ebook img

Intermediate-mass black holes in Globular Clusters PDF

0.84 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Intermediate-mass black holes in Globular Clusters

Mem.S.A.It.Vol.75,282 (cid:13)c SAIt 2008 Memoriedella Intermediate-mass black holes in Globular Clusters N. Lu¨tzgendorf1,M.Kissler-Patig2,K.Gebhardt3,H.Baumgardt4,E.Noyola5,6,P.T. 3 1 deZeeuw1,7,N.Neumayer1,B.Jalali8,andA.Feldmeier1 0 2 1 EuropeanSouthernObservatory(ESO),Karl-Schwarzschild-Strasse2,85748Garching, n Germany a J e-mail:[email protected] 2 Gemini Observatory, NorthernOperations Center,670 N.A’ohokuPlaceHilo,Hawaii, 4 96720,USA 1 3 AstronomyDepartment,UniversityofTexasatAustin,Austin,TX78712,USA 4 School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, ] A Australia 5 InstitutodeAstronomia,UniversidadNacionalAutonomadeMexico(UNAM),A.P.70- G 264,04510Mexico . 6 UniversityObservatory,LudwigMaximiliansUniversity,81679Munich,Germany h 7 SterrewachtLeiden,LeidenUniversity,Postbus9513,2300RALeiden,TheNetherlands p 8 I.PhysikalischesInstitut,Universita¨tzuKo¨ln,Zu¨lpicherStr.77,50937Ko¨ln,Germany - o r t s Abstract. ForasampleofnineGalacticglobularclusterswemeasuredtheinnerkinematic a profiles with integral-field spectroscopy that we combined with existing outer kinematic [ measurements and HST luminosity profiles. With this information we are able to detect 1 thecrucialriseinthevelocity-dispersionprofilewhichindicatesthepresenceofacentral v black hole. In addition, N-body simulations compared to our data will give us a deeper 8 insightinthepropertiesofclusterswithblackholesandstrongerselectioncriteriaforfurther 9 studies. Forthe first time, we obtain a homogeneous sample of globular cluster integral- 9 fieldspectroscopywhichallowsadirectcomparisonbetweenclusterswithandwithoutan 2 intermediate-massblackhole. . 1 Keywords.Galaxy:globularclusters–blackholephysics–stars:kinematicsanddynam- 0 ics 3 1 : v 1. Introduction X-ray and radio emissions, the central kine- i X matics in globular clusters can reveal possi- ble IMBHs. However, resolving the gravita- r Intermediate-massblackholes(IMBHs, M ∼ a • tionalsphereof influenceforplausible IMBH 102−105M )havedrawntheattentionofas- ⊙ masses (1′′ − 2′′ for large Galactic globular tronomers for more than a decade and would clusters)requiresvelocity-dispersionmeasure- shedlightontothemysteryoftherapidgrowth mentsatahighspatialresolution.Today,with ofsupermassiveblackholesbyactingasseeds the existence of the Hubble Space Telescope intheearlystageofgalaxyformation.Besides N.Lu¨tzgendorf:Intermediate-massblackholesinGlobularClusters 283 (HST) and high spatial resolution ground 2. Observations based integral-field spectrographs, the search forIMBHsispossible. Our sample consists of nine Galactic globu- larclusters,eachofthemagoodcandidatefor hosting an IMBHs at its center due its high A strong motivation for searching for massandcentralcuspinitslightprofile. intermediate-massblackholesis the observed relation between the black-hole mass and the These clusters were observed with the velocity dispersion of its host galaxy (e.g. GIRAFFE spectrograph of the FLAMES Ferrarese & Merritt 2000; Gebhardt et al. (Fiber Large Array Multi Element 2000a;Gu¨ltekinetal.2009).Exploringthisre- Spectrograph) instrument at the Very Large lation in the lowermass range,wherewe find Telescope (VLT) using the ARGUS mode intermediate-mass black holes, will give im- (Large Integral Field Unit). The velocity- portant information about the origin and vali- dispersion profile was obtained by combining dationofthiscorrelation. the spectra in radial bins centered around the adoptedphotometriccenterandmeasuringthe The formation of intermediate-massblack broadening of the lines using a non paramet- holes can occurby the directcollapse of very ric line-of-sight-velocity-distribution fitting massive first generation stars (Population III algorithm (for more detailed description see stars,Madau&Rees2001),orrunawaymerg- Lu¨tzgendorf et al. 2011, 2012a; Lu¨tzgendorf ingindenseyoungstarclusters(e.g.Portegies et al. 2012c, and Feldmeier et al. 2013, in Zwart et al. 2004). This makes globular clus- prep.). For larger radii, the kinematic profiles ters excellent environments for intermediate- were completed with radial velocity from mass black holes. The currently best candi- the literature, if existent. In addition to the dates for hosting an intermediate-mass black spectroscopicdata,HSTphotometrywasused hole at their centers are the globular clusters to obtain the star catalogs, the photometric ω Centauri (NGC 5139, Noyola et al. 2008, centeroftheclusteranditssurfacebrightness 2010;van derMarel & Anderson2010;Jalali profile. For each cluster both photometry etal.2012),G1inM31(Gebhardtetal.2005), and spectroscopy were combined in order and NGC 6388 (Lu¨tzgendorf et al. 2011). to apply analytic Jeans models to the data. All of these very massive globular clusters The surface brightness profile was used to show kinematic signatures of a central dark obtain a model velocity-dispersion profile mass in their velocity-dispersion profiles. For whichwasfittothedatabyapplyingdifferent ωCentauri,vanderMarel&Anderson(2010) black-hole masses and M/LV profiles. The investigated a large dataset of HST proper final black-hole masses were obtained from a motions and found less evidence for a cen- χ2fittothekinematicdata. tral IMBH than proposed by Noyola et al. (2008). Using a new kinematic center, how- ever, Noyola et al. (2010) and Jalali et al. 3. N-bodysimulations (2012)confirmedthesignatureofadarkmass in the center of ω Centauri and proposed a Furthermore, we run N-body simulations ∼40000M⊙IMBH. basedontheGPU(GraphicProcessingUnit)- enabledversionofthecollisionalN-bodycode Further evidence for the existence of NBODY6 (Aarseth 1999).The code treats bi- IMBHs is the discovery of ultra luminous X- nary interactions, stellar evolution, and exter- ray sources at non-nuclear locations in star- nal tidal fields in a highly sophisticated man- burst galaxies (e.g. Matsumoto et al. 2001; nerwhichallowsdetailedsimulationsofglob- Fabbiano et al. 2001). The brightest of these ular clusters with and without central IMBHs compactobjects(withL ∼ 1041 ergs−1)imply andtheirobservableeffects.Thegoalsofthese masses largerthan 103M assumingaccretion simulationscanbesummarizedinthreemajor ⊙ attheEddingtonlimit. points: 284 N.Lu¨tzgendorf:Intermediate-massblackholesinGlobularClusters Fig.1. VelocitymapsofthenineGalacticglobularclustersofoursample. 1)ReproduceObservations:Ourobserved ordertotestouranalyzingmethodsinphotom- clusters will be compared to a grid of scaled etry and spectroscopy. This will give new in- N-bodysimulationsinordertofindthebestfit- sightsonhowreliablethemethodofintegrated tinginitialparametersandconstraintheblack- lightisintermsofrecoveringtheinnerdynam- hole mass, M/L profilesand massfunctions. ics of dense stellar systems. 3) Study cluster V In contrast to Jeans models, N-body simula- properties: We are analyzing cluster simula- tionscanconsiderthe effectof brightstars on tions with different black-hole retention frac- the velocity measurements as well as strong tions, IMBH masses and binary fractions in masssegregationofstellarremnantsinthecen- tidalfields.Withthesemodelswewillbeable ter. 2) Test our Analysis: With the output of to put constraints on our preliminary black- the N-body simulationswe are creating mock holemasses,verifythemeasurementsandpre- datasets ofHST imagesandIFU datacubesin dictnewobservablesforfindingIMBHs. N.Lu¨tzgendorf:Intermediate-massblackholesinGlobularClusters 285 lationsincludestellarevolution,binaryforma- tionandanexternaltidalfieldwhiletheIMBH 1010 GGalolabxuileasr Clusters mass,theblack-holeretentionfractionandthe McConnell et al. 2011 Bestfit GCs primordialbinaryfractionarevaried.Withthe outcome of these simulations we will be able 108 to reproduce our observations, test our analy- sismethods,andgetadeeperunderstandingof )N MSU theobservableeffectsofIMBHstotheirenvi- (H 106 ronment(Lu¨tzgendorfetal.2013b,inprep.). MB NGC5139 NGC6388 G1 References 104 NGC1904 NGC5286 NGC6266 Aarseth,S.J.1999,PASP,111,1333 Fabbiano,G.,Zezas,A.,&Murray,S.S.2001, 102 ApJ,554,1035 10 100 σ (km/s) Ferrarese,L.&Merritt,D.2000,ApJ,539,L9 Gebhardt,K.,Rich, R. M., &Ho, L.C. 2005, Fig.2. M −σ relations of IMBHs and SMBHs ApJ,634,1093 • in comparison. Theslope of the bestfit to the GCs Gebhardt, K., Pryor, C., O’Connell, R. D., (green line) is by a factor of two smaller than the Williams, T. B., & Hesser, J. E. 2000a,AJ, slopeoftheSMBHsingalaxies(blueline). 119,1268 Jalali, B., Baumgardt, H., Kissler-Patig, M., etal.2012,A&A,538,A19 4. ResultsandConclusions Gu¨ltekin, K., Richstone, D. O., Gebhardt, K., We have investigated the presence of IMBHs etal.2009,ApJ,698,198 in nine Galactic globular clusters using a Lu¨tzgendorf,N.,Kissler-Patig,M.,Noyola,E., combinationofHST photometryandintegral- etal.2011,A&A,533,A36+ field spectroscopy. Comparing the velocity- Lu¨tzgendorf, N., Kissler-Patig, M., Gebhardt, dispersion profiles in the central region of K.,etal.2012a,A&A,542,A129 eachGCswithanalyticalJeansmodelsyielded Lu¨tzgendorf, N., Kissler-Patig, M., Gebhardt, four candidates which show an IMBH signa- K.,etal.2012c,arXiv:1212.3475 tureintheirkinematics(seeLu¨tzgendorfetal. Madau,P.&Rees,M.J.2001,ApJ,551,L27 2011, 2012a; Lu¨tzgendorf et al. 2012c, and vanderMarel,R.P.&Anderson,J.2010,ApJ, Feldmeieretal. 2013,in prep.).Using ourre- 710,1063 sultsandIMBHmeasurementsfromthelitera- Matsumoto, H., Tsuru, T. G., Koyama, K., ture,westudythe M −σrelationforIMBHs etal.2001,ApJ,547,L25 • andcompareittosupermassiveblackholesin McConnell, N. J., Ma, C.-P., Gebhardt, K., galaxies. Figure 2 (Lu¨tzgendorf et al. 2013a, etal.2011,Nature,480,215 in prep.) shows this comparisonand indicates Noyola, E., Gebhardt, K., & Bergmann, M. a lower slope for the correlation at the lower 2008,ApJ,676,1008 mass end compared to the slope obtained for Noyola, E., Gebhardt, K., Kissler-Patig, M., the SMBHs by McConnell et al. (2011). The etal.2010,ApJ,719,L60 reasonforthisbehaviorcouldbeexplainedby Portegies Zwart, S. F., Baumgardt, H., Hut, high mass loss of the globularclusters due to P.,Makino,J., &McMillan,S. L.W. 2004, tidal stripping. This could lower the velocity Nature,428,724 dispersionofthesystemandmovestheglobu- larclustersawayfromthe M −σrelation. • In addition to the observational work we performedN-bodysimulationsin orderto ad- dressopenquestionanddegeneracy.Thesimu-

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.