then protects these modes. This is groupclassification[8](Fig. 1). Byvaryingtandbinalldi- what we refer to as the K-b-t rule. This rule and the fol- rections,thenumberof”parent”zeromodesinanyprojection lowingdescendantconstructiontogetherimplythatthebound plane is in one-to-one correspondence with the space group statesforagivenk·ˆtmomentumcombineintothespectrum classificationintermsoftheK momenta. Specifically,for inv 3 a(translationally-active)phasewithasingleK momentum, arejoinedinaloopinthex−z-planewithb=e ,weexpect inv x edgeandscrewdislocationsbindasingleKramerspairofhe- propagatingmodes,whichareindeedfoundinournumerical licalmodesifK ·b(cid:54)=0.Incaseofa(translationally-active computations. Clearly,TRStogetherwiththecrystalsymme- inv or a crystalline) phase with multiple K momenta, a pro- tryprotectsthemodesfrombackscattering. inv jected2Dsystemmayalsoresultinadoublepairofmodesif Next we consider the system in the three-dimensional M- the effective system entails a 2D crystalline phase. The two phase [T − p3(4) ], characterized by band-inversions lo- M pairs are then protected by the symmetries relating the K cated at the momenta M ≡ (π,π,0), X(cid:48) ≡ (π,0,π), Y(cid:48) ≡ inv momenta. Mostinterestingly,thereisthepossibilitythatboth (0,π,π),whicharerelatedbythethreefoldrotationalsymme- edgeandscrewdislocationsbindmodesinanycrystaldirec- try (Figs. 1B, and S5 and S10 in the Supplemental Material tionresultinginpropagatingmodesalongthefulldislocation [23]). According to the K-b-t rule, for the edge-segment of loops. Inparticular,inacompletelyisotropiclatticewithO the dislocation loop, k = 0 and k = π planes both host h z z crystal symmetry a strong variant of this effect can be real- a π flux, originating from the M and X(cid:48) points. Addition- ized: thegaplessstatesinthedislocationloopthatpropagate ally, the k = π plane hosts a two-dimensional crystalline x in the way completely oblivious to the lattice directions. In phase,andthusthescrew-dislocationpartsalsohosttwopairs contrast,inaweakphasecharacterizedbytheweaktopolog- ofmodes. Therefore,thereisatotaloftwoKramerspairsof ical invariant M, protected helical modes are obtained only gaplessdislocationmodesalongtheloop,whichareprotected when the product M · b (mod2π) is nontrivial [3, 17–19]. by symmetry. Note that their existence crucially depends on This is consistent with the fact that double pairs of modes the fact that the M and X(cid:48) momenta are symmetry-related. originating from two K not related by symmetry may be Were this not the case, the weak index of this T −p3(4) inv M gappedout. However,accordingtotheK-b-truleiftheK phase,M = (0,0,0),wouldpredictnodislocationmodesat inv i are related by symmetry such pairs are protected from gap- all. pingout. Weexpectthatthestabilityofthedislocationmodes Incontrast,letusnowbreakthecubicsymmetrybyconsid- in3DTBIsagainstatime-reversalinvariantdisorderisinone- ering the M −R-phase (p4 ) on a tetragonal lattice with M,R to-onecorrespondencewiththestabilityofthe2Dtopological a =a =a,a =a/α,wherea isthelatticeconstantinthe x y z i phase yielding the helical modes. Therefore, the most sta- direction e , and α (cid:54)= 1 is the lattice deformation parameter i ble dislocation modes should originate from a 2D Γ−phase, (Figs. 1Cand2). Noticeherealsoasubtledifferencebetween followed by the ones arising from translationally-active and suchaweakphaseandacrystalline(valley)phase,whichhas crystallinephases[8]. an even number of band-inversions protected by a 3D space These general statements can be illustrated by a simple groupsymmetry. Theusualstrongandweakindices[3,4,17] tight-bindingmodelwithtwoorbitalswithdifferentparityand inthisphaseare(ν;M ) = (0;0,0,1), andthusM·b = 0. i two spin states [24] on the simple cubic lattice with space Nonetheless, the k = 0 and k = απ planes are topolog- z z grouppm¯3m ically nontrivial therein (Fig. 1 and [23]). As a result, for a dislocationloopwithb=e ,accordingtotheK-b-trule,we H =A(γ sink +γ sink +γ sink )+M γ , (3) x nn 1 x 2 y 3 z nn 0 findmodesboundonlytotheedge-dislocationparts. Asboth withkastheelectronmomentum,theγ-matricesactinginthe theseplanescontributethemidgapstates,weexpectadouble orbitalandthespinspaces,andweusenaturalunits((cid:126)=c= Kramerspairofthepropagatingmetallicstates,whichournu- a=1).Topologicalphasesofthemodel(3)canbetunedwith mericalcomputationsindeedconfirm. However,thesemodes themasstermM =m−2B(3−cosk −cosk −cosk ). canmixinthedislocationloop,sincenosymmetryrelatesthe nn x y z The parameters A(B) are related to the inter-(intra-)orbital momentaM andRgivingrisetothem. hoppings, andmisrelatedtothedifferenceintheonsiteen- Finally,weconsiderthetetragonalX(cid:48)−R(Y(cid:48)−R)phase ergies for different orbitals [23]. Let us assume that the sys- obtained by deforming the cubic lattice in the e (e ) di- y x tem is in an R-phase (labeled T-p3(4) in Ref. 8), which is rection with the corresponding band-inversions at (π,0,π) R characterizedbyaband-inversionattheRpoint[momentum [(0,π,π)]and(π,απ,π)[(απ,π,π)]momenta(Fig.1D).No (π,π,π)]intheBZ,(Figs. 1Aand2). Ifb=e andt=e , dislocationmodesappearintheX(cid:48)−Rphase,whereasinthe x z the effective Hamiltonian in the k = π plane reduces to Y(cid:48)−Rphaseonlytheband-inversionatmomentum(απ,π,π) z theπ fluxprobleminthetwo-dimensionalM-phase(labeled contributes a π flux, thus yielding the modes for both types T −p4 inRef.8),whichisdefinedbytheband-inversionat of dislocations. These results are therefore similar as in the M theM point,andhencepossesseszeromodes. Forthefamily R-phase on the cubic lattice, as also confirmed by numeri- of Hamiltonians (1) then any momentum k = π + q in- calcomputationsshowingmodespropagatingalongtheentire z z finitesimallyclosetok =πyieldsthewould-bezeromodes loop in the x−z plane. However, the difference is that not z in the absence of the term ∼ γ . When included, this term alldirectionsareequivalenthere, andhencevelocitiesofthe 3 givesrisetothelinearlydispersingpropagatingmodesalong modesalongtheloopareanisotropic. thedislocationline, accordingtotheaboveK-b-trule. Fur- TheresponseofdislocationsinTBIsisexperimentallycon- thermore, the same rule implies that an edge or a screw dis- sequential as these defects are ubiquitous in any crystals. location along any Bravais lattice vector in the simple cubic The electron-doped mixed-valent perovskite oxide BaBiO 3 latticeeffectivelyactsasaπ flux. Hence,whenthesedefects with a simple cubic crystal symmetry has been recently pre- 4 A M/B=10, z=0, R phase B M/B=10, z=0, R phase 1.5 (0,π+,π)" (π,π-,π)" (0,0,π) 2π 1.0 + + (π,0,π)" " 0.5 " (π,π,0)" + "+ En 0.0 (0,+0,0) (0,π,0)("π,0+,0)"1" 0 1 -0.5 En -1.0 0 0 -1.5 -1 -2.0 0 π k 2π 0 50 n-8230 100 150 C M/B=7, z=0, α=0.5, M-R phase D M/B=7, z=0, α=0.5, M-R phase 1.5 (0,π+,απ)" (π,π,-απ)" 1.0 (0,+0,απ) (""π,0,απ+)" 2π 0.5 +(0,π,0) ("π,π-,0)" En0.0 (0,+0,0) ("π,+0,0)"" 1 0 1 -0.5 En -1.0 0 -1.5 0 -1 0 π k 2π -2.0 0 50 n-8230 100 150 FIG.2: (Coloronline)Theeffectofdislocationlinesin3Dtopologicalbandinsulators. Edgeandscrewdislocationswith Burgersvectorb=e aretreatedsimultaneouslybyconsideringdislocationloopsof8×8siteswithinthetight-bindingmodel x (3)onthelatticewith16×16×16sitesincaseofperiodicboundaryconditions,see[23]fordetails. PanelsAandCshowthe spectrumofthedislocationmodestraversingthegapincaseofthecubicRphase[T-p3(4) ]andtetragonalM −R(p4 ) R M,R phases,withthecorrespondingelectronictopologicalconfigurationsshownintheinsetsontheupperleft. Thecirclesindicate theTRImomentahostingband-inversionsthatyieldeffectiveπ-fluxes. Additionally,thespectraldensityasfunctionofthe momentumkalongthedislocationlineisdisplayedintheinsetsonthelowerright. WefindasingleconefortheRphase,and adoubleconefortheM −Rphase,consistentwiththeK-b-trule. Theenergylevelsarenoweightfolddegenerateasboth k =0andk =πplanesaretopologicallynontrivial,andthuseachyieldspropagatingmodesduetotheeffectiveπflux z z introducedbythedislocations. Thezeromodesareoffsetduetoafinitesystemsize(seealsoFig.S11inRef.23). PanelsBand Ddisplaytherealspacelocalizationofthemodes,wheretheweightofthewavefunctionisindicatedbythesizeofthecircles andthecolorcodingindicatesthecorrespondingphase. Mostimportantly,thecubicRphasefeaturestopologically-protected propagatingdislocationmodesalongthecompleteloop. Incontrast,theM −Rphasebindsmodesonlyalongthe edge-dislocationparts. Inparticular,wefindeightenergylevelsincorrespondencewiththenumberofallowedmomentaalong thedislocation. dicted to be a TBI [25]. More interestingly, the topological these states, since the surface irregularities should not affect phase is believed to be the symmetric R-phase [T-p3(4) ], thisprobe. R whichshouldhostpropagatinggaplessmodesalonganydis- We hope that our findings will motivate further studies of location loop, as we have found here. The effective tight- theroleofdislocationsinTBIswithdifferentcrystalsymme- binding model (3) describes this phase with the parameters tries,andespeciallytheirknottingwhichshouldplaytherole A = 2.5eV·A˚,B = 9.0eV·A˚2, M = 5.08eV,andthelattice ofbraidingforthesetopologicaldefectsandmightberelevant constant a = 4.35A˚ [25], implying that the velocity of the for quantum computation. Finally, our results based on the dislocationmodesisv = A/(cid:126) = 4.3×105m/s,whilethelo- “intuitive”classificationofthedislocationsthroughtheBurg- (cid:112) calization length λ ∼ B/(12Ba−2−M) (cid:39) 4.8A˚ [26]. ers vectors ultimately call for a mathematically precise char- The enhanced density of states near the dislocation line in acterizationofthesedefectsintermsofthehomotopyclasses a non-Γ TBI [27–30] should be observable by local probes, forthediscretespacegroups. suchasscanningtunnellingmicroscopy,wherethedislocation Note added. Recently, we became aware of the work by reachesthecrystalsurface. Thesurfacestateshybridizewith ShiozakiandSato[31],wheretheresponseofdislocationsin the dislocation modes, and the precise local redistribution of 3DTBIswasstudiedusingK−theory. theincreaseddensityofstatescanbemodeledforthespecific ThisworkispartoftheD-ITPconsortium,aprogramofthe experimentalsituationusingourtheory. Angle-resolvedpho- NetherlandsOrganisationforScientificResearch(NWO)that toemissionspectroscopymayalsobeusefulformappingout is funded by the Dutch Ministry of Education, Culture and 5 Science (OCW). This work is supported by the Dutch Foun- dationforFundamentalResearchonMatter(FOM).V.J.ac- knowledges the support of NWO. The authors acknowledge fruitfuldiscussionswithXiao-LiangQiandZhi-XunShen. [1] C.L.KaneandE.J.Mele, Phys.Rev.Lett. 95,146802(2005). [2] L.Fuand C.L.Kane, Phys.Rev.B74,195312(2006). [3] J.E.MooreandL.Balents, Phys.Rev.B75,121306(2007). [4] L.FuandC.L.Kane, Phys.Rev.Lett.98,106803(2007). [5] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys.Rev.B78,195125(2008). [6] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, NewJ.Phys.,12,065010(2010). [7] A.Kitaev, AIPConf.Proc.22,1132(2009). [8] R.-J. Slager. A. Mesaros, V. Juricˇic´, and J. Zaanen, Nature Phys. 9,98(2013). [9] L.Fu, Phys.RevLett.106,106802(2011). [10] V.Juricˇic´,A.Mesaros,R.-JSlager,andJ.Zaanen,Phys.Rev. Lett.108,106403(2012). [11] F. de Juan, A. Ru¨egg and D.-H. Lee, Phys. Rev. B 89, 161117(R)(2014). [12] D.AsahiandN.Nagaosa, Phys.Rev.B86,100504(R)(2012). [13] T.L.Hughes,H.YaoandX.-L.Qi,arXiv:1303.1539(2013). [14] M.BarkeshliandX.-L.Qi, Phys.Rev.X2,031013(2012). [15] M.Barkeshli,M.,C.-M.Jian,andX.-L.Qi, Phys.Rev.B87, 045130(2013). [16] A.Mesaros,Y.-B.KimandY.Ran, Phys.Rev.B88,035141 (2013). [17] Y. Ran, Y. Zhang, and A. Vishwanath, Nature Phys. 5, 298 (2009). [18] J.C.Y.Teoand C.L.Kane, Phys.Rev.B82,115120(2010). [19] Y.Ran, arXiv:1006.5454(2010). [20] K.-IImura,Y.TakaneandA.Tanaka,Phys.Rev.B84,035443 (2011). [21] H.Kleinert, GaugeFieldsinCondensedMatter,Vol.II.World Scientific,Singapore,1989. [22] R.Bausch,R.SchmitzandL.Turski, Phys.Rev.Lett.80,2257 (1998). [23] SeeSupplementalMaterialforthedetailsofthemodelinEq. (3),aswellasforthethetechnicaldetailsoftheanalyticaland numericaldescriptionofthedislocationmodes. [24] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, NaturePhys. 5,438(2009). [25] B.Yan,M.JansenandC.Felser, NaturePhys.9,709(2013). [26] A.Mesaros,R.-J.Slager,J.Zaanen,andV.Juricˇic´, Nucl.Phys. B.867,977(2013). [27] D.Hsieh,D.Qian,L.Wray,Y.Xia,Y.S.Hor,R.J.Cava,and M.Z.Hasan, Nature452,970(2008). [28] Y.Tanaka,Z.Ren,T.Sato,K.Nakayama,S.Souma,T.Taka- hashi,K.Segawa,andY.Ando, NaturePhys.8,800(2012). [29] S.-Y.Xu,C.Liu,N.Alidoust,M.Neupane,D.Qian,I.Belopol- ski,J.D.Denlinger,Y.J.Wang,H.Lin,L.A.Wray,G.Landolt, B.Slomski,J.H.Dil,A.Marcinkova,E.Morosan,Q.Gibson, R. Sankar, F.C. Chou, R.J. Cava, A. Bansil, and M.Z. Hasan, NatureCommun.3,1192(2012). [30] P. Dziawa, B. J. Kowalski, K. Dybko, R. Buczko, A. Szczer- bakow, M. Szot, E. Lusakowska, T. Balasubramanian, B. M. Wojek, M. H. Berntsen, O. Tjernberg, and T. Story, Nature Mater.11,1023(2012). [31] K.ShiozakiandM.Sato,Phys.Rev.B90,165114(2014). 6 Supplementary Material: Interplay between electronic topology and crystal symmetry: Dislocation-line modes in topological band-insulators Robert-JanSlager,AndrejMesaros,VladimirJuricˇic´ andJanZaanen A.Modeldetails Weherepresentthedetailsofthemodelthatweusetoobtaintopologicalstatesoncubicandtetragonallattices. Thetight- bindingmodelcontainstwospindegenerateorbitalswithaHamiltonian (cid:88) (cid:88) H =(cid:15)(k)1+ d (k)γ + d γ , (S1) α α αβ αβ α αβ where γ are the five Dirac matrices obeying the Clifford algebra {γ ,γ } = 2δ , γ are the ten commutators γ = α α β αβ αβ αβ 1[γ ,γ ]. Specifically,wetakethefollowingbasisoftheγ-matrices 2i α β γ =σ ⊗τ γ =σ ⊗τ , γ =σ ⊗τ , γ =σ ⊗τ , γ ≡−γ γ γ γ =σ ⊗τ , 0 0 3 1 1 1 2 2 1 3 3 1 5 0 1 2 3 0 2 withσandτ beingthestandardPaulimatricesactinginthespinandorbitalspace,respectively;1=σ ⊗τ withσ ,τ asthe 0 0 0 0 2×2unitymatrices. TheexplicitformoftheHamiltonian(S1)isthendeterminedbyexploitingthesymmetries. Forthetight-bindingmodelwe assume a well-defined parity, in addition to time-reversal symmetry. Time-reversal symmetry is represented by the operator T = ϑK, with ϑ = iσ ⊗ τ and K as complex conjugation, while the parity operator is P = γ . As the commutators 2 0 0 γ transform under time-reversal and parity with the opposite sign, the assumption of having both these symmetries thus αβ results in d = 0 in Eq. (S1). The remaining functions d (k) of the effective model can then be obtained from the theory αβ α of invariants. Let us consider the space group pm¯3m with the point group O . This point group has two one-dimensional, h onetwo-dimensionalandtwothree-dimensionalirreduciblerepresentations. Thematrixγ anticommuteswiththeγ-matrices 0 {γ ,γ ,γ } and therefore represents the mass term, which is by construction even under the parity. The corresponding mass 1 2 3 term has to be rotationally-symmetric and therefore an even polynomial in the momentum k. Using also that the γ-matrices {γ ,γ ,γ } form a three-dimensional representation under rotations in O , we arrive at the following minimal continuum 1 2 3 h Hamiltonianthatcapturestopologicallynontrivialphases H =A(k γ +k γ +k γ )+M γ +O(k3), (S2) eff x 1 y 2 z 3 nn 0 withM =m−2B(k2+k2+k2)andwedroppedtheterm∼1notrelevantforthetopologicalanalysishere.ThisHamiltonian nn x y z generalizes the 2D Bernevig-Hughes-Zhang (BHZ) to three dimensions (3D) and its different incarnations have already been usedtodescribetopologicalstatesinBismuth-basedcompounds[S1]. Letussubsequentlydeterminethelattice-regularizedversionoftheeffectivemodel(S2). Consideringasimplecubiclattice withnearest-neighbor(nn)hoppings,weobtainthefollowingtight-bindingHamiltonian H =A(γ sink +γ sink +γ sink )+M γ , (S3) nn 1 x 2 y 3 z nn 0 withtheeffectivemassparameter M =m−2B(3−cosk −cosk −cosk ). nn x y z We set the lattice constant a = 1, and the parameters A (B) represent hopping amplitudes between different (same) orbitals, whilemisthedifferenceoftheonsiteenergiesbetweenthetwoorbitals, similarasinthetwo-dimensional(2D)BHZmodel. The hoppings in the Hamiltonian (S3) are equal in the three orthogonal directions due to the rotational symmetry. The above HamiltonianreducestothecontinuumHamiltonian(S2)whenexpandedaroundtheΓortheR-pointlocatedatthemomentum (π,π,π)intheBrillouinzone(BZ).Additionally,inordertoenrichthephasediagram,weaddnext-nearest-neighborhopping termsintheexactsamefashionasthenearest-neighborones. Noticethatonacubeeachsitehasfournext-nearestineachofthe 7 threemutuallyorthogonalcrystallographicplanesresultingintheHamiltonian A˜ H = [sin(k +k )(γ +γ )+sin(−k +k )(−γ +γ )] nnn 2 x y 1 2 x y 1 2 A˜ + [sin(k +k )(γ +γ )+sin(−k +k )(−γ +γ )] 2 x z 1 3 x z 1 3 A˜ + [sin(k +k )(γ +γ )+sin(−k +k )(−γ +γ )] 2 y z 2 3 y z 2 3 −4B˜[3−cos(k )cos(k )−cos(k )cos(k )−cos(k )cos(k )]γ , (S5) x y x z y z 5 sothetotalHamiltonianofthetight-bindingmodelonthecubiclatticeis H =H +H (S6) TB nn nnn Different topological phases are obtained by varying the mass term multiplying γ matrix. The topological phase transitions 5 occur when the mass term vanishes at the time-reversal invariant momenta in the BZ and the corresponding phases can be characterizedbythemasstermatthesespecialmomenta[S2]. Asaresultthephasediagram,withA=1,isreadilyobtainedas afunctionofM/BandB˜/B,seeFig. S1. ByloweringthefullrotationalsymmetryoftheHamiltonian(S3),oneobtainsaminimaltight-bindingHamiltoniandescribing topologicalphasesonatetragonallattice Htetragonal =A γ sink +A γ sink +A γ sink nn x 1 x y 2 y z 3 z +[m−2B (1−cosk )−2B (1−cosk )−2B (1−cosk )]γ , (S7) x x y y z z 5 whichwewilluselater. FIG.3: FigureS1: Thephasediagramofthetight-bindingmodel(S6),withspacegrouppm¯3mandO point-groupsymmetry. h AsfunctionoftheparameterM/BandthenearestneighborhoppingB˜/Bthemassparameteratthetime-reversalinvariant momentacanbetunedtoproducethedifferentelectronictopologicalconfigurationsasshowninthefigure. 8 B.Analyticalandnumericaldescriptionofthedislocationmodesinthree-dimensionaltopologicalband-insulators Letusnowconsidertheeffectofdislocationsinthecoarse-grainedcontinuumtheoryobtainedfromthetight-bindingmodel introduced in the previous section. Such lattice defects are described within the elastic continuum theory using vielbeins, encodingthemapfromtheperfectlatticetothedistortedlattice[S3]. ThetorsionTi andcurvatureRi arethenrelatedtothe j vielbeinsEi andthespinconnectionωi bytheEinstein-Cartanstructureequations α j Ti =dEi+ωi ∧Ej j Ri =dωi +ωi ∧ωk. (S8) j j k j Foradislocationdefect,thecurvaturevanisheswhilethetorsionissingular,Ti = biδ(l)withbastheBurgersvectorandlas thepositionofthedislocationline. Sincecurvaturetensorvanishesforadislocation,thecorrespondingspin-connectioncanbe settozero. B.1.Edgedislocations Incaseofanedgedislocationorientedalongthezˆ-direction,thevielbeintakestheform 1− by bx 0 2πr2 2πr2 Eˆ ≡Eαi = 0 1 0, (S8) 0 0 1 wherebisthemagnitudeoftheBurgersvectorb,whichisassumedtobealongthexˆ-directionb=be ,andr2 ≡x2+y2. The x inverseoftheabovevielbeinisreadilyfoundtobe (cid:16) (cid:17)−1 (cid:16) (cid:17)−1  1− by − bx 1− by 0 Eˆ−1 ≡Eα = 2πr2 2πr2 2πr2 . (S9) i  0 1 0 0 0 1 Sinceforanelementarydislocationb=awithaasthelatticeconstant,thedistortionfieldE =e +ε totheleadingorderin i i i a/risthenreadilyobtained ay y ax x ε = e = b ε =− e =− b. x 2πr2 x 2πr2 y 2πr2 x 2πr2 ThecorrespondinggaugepotentialA=−ε ·K ,withK astheband-inversionmomentum,canbethenstraightforwardly i inv inv obtainedandisgivenbyEq.(2)inthemaintext. We can now consider the effect of an edge dislocation in a 3D topological insulator. We note that along the core of the dislocation translational symmetry is preserved. Henceforth, k is a good quantum number and we obtain a family of two- z dimensionalHamiltonians (cid:88) H(x,y,z)= eikzzH (x,y,k ). eff z kz Thedimensionally-reducedHamiltonianH (x,y,k ))canthenbetreatedusingwell-knownmethods[S2,S4].Hence,wecan eff z determinethespectrumofdislocationmodesdirectly. WenowmakethismoreconcreteforthemodelwiththeHamiltonian(S6). WeassumethatthesystemisintheT-p3(4) or R Rphase[S6]asshowninFig. S2. Usingk→k+A=k+ 1 e ,straightforwardcalculationyields 2r ϕ ∂ 1 i 1 H (x,y,k ))=iγ ∂ +iγ ( r + )+γ [M −2B((cid:52)+ ∂ϕ− )]+sin(k )γ , (S10) eff z r r ϕ r 2r 0 r2 4r2 z 3 where M =m−8B−2B(1−cosk )=Mˆ −2B(1−cosk ). z z Here, the Laplacian (cid:52) = ∂2 + ∂r + 1 ∂2, and (r,ϕ) are the usual polar coordinates related to the Cartesian ones by x = r r r2 ϕ rcosϕ, y = rsinϕ. To analyze the propagating midgap modes bound to the dislocation, let us first neglect the last term in 9 theHamiltonian∼sink . IntheremainingHamiltonianthetermM playstheroleoftheeffectivemassinthetwo-dimensional z BHZmodel. Therefore,thisHamiltonianhostszeromodesforthevaluesoftheparametersm,B,k obeying0 < M/B < 4. z Now, take k = π. Then, as 8 < m/B < 12, it follows that 4 < Mˆ/B < 8, which is precisely the condition for a zero z modesolutionboundtothedislocation. ThesolutionofEq.(S10)withoutthelastterm∼ γ hasbeenderivedanddiscussed 3 indetailinRefs. [S2,S4]. Morespecifically,inthisparameterrangethesystementailstheT-p4orM phaseinthereduced2D Hamiltonian.Similarly,thenextk valueinafinitesystemresultsinadislocationmodeiftheeffectivemassMˆ(k )stillsatisfies z z the topological condition 4 < Mˆ/B < 8. Moreover, we can exactly determine the corresponding spectrum by reintroducing thelasttermintheHamiltonian(S10),∆ ≡ sin(k )γ . Sincek commuteswiththeHamiltonianandγ anticommuteswith 3 z 3 z 3 theotherγ-matricesintheHamiltonian,theterm∆ actsasamasstermforthemodescomprisingzero-energysubspaceinits 3 absence.Thecorrespondinggapisthus±|sin(k )|withrespecttothezeroenergy,andinthethermodynamiclimitthesemidgap z modesarelinearlydispersingalongthedislocationlinewiththevelocitysetbythehoppinginthisdirection,inagreementwith the K-b-t rule. These conclusions are schematically shown in Fig. S2. By displaying the allowed values of k in a finite z system,k = 2πn/L,withL ∈ Zandn = 0,1,2...L−1,ontheunitcircleintheimaginaryplane,therealpartcharacterizes z the effective Mˆ/B, while the imaginary part signals the anticipated energy of the dislocation mode. We note that the shift in Mˆ indeed ensures that the T-p3(4) phase hosts no dislocation modes with k = 0 and in the thermodynamic limit all the R z propagatingmodesindeeddescendfromthezeromodesattheband-inversionmomentum(π,π,π),asexpectedfromtheK-b-t rule. A B (0,π,π)" (π,π,π)" ΔE + - + (0,0,π) + (π,0,π)" " " ΔM 4 2 0 + (π,π,0)" +" (0,π,0) " + + (0,0,0) (π,0,0)" " FIG.4: FigureS2: TheleftpanelshowstheschematicconfigurationoftheT-p3(4) orRphaseintheBrillouinzonewithan R edgedislocationwithBurgersvectorb=e andisorientedalongthezˆdirectionintherealspace. Therightpaneldisplaysthe x modesk ontheunitcircleinthecomplexplane. Theimaginarypartthenencodesforthemassgapofthedislocationmode z withrespecttothezeromode,whereastherealpartrelatestotheshift∆M(k )=−M/B+Mˆ/B =2(1−cos(k ))ofthe z z effectivemassparameterintheassociated2DBHZmodel. Theaboveanalyticalresultscaneasilybeverifiedbynumericalcomputations,andthetwoshowanexcellentagreement. In Fig. S3weshowthespectrumofa12×12×12systemonatorus(periodicboundaryconditions)andtherealspacelocalization ofthedislocationmodes. WenotethatthemodesareneatlylocalizedandcomeastwoKramerspairs,onefromthedislocation andonefromtheanti-dislocation. Moreover,sinceexp(ik )takesvaluesinthesetcomprisingofthetwelfthrootsofunity,we z cancomparetheenergygapswiththeanticipatedsin(k )dependenceandfindagreementuptotwodecimals. Inaddition,we z changethemassparametermtoconfirmthatmodescanbeaddedorremovedfromthespectrumconsistentwiththecondition inEq.(S10),seeFig. S4. Theseresultsreproduceforvarioussizesofthesystem(rangingupto16sitesinlength),confirming the presence of the zero mode together with the descendant propagating states, as predicted by the K-b-t rule. Furthermore, whenthenext-nearestneighborhoppingsareincluded,thephaseT −p4 protectedbybothTRSandcrystalsymmetrieswith M thebandinversionsatthemomenta(0,π,π),(π,0,π),and(π,π,0)canberealized,seeFig.S1. Inthatcase,adislocationwith Burgers vector b = ae and oriented along the z axis,ˆt = e , in both planes k = 0 and k = π acts as π-flux, and thus a x z z z doubleKramerspairisexpected. Thisisindeedwhatwefindnumerically,seeFig. S5. Itisstraightforwardtogeneralizetheexplainedreasoningtootherphases. Letusillustratethiswiththeprimitivetetragonal systemtakingA =A = 1A andB =B = 1B inEq.(S7). Fortheseparametersweobtaintheweakp4 phasewith x y 2 z x y 2 z M,R band-inversionsatM andRpoints. ThisphaseisdisplayedinFig. S6,andisnotprotectedbyeithertime-reversalsymmetry 10 FIG.5: FigureS3: Thespectrumofthe12×12×12system(M/B =10)intheT-p3(4) phasewiththeedgedislocation R withperiodicboundaryconditions. ThedislocationmodescomeindegenerateKramerspairs,originatingfromthedislocation andanti-dislocation(panelA).Theinsetdisplaysthecompletespectrum. Wenotethattheenergylevelsofthesemodesinthe gaparelocatedatE =0,±E =0.50andat±E =0.86,inagreementwiththetheory. PanelBshowstherealspace n N N localizationofthedislocationmodesforafixede plane. Theweightofthewavefunctionisrepresentedherebytheradiusof z thecircles,whereasthecolorindicatesthephasefollowingthesameconventionsasinFig2inthemaintext. Duetothe translationalsymmetry,thee planesareidentical. Finally,panelCshowsthethespectraldensityasfunctionofthemomentum z k =k alongthedislocationlinefora12×12×28system. Thisspectraldensityisalsoplottedascircles,wheretheradius z indicatestheweight,inordertofurtheremphasizetheexcellentagreementwithnumerics. or3Dspacegroupsymmetry, asopposedtoavalleyphase. Byinsertinganedgedislocationwithb = e andˆt = e wesee x z that both time-reversal invariant planes orthogonal to ˆt are topologically nontrivial and thus yield zero modes, which in turn producedescendantpropagatingmodesalongthedislocation. Wefindthepropagatingmodesnumericallyforthesystemswith 10×10×10anda12×12×12sites,seeFig.S6,andwiththeplotofthespectralweightofthedislocationmodesshowninFig. S7. NoticethedoublingoftheDiracconesinceinthisphasetherearetwonontrivialtopologicallynontrivialplanesorthogonal to the dislocation line each yielding a π flux. In turn, this nontrivial flux produces a double Kramers pair of the zero modes, whichyieldsdescendentpropagatingstatesalongthedislocationdefect.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.