ebook img

Intermediate \beta-shifts of finite type PDF

0.32 MB·
by  Bing Li
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Intermediate \beta-shifts of finite type

INTERMEDIATE β-SHIFTS OF FINITE TYPE BINGLI,TUOMASSAHLSTEN,ANDTONYSAMUEL Abstract. Anaimofthisarticleistohighlightdynamicaldifferencesbetweenthegreedy, andhencethelazy,β-shift(transformation)andanintermediateβ-shift(transformation), 5 forafixedβ∈(1,2).Specifically,aclassificationintermsofthekneadinginvariantsofthe 1 linearmapsTβ,α: x(cid:55)→βx+αmod1forwhichthecorrespondingintermediateβ-shiftis offinitetypeisgiven.Thischaracterisationisthenemployedtoconstructaclassofpairs 0 2 (β,α)suchthattheintermediateβ-shiftassociatedwithTβ,αisasubshiftoffinitetype.Itis alsoprovedthatthesemapsTβ,αarenottransitive.Thisisincontrasttothesituationforthe r correspondinggreedyandlazyβ-shiftsandβ-transformations,forwhichbothofthetwo a propertiesdonothold. M 1. Introduction,motivationandstatementofmainresults 5 1.1. Introductionandmotivation. Foragivenrealnumberβ (1,2)andarealnumber ] ∈ S x [0,1/(β 1)],aninfiniteword(ωn)n Noverthealphabet 0,1 iscalledaβ-expansionof D th∈epointxi−f ∈ { } . h x= ∞ ω β k. t k − a k=1 (cid:88) m If β is a natural number, then the β-expansions of a point x correspond to the β-adic [ expansionsofx. Inthiscase,almostallpositiverealnumbershaveauniqueβ-expansion. On the other hand, in [34] it has been shown that if β is not a natural number, then, 3 v forLebesguealmostall x, thecardinalityofthesetofβ-expansionsof xisequaltothe 7 cardinalityofthecontinuum. 2 Thetheoryofβ-expansionsoriginateswiththeworksofRe´nyi[32]andParry[29,30], 0 where an important link to symbolic dynamics has been established. Indeed, through 7 iterating the greedy β-transformation G : x βxmod1 and the lazy β-transformation . β 1 (cid:55)→ N L : x β(x 1)+2mod1oneobtainssubsetsof 0,1 whoseclosuresareknownasthe β 0 (cid:55)→ − { } greedyand(normalised)lazyβ-shifts,respectively. Eachpointω+ofthegreedyβ-shiftisa 4 1 β-expansion,andcorrespondstoauniquepointin[0,1];andeachpointω−ofthelazyβ- : shiftisaβ-expansion,andcorrespondstoauniquepointin[(2 β)/(β 1),1/(β 1)]. (Note v − − − thatinthecasewhen(2 β)/(β 1) 1,ifω+andω areβ-expansionsofthesamepoint, Xi thenω+ andω donotn−ecessa−rilyh≤avetobeequal−,see[23].) Throughthisconnection − r weobserveoneofthemostappealingfeaturesofthetheoryofβ-expansions,namelythat a itlinkssymbolicdynamicstonumbertheory. Inparticular,onecanaskquestionsofthe form, for what class of numbers the greedy and lazy β-shifts have given properties and viceversa. Infact,althoughthearithmetical,Diophantineandergodicpropertiesofthe greedyandlazyβ-shiftshavebeenextensivelystudied(see[6,8,33]andreferencestherein), there are many open problems of this form. Further, applications of this theory to the efficiencyofanalog-to-digitalconversionhavebeenexploredin[12]. Moreover,through understandingβ-expansionsofrealnumbers,advanceshavebeenmadeinunderstanding Bernoulliconvolutions. Forliteratureinthisdirection,wereferthereaderto[9,10,11]and referencetherein. ThefirstauthorwassupportedbyNSFC(no.11201155and11371148)andGuangdongNaturalScience Foundation2014A030313230.ThesecondauthorwassupportedbytheERCgrantno.306494.Thethirdauthor thankstheUniversita¨tBremenandtheSCUTfortheirsupport. 1 2 BINGLI,TUOMASSAHLSTEN,ANDTONYSAMUEL There are many ways, other than using the greedy and lazy β-shifts, to generate a β-expansionofapositiverealnumber. Forinstancetheintermediateβ-shiftsΩ which β,α arisefromtheintermediateβ-transformationsT : [0,1](cid:9). Thesetransformationsare β±,α definedfor(β,α) ∆,with ∈ ∆(cid:66) (β,α) R2: β (1,2)and0 α 2 β , { ∈ ∈ ≤ ≤ − } asfollows(alsoseeFigure1). Letting p=p (cid:66)(1 α)/βweset β,α − T+ (p)(cid:66)0 and T+ (x)(cid:66)βx+αmod1, β,α β,α forallx [0,1] p . Similarly,wedefine ∈ \{ } T (p)(cid:66)1 and T (x)(cid:66)βx+αmod1, β−,α β−,α forallx [0,1] p .IndeedwehavethatthemapsT areequaleverywhereexceptatthe ∈ \{ } β±,α point pandthat T (x)=1 T+ (1 x), β−,α − β,2 β α − − − for all x [0,1]. Observe that, when α=0, the maps G and T+ coincide, and when ∈ β β,α α = 2 β, the maps L and T coincide. Here we make the observation that for all − β β−,α (β,α) ∆,thesymbolicspaceΩ associatedtoT isalwaysasubshift,meaningthatitis ∈ β,α β±,α closedandinvariantundertheleftshiftmap(seeCorollary2). ThemapsT aresometimesalsocalledlinearLorenzmapsandarisenaturallyfrom β±,α thePoincare´ mapsofthegeometricmodelofLorenzdifferentialequations. Wereferthe interestedreaderto[13,27,35,37]forfurtherdetails. 1.6L(x) 1T.β+,α 1.G(x) 1.4 0.8 0.8 1.2 0.6 0.6 1. 0.4 0.4 0.8 0.2 0.2 0.8 1. 1.2 1.4 1.6 x 0.2 0.4 0.6 0.8 1. x 0.2 0.4 0.6 0.8 1. x (a)PlotofLβ. (b)PlotofTβ+,α. (c)PlotofGβ. Figure 1. Plot of T+ for β=(√5+1)/2 and α=1 0.474β, and the β,α − correspondinglazyandgreedyβ-transformations.(Theheightofthefilled incircledeterminesthevalueofthemapatthepointofdiscontinuity.) Inthisarticletheintermediateβ-transformationsandβ-shiftsarethemaintopicofstudy, and thus, to illustrate their importance we recall some of the known results in this area. Parry [31] proved that any topological mixing interval map with a single discontinuity is topologically conjugate to a map on the form T where (β,α) ∆. In [17, 20] it is β±,α ∈ shownthatatopologicallyexpansivepiecewisecontinuousmapT canbedescribedupto topologicalconjugacybythekneadinginvariantsofthepointsofdiscontinuityofT. (Inthe casethatT =T ,thekneadinginvariantsofthepointofdiscontinuity parepreciselygiven β±,α bythepointsintheassociatedintermediateβ-shiftwhichareβ-expansionof p+α/(β 1).) − Forsuchmaps,assumingthatthereexistsasinglediscontinuity,theauthorsof[3,20]gave asimpleconditiononpairsofinfinitewordsinthealphabet 0,1 whichissatisfiedifand { } onlyifthatpairofsequencesarethekneadinginvariantsofthepointofdiscontinuityofT. Ourmainresults,Theorems1.1and1.3andCorollary1,contributetotheongoingefforts indeterminingthedynamicalpropertiesoftheintermediateβ-shiftsandexaminingwhether thesepropertiesalsoholdforthecounterpartgreedyandlazyβ-shifts. Wedemonstratethat INTERMEDIATEβ-SHIFTSOFFINITETYPE 3 itispossibletoconstructpairs(β,α) ∆suchthattheassociatedintermediateβ-shiftis ∈ asubshiftoffinitetypebutforwhichthemapsT arenottransitive. Incontrasttothis, β±,α the corresponding greedy and lazy β-shifts are not subshifts of finite type (neither sofic shifts,namelyafactorofasubshiftoffinitetype)and,moreover,themapsG andL are β β transitive. RecallthatanintervalmapT: [0,1](cid:9)iscalledtransitiveifandonlyifforall opensubintervalsJof[0,1]thereexistsm Nsuchthat m Ti(J)=(0,1). ∈ i=1 ToprovethetransitivitypartofourresultweapplyaresultofPalmer[28]andGlendin- (cid:83) ning[17],whereitisshownthatforany1<β<2themapsG andL aretransitive. Infact, β β theygiveacompleteclassificationofthesetofpoints(β,α) ∆forwhichthemapsT are ∈ β±,α nottransitive. (ForcompletenesswerestatetheirclassificationinSection4.) Beforestatingourmainresultsletusemphasistheimportanceofsubshiftsoffinitetype. ThesesymbolicspacesgiveasimplerepresentationofdynamicalsystemswithfiniteMarkov partitions. Therearemanyapplicationsofsubshiftsoffinitetype,forinstanceincoding theory,transmissionandstorageofdataortilings. Wereferthereaderto[7,22,26,35]and referencesthereinformoreonsubshiftsoffinitetypeandtheirapplications. 1.2. Main results. Throughout this article, following convention, we let the symbol N denotethesetofnaturalnumbersandN denotethesetofnon-negativeintegers. Recall, 0 from for instance [8, Example 3.3.4], that the multinacci number of order n N 1 ∈ \{ } is the real number γ (1,2) which is the unique positive real solution of the equation n ∈ 1=x 1+x 2+ +x n. Thesmallestmultinaccinumberisthemultinaccinumberoforder − − − ··· 2 and is equal to the golden mean (1+ √5)/2. We also observe that γ >γ , for all n+1 n n N. Further,forn,k N withn 2,wedefinethealgebraicintegersβ andα by 0 n,k n,k ∈ ∈ ≥ (β )2k =γ andα =1 β /2. n,k n n,k n,k − Theorem1.1. Foralln,k Nwithn 2,wehavethefollowing. ∈ ≥ (i) Theintermediateβ -transformationsT arenottransitive. n,k β±n,k,αn,k (ii) Theintermediateβ -shiftΩ isasubshiftoffinitetype. n,k βn,k,αn,k (iii) Thegreedyandlazyβ -transformationsaretransitive. n,k (iv) Thegreedyandlazyβ -shifts,Ω andΩ respectively,arenotsofic, andhencenotasubshinf,tkoffinitetyβpn,ek,.0 βn,k,2−βn,k Part(iii)iswellknownandholdsforallgreedy,andhencelazy,β-transformations(seefor instance[17,28]). Itisincludedherebothforcompletenessandtoemphasisethedynamical differenceswhichcanoccurbetweenthegreedy,andhencethelazy,β-transformation(shift) andanassociatedintermediateβ-transformation(shift). To verify Theorem 1.1(ii) we apply Theorem 1.3 given below. This latter result is a generalisationofthefollowingresultofParry[29]. Hereandinthesequel,τ (p)denotes ±β,α thepointsintheassociatedintermediateβ-shiftswhichareaβ-expansionof p+α/(β 1), − where p=p . β,α Theorem1.2([29]). Forβ (1,2),wehave ∈ (i) thegreedyβ-shiftisasubshiftoffinitetypeifandonlyifτ (p)isperiodicand −β,0 (ii) thelazyβ-shiftisasubshiftoffinitetypeifandonlyifτ+ (p)isperiodic. β,2 β − Theorem1.3. Letβ (1,2)andα (0,2 β). Theintermediateβ-shiftΩ isasubshiftof β,α ∈ ∈ − finitetypeifandonlyifbothτ (p)areperiodic. ±β,α Thefollowingexampledemonstratesthatitispossibletohavethatoneofthesequences τ (p)isperiodicandthattheotherisnotperiodic. ±β,α Example 1. Let β=γ , α=1/β4 and p=(1 α)/β=1/β3. Clearly α (0,2 β). An 2 − ∈ − elementary calculation will show that τ (p) is the infinite periodic word with period −β,α (0,1,1,0)andτ+ (p)istheconcatenationofthefiniteword(1,0,0)withtheinfiniteperiodic β,α wordwithperiod(1,0). 4 BINGLI,TUOMASSAHLSTEN,ANDTONYSAMUEL Forβ>2andα [0,1]theforwardimplicationsofTheorems1.2and1.3canbefound ∈ in,forinstance,[36,Theorem6.3]. Further,forβ>1,necessaryandsufficientconditions whenΩ issoficshiftisgivenin[22,Theorem2.14]. Thislatterresult,infact,givesthat β,α ifβ (1,2)isaPisotnumber,thenalongthefiber∆(β)(cid:66) (b,α) ∆: b=β thereexistsa ∈ { ∈ } densesetofpoints(β,α)suchthatΩ isasoficshift. β,α Thisleadsustothefinalproblemofstudyinghowagreedy(orlazy)β-shiftbeinga subshiftoffinitetypeisrelatedtothecorrespondingintermediateβ-shiftsbeingasubshift offinitetype. Wealreadyknowthatitispossibletofindintermediateβ-shiftsoffinitetype inthefibres∆(β)eventhoughthecorrespondinggreedyandlazyβ-shiftsarenotsubshiftof finitetype. Giventhis,anaturalquestiontoaskis,canonedeterminewhennointermediate β-shiftisasubshiftoffinitetype,foragivenfixedβ. Thisispreciselywhatweaddress inthefollowingresultwhichisanalmostimmediateapplicationofthecharacterisation providedinTheorems1.2and1.3. Corollary1. Ifβ (1,2)isnotthesolutionofanypolynomialoffinitedegreewithcoeffi- ∈ cientsin 1,0,1 ,thenforallα [0,2 β]theintermediateβ-shiftΩ isnotasubshiftof β,α {− } ∈ − finitetype. We observe that the values β , which are considered in Theorem 1.1, are indeed a n,k solutionofapolynomialwithcoefficientsintheset 1,0,1 andthusdonotsatisfythe {− } conditionsofCorollary1;thisisverifiedintheproofofTheorem1.1(iv). ThephenomenonthatthemapT isnottransitivebutwheretheassociatedshiftspace β,α Ω isasubshiftoffinitetypealsoappearinthesettingof( β)-transformations. Indeed β,α − recentlyItoandSadahiro[21]studiedtheexpansionsofanumberinthebase( β),with − β>1. Theseexpansionsarerelatedtoaspecificpiecewiselinearmapwithconstantslope definedontheinterval[ β/(β+1),1/(β+1)]by x βx βx+β/(β+1) . (Herefor a R,wedenoteby a t−helargestintegernsothatn(cid:55)→−a.) S−u(cid:98)c−hamapiscalle(cid:99)danegative ∈ (cid:98) (cid:99) ≤ β-transformation. Thecorrespondingsymbolicspacespaceiscalleda( β)-shift which N − isasubsetof 0,1 whenβ<2. ByaresultofLiaoandSteiner[24],incontrasttothe { } lazyorgreedyβ-shifts,forallβ<γ ,thenegativeβ-transformationsarenottransitive. On 2 theotherhand, aresultofFrougnyandLai[16]showsthata( β)-shiftisoffinitetype − ifandonlyiftherepresentationof β/(β+1)inthe( β)-shiftisperiodic(see(1)forthe − − definitionofaperiodicword). Thusonecanconstructexamplesofβ (1,2)sothatthe ∈ negativeβ-transformationisnottransitivebutwherethe( β)-shiftisasubshiftoffinite − type. Forinstance,ifwetaketheperiodicsequence (1,0,0,...,0,1)=(1,0,0,...,0,1,1,0,0,...,0,1,1,0,0,...,0,1,...), (cid:32)(cid:32)(cid:32)(cid:32) (cid:32)(cid:32)(cid:32)(cid:32) (cid:32)(cid:32)(cid:32)(cid:32) (cid:32)(cid:32)(cid:32)(cid:32) (cid:32)(cid:32)(cid:32)(cid:32) (cid:32)(cid:32)(cid:32)(cid:32) (cid:32)(cid:32)(cid:32)(cid:32) (cid:32)(cid:32)(cid:32)(cid:32) 2k times 2k times 2k times 2k times − − − − withk 1,asth(cid:124)e((cid:123)(cid:122)β)-e(cid:125)xpansion(cid:124)of (cid:123)β(cid:122)/(β(cid:125)+1),t(cid:124)hen(cid:123)(cid:122)we(cid:125)obtain(cid:124)a((cid:123)β(cid:122))-t(cid:125)ransformationwhich ≥ − − − isnottransitiveandwhoseassociated( β)-shiftisasubshiftoffinitetype. Aninteresting − furtherproblemwouldbetoexaminethecorrespondingquestionsforintermediatenegative β-transformationsandintermediate( β)-shifts. Wereferthereaderto[18]andreferences − their in for further details on intermediate negative β-transformations and intermediate ( β)-shifts. − 1.3. Outline. InSection2wepresentbasicdefinitions,preliminariesandauxiliaryresults requiredtoproveTheorems1.1and1.3andCorollary1. TheproofsofTheorem1.3and Corollary1arepresentedinSection3andtheproofofTheorem1.1isgiveninSection4. INTERMEDIATEβ-SHIFTSOFFINITETYPE 5 2. Definitionsandauxiliaryresults N 2.1. Subshifts. We equipped the space 0,1 of infinite sequences with the topology inducedbythewordmetricd: 0,1 N 0{,1 N} Rwhichisgivenby { } ×{ } → 0 ifω=ν, d(ω,ν)(cid:66) 2 ω ν+1 otherwise.  −| ∧ |  Here ω ν(cid:66)min n N: ωn(cid:44)νn ,forallω=(ω1,ω2,...),ν=(ν1ν2,...) 0,1 N with ω(cid:44)ν.| W∧el|etσden{ot∈etheleft-shift}mapwhichisdefinedontheset ∈{ } 0,1 N ∞ 0,1 n, { } ∪{∅}∪ { } n=1 (cid:91) of finite and infinite words over the alphabet 0,1 by σ(ω)(cid:66) , if ω 0,1 , and otherwisewesetσ(ω ,ω ,...)(cid:66)(ω ,ω ,...).A{shif}tinvariantsub∅spacei∈sa{set}Ω∪{∅}0,1 N 1 2 2 3 ⊆{ } suchthatσ(Ω) Ωandasubshiftisaclosedshiftinvariantsubspace. Givenasubs⊆hiftΩandn Nset ∈ Ω (cid:66) (ω ,...,ω ) 0,1 n: thereexists(ξ ,...) Ωwith(ξ ,...,ξ )=(ω ,...,ω ) n 1 n 1 1 n 1 n | ∈{ } ∈ (cid:26) (cid:27) andwriteΩ (cid:66) Ω forthecollectionofallfinitewords. Asubshif|∗tΩis∞ka=1call|kedasubshiftoffinitetype(SFT)ifthereexistsanM Nsuchthat, forallω=(ω ,ω(cid:83),...,ω ),ξ=(ξ ,ξ ,...,ξ ) Ω withn,m Nandn M,∈ 1 2 n 1 2 m ∗ ∈ | ∈ ≥ (ω ,ω ,...,ω ,ξ ,ξ ,...,ξ ) Ω n M+1 n M+2 n 1 2 m ∗ − − ∈ | ifandonlyif (ω ,ω ,...,ω ,ξ ,ξ ,...,ξ ) Ω . 1 2 n 1 2 m ∗ ∈ | The following result gives an equivalent condition for when a subshift is a subshift of finite type (see, for instance, [26, Theorem 2.1.8] for a proof of the equivalence). For this we require the following notation. For n N and ω=(ω ,ω ,...) 0,1 N, we set 1 2 ω (cid:66)(ω ,ω ,...,ω ). Also,forafinitewordξ∈ 0,1 n,forsomen N ,∈w{elet}ξ denote n 1 2 n 0 | ∈{ } ∈ | | thelengthofξ,namelythevaluen. Theorem2.1([26]). ThespaceΩisaSFTifandonlyifthereexistsafinitesetF offinite wordsinthealphabet 0,1 suchthatifξ F,thenσm(ω) (cid:44)ξ,forallω Ωandm N . ξ 0 { } ∈ || | ∈ ∈ ThesetF inTheorem2.1isreferredtoasthesetofforbiddenwords. Further,asubshift ΩiscalledsoficifandonlyifitisafactorofaSFT. Forν=(ν ,ν ,...,ν ) 0,1 nandξ=(ξ ,ξ ,...,ξ ) 0,1 m,denoteby(ν,ξ)thecon- 1 2 n 1 2 m catenation(ν ,ν ,...,ν ,ξ∈,{ξ ,.}..,ξ ) 0,1 n+m,forn,m∈{ N.}Weusethesamenotation 1 2 n 1 2 m N ∈{ } ∈ whenξ 0,1 . Anin∈fi{nite}sequenceω=(ω ,ω ,...) 0,1 Niscalledperiodicifthereexistsann N 1 2 ∈{ } ∈ suchthat (ω ,ω ,...,ω )=(ω ,ω ,...,ω ), (1) 1 2 n (m 1)n+1 (m 1)n+2 mn − − forallm N. Wecalltheleastsuchntheperiodofωandwewriteω=(ω ,ω ,...,ω ). 1 2 n Similarly,∈ω=(ω ,ω ,...) 0,1 Niscalledeventuallyperiodicifthereexistsann,k N 1 2 ∈{ } ∈ suchthat (ω ,...,ω )=(ω ,ω ,...,ω ), k+1 k+n k+(m 1)n+1 k+(m 1)n+2 k+mn − − forallm N,andwewriteω=(ω ,ω ,...,ω ,ω ,ω ,...,ω ). 1 2 k 1 k k+1 k+n ∈ − 6 BINGLI,TUOMASSAHLSTEN,ANDTONYSAMUEL 2.2. Intermediateβ-shiftsandexpansions. Wenowgivethedefinitionoftheintermedi- ateβ-shift. Throughoutthissectionwelet(β,α) ∆befixedandlet pdenotethevalue ∈ p =(1 α)/β. β,α − TheT+ -expansionτ+ (x)of x [0,1]andtheT -expansionτ (x)of x [0,1]are β,α β,α ∈ β−,α −β,α ∈ respectively defined to be ω+ =(ω+,ω+,...,) 0,1 N and ω =(ω ,ω ,...,) 0,1 N, 1 2 ∈{ } − −1 −2 ∈{ } where 0, if (T )n 1(x) p, 0, if(T+ )n 1(x)<p, ω (cid:66) β−,α − ≤ and ω+(cid:66) β,α − −n n 1, otherwise, 1, otherwise, foralln N.Wewilldenotetheimagesoftheunitintervalunderτ byΩ ,respectively, ∈   ±β,α ±β,α andwriteΩ fortheunionΩ+ Ω . TheupperandlowerkneadinginvariantsofT β,α β,α∪ −β,α β±,α aredefinedtobetheinfinitewordsτ (p),respectively,andwillturnouttobeofgreat ±β,α importance. Remark 1. Let ω =(ω ,ω ,...,) denote the infinite words τ (p), respectively. By ± ±1 ±2 ±β,α definition,ω =ω+=0andω+=ω =1. Furthermore,(ω+,ω+ ,...,)=(0,0,0,...)ifand −1 2 1 −2 k k+1 onlyifk=2andα=0;and(ω ,ω ,...,)=(1,1,1,...)ifandonlyifk=2andα=2 β. −k −k+1 − TheconnectionbetweenthemapsT andtheβ-expansionsofrealnumbersisgiven β±,α N throughtheT -expansionsofapointandtheprojectionmapπ : 0,1 [0,1],which β±,α β,α { } → wewillshortlydefine. Theprojectionmapπ islinkedtotheunderlying(overlapping) β,α iteratedfunctionsystem(IFS),namely([0,1];f : x x/β,f : x x/β+1 1/β),where 0 1 → → − β (1,2). (Wereferthereaderto[14]forthedefinitionofandfurtherdetailsonIFSs.) The ∈ projectionmapπ isdefinedby β,α π (ω ,ω ,...)(cid:66)(β 1) 1(lim f f ([0,1]) α)=α(1 β) 1+ ∞ ω β k. β,α 1 2 − − n ω1◦···◦ ωn − − − k − →∞ k=1 (cid:88) Animportantpropertyoftheprojectionmapisthatthefollowingdiagramcommutes. σ Ω Ω ±β,α −→ ±β,α πβ,α πβ,α (2) ↓ ↓ [0,1] [0,1] −T→β±,α (Thisresultisreadilyverifiablefromthedefinitionsofthemapsinvolvedandasketchof theproofofthisresultcanbefoundin[4,Section5].) Fromthis,weconcludethat,foreach x [α/(β 1),1+α/(β 1)],aβ-expansionofxistheinfinitewordτ (x α(β 1) 1). ∈ − − ±β,α − − − 2.3. Theextendedmodel. InourproofofTheorem1.3, wewillconsidertheextended model given as follows. For (β,α) ∆, we let p= p =(1 α)/β and we define the β,α ∈ − transformationT : [ α/(β 1),(1 α)/(β 1)](cid:9)by β±,α − − − − βx+α ifx<p, βx+α ifx p, Tβ+,α(x)= βx(cid:101)+α 1 otherwise, and Tβ−,α(x)= βx+α 1 othe≤rwise    −  − (se(cid:101)eFigure2). NotethatTβ±,α|[0,1]=Tβ±,αandthat,for(cid:101)allpointsxchosenfromtheinterval ( α/(β 1),0) (1,(1 α)/(1 β)),thereexistsaminimaln=n(x) Nsuchthatwehave − − ∪ − − ∈ (T )m(x) [0,1],forallm(cid:101) n. β±,α ∈ ≥ TheT -expansionsτ (x)ofpoints x [ α/(β 1),(1 α)/(β 1)]isdefinedinthe (cid:101) β±,α ±β,α ∈ − − − − samewayasτ exceptonereplacesT byT . Welet ±β,α β±,α β±,α (cid:101) (cid:101) Ω (cid:66)τ ([ α/(β 1),(1 α)/(β 1)]) ±β,α ±β,α − −(cid:101) − − (cid:101) (cid:101) INTERMEDIATEβ-SHIFTSOFFINITETYPE 7 Tβ+,α Tβ−,α e e 1.0 1.0 0.5 0.5 x x 0.5 1.0 0.5 1.0 (a)PlotofT+ . (b)PlotofT . β,α β−,α Figure2. Plotof(cid:101)T forβ=(√5+1)/2andα=1 0.474β. ((cid:101)Theheight β±,α − of the filled in circle determines the value of the map at the point of discontinuity.) (cid:101) andwesetΩ =Ω+ Ω . TheupperandlowerkneadinginvariantofT aredefined β,α β,α∪ −β,α β±,α tobetheinfinitewordsτ (p),respectively. ±β,α (cid:101) (cid:101) (cid:101) (cid:101) 2.4. StructureofΩ andΩ . Thefollowingtheorem,onthestructureofthespaces ±β,α(cid:101) ±β,α Ω andΩ ,willplayacrucialroleintheproofofTheorem1.3. Apartialversionofthis ±β,α ±β,α (cid:101) resultcanbefoundin[19,Lemma1]. Tothebestofourknowledge,thisfirstappearedin [20,Theo(cid:101)rem1],andlaterin[1,2,4,22]. Moreover,aconverseofTheorem2.2holdstrue andwasfirstgivenin[20,Theorem1]andlaterin[3,Theorem1]. Theorem2.2([1,2,3,4,19,20,22]). For(β,α) ∆,thespacesΩ andΩ arecom- ∈ ±β,α ±β,α pletelydeterminedbyupperandlowerkneadinginvariantsofT andT ,respectively: β±,α β±,α (cid:101) Ω+ = ω 0,1 N: n 0,τ+ (0) σn(ω) τ (p)orτ+ (p) σn(ω) τ (1) β,α ∈{ } ∀ ≥ β,α (cid:22) ≺ −β,α β,α (cid:22) (cid:101)(cid:22) −β,α Ω =(cid:110)ω 0,1 N: n 0,τ+ (0) σn(ω) τ (p)orτ+ (p) σn(ω) τ (1)(cid:111) −β,α ∈{ } ∀ ≥ β,α (cid:22) (cid:22) −β,α β,α ≺ (cid:22) −β,α Ω+ =(cid:110)ω 0,1 N: n 0,τ+ α σn(ω) τ (p)orτ+ (p) σn(ω) τ+ (cid:111)1 α β,α ∈{ } ∀ ≥ β,α β−1 (cid:22) ≺ −β,α β,α (cid:22) (cid:22) β,α β−1 − − Ω =(cid:110)ω 0,1 N: n 0,τ+ (cid:16) α(cid:17) σn(ω) τ (p)orτ+ (p) σn(ω) τ+ (cid:16)1 α(cid:17)(cid:111). (cid:101)−β,α ∈{ } ∀ ≥ (cid:101)β,α β−−1 (cid:22) (cid:22)(cid:101)−β,α (cid:101)β,α ≺ (cid:22)(cid:101)β,α β−−1 (Hereth(cid:110)esymbols , , and (cid:16)deno(cid:17)tethelexicographicorderingson 0,1 N.) M(cid:16)oreov(cid:17)(cid:111)er, (cid:101) ≺ (cid:22) (cid:31) (cid:101)(cid:23) (cid:101) (cid:101) { } (cid:101) Ω =Ω+ Ω and Ω =Ω+ Ω . (3) β,α β,α∪ −β,α β,α β,α∪ −β,α Remark2. Bythecommutativityofthediagramin(2),wehavethatτ+ (0)=σ(τ+ (p)) (cid:101) (cid:101) (cid:101) β,α β,α andτ (1)=σ(τ (p)). Additionally,fromthedefinitionoftheT -expansionofapoint −β,α −β,α β±,α τ+ α =τ α =(0) and τ+ 1 α =τ 1 α =(1). β,α β−1 −β,α β−1 β,α β−1 −β,α(cid:101)β−1 − − − − Further,sinceT (cid:16) (cid:17)=T (cid:16),itfo(cid:17)llowsthatτ (p)(cid:16)=τ (cid:17)(p)an(cid:16)dthu(cid:17)s,fromnowonwe (cid:101) β±,α|[0,1] (cid:101)β±,α ±β,α(cid:101) ±β,α (cid:101) willwriteτ+ (p)forthecommonvalueτ+ (p)=τ+ (p)andτ (p)forthecommonvalue β,α β,α β,α −β,α τ (p)=τ (p(cid:101)). (cid:101) −β,α −β,α (cid:101) Corollary2. For(β,α) ∆,wehavethatΩ andΩ areshiftinvariantsubspacesand (cid:101) ∈ ±β,α ±β,α thatΩ andΩ aresubshifts. Moreover, β,α β,α (cid:101) σ(Ω ) Ω , σ(Ω ) Ω , σ(Ω )=Ω and σ(Ω )=Ω . β,α∗ β,α∗ β,α∗ β,α∗ β,α β,α β,α β,α | ⊆(cid:101) | | ⊆ | (cid:101) (cid:101) (cid:101) (cid:101) 8 BINGLI,TUOMASSAHLSTEN,ANDTONYSAMUEL Proof. ThisisadirectconsequenceofTheorem2.2andthecommutativityofthediagram givenin(2). (cid:3) AsonecanseethecodespacestructureofΩ issimplerthanthecodespacestructure ±β,α ofΩ . Infact,toproveTheorem1.3,wewillshowthatitisnecessaryandsufficientto ±β,α (cid:101) showthatΩ isaSFT. β,α 2.5. Perio(cid:101)dicity and zero/one-full words. We now give a sufficient condition for the kneading invariants of T (and hence, by Remark 2, of T ) to be periodic. For this, β±,α β±,α wewillrequirethefollowingnotationsanddefinitions. Indeedbyconsideringzeroand one-fullness(Definition(cid:101)2.3)oftheinfinitewordsσ(τ (p))weobtainacloselinktothe ±β,α definitionofSFT(seeLemma2.4andProposition1(i)). ForagivensubsetEofN,wewrite E forthecardinalityofE. | | N Definition2.3. Let(β,α) ∆. Aninfinitewordω=(ω ,ω ,...) 0,1 iscalled 1 2 ∈ ∈{ } (a) zero-fullwithrespectto(β,α)if N (ω)(cid:66) k>2: (ω ,ω ,...,ω ,1) Ω andω =0 , 0 1 2 k−1 ∈ −β,α|k k isnotfinite,and(cid:12)(cid:12)(cid:110) (cid:111)(cid:12)(cid:12) (cid:12) (cid:101) (cid:12) (cid:12) (cid:12) (b) one-fullwithrespectto(β,α)if N (ω)(cid:66) k>2: (ω ,ω ,...,ω ,0) Ω+ andω =1 , 1 1 2 k−1 ∈ β,α|k k isnotfinite. (cid:12)(cid:12)(cid:110) (cid:111)(cid:12)(cid:12) (cid:12) (cid:101) (cid:12) (cid:12) (cid:12) Remark3. Theconceptofaninfinitewordbeingzero-fullismotivatedfromthefactthata cylindersetI(ω ,...,ω ,0) [0,1)correspondingtothefiniteword(ω ,...,ω ,0)isa 1 n 1 1 n 1 − ⊂ − fullintervalif(ω ,...,ω ,1)isadmissibleforthegreedyβ-expansionwith1<β<2(see 1 n 1 − forinstance[15,Lemma3.2(1)]). Herewerecallfrom[15]that (i) thecylindersetI(ω ,...,ω ,0) [0,1)isdefinedtobethehalfopenintervalof 1 n 1 [0,1]suchthatforanyx I−(ω ,..⊂.,ω ,0)wehaveτ (x) =(ω ,...,ω ,0), ∈ 1 n−1 −β,0 |n 1 n−1 (ii) admissibleforthegreedyβ-expansionmeansthatσk(ω ,...,ω ,1) τ (1) , 1 n−1 (cid:22) −β,0 |n−1−k forallk 0,1,...,n 2 ,and ∈{ − } (iii) full means that the length of the cylinder set I(ω ,...,ω ,0) is equal to β n, 1 n 1 − whichisequivalentto(T )n(I(ω ,...,ω ,0))=[0,1). − β−,0 1 n 1 − Thenotionofaninfinitewordbeingone-fullismotivatedasaboveexceptfromtheprospec- tiveofthelazyβ-expansioninsteadofthegreedyβ-expansion. Beforestatingournextresultweremarkthat p =1 1/βifandonlyifα=2 βand β,α − − p =1/βifandonlyifα=0. β,α Lemma2.4. Let(β,α) ∆andset p=p . β,α ∈ (i) Ifτ+ (p)isnotperiodicandα(cid:44)2 β,thenσ(τ+ (p))isone-full. β,α − β,α (ii) Ifτ (p)isnotperiodicandα(cid:44)0,thenσ(τ (p))iszero-full. −β,α −β,α Proof. Astheproofsfor(i)and(ii)areessentiallythesame,weonlyincludeaproofof(ii). Foreaseofnotationletν=(ν ,ν ,...)denotetheinfinitewordσ(τ (p))and,notethat, 1 2 −β,α sinceτ (p)isnotperiodic,σk(τ (p))(cid:44)τ (p),forallk N. −β,α −β,α −β,α ∈ Definethenon-constantmonotonicsequence(nk)k Nofnaturalnumbersasfollows. Let n Nbetheleastnaturalnumbersuchthatν =∈1andν =0and, forallk>1, let n1∈Nbesuchthat n1−1 n1 k ∈ σnk−1−1(ν)|nk−nk−1=τ−β,α(p)|nk−nk−1 and σnk−1−1(ν)|nk−nk−1+1≺τ−β,α(p)|nk−nk−1+1. (4) INTERMEDIATEβ-SHIFTSOFFINITETYPE 9 SuchasequenceexistsbyRemark1andbecauseτ (p)isassumedtobenotperiodic. We −β,α willnowshowthatν =0andthat nk (ν ,ν ,...,ν ,1) Ω , 1 2 nk−1 ∈ −β,α|nk forallintegersk>1. Bytheorderingsgivenin(4)itimmediatelyfollowsthatν =0. In (cid:101) nk ordertoconcludetheproof,sinceν Ω andsinceτ (p)isnotperiodic,byTheorem2.2, ∈ −β,α −β,α itissufficienttoshow,forallintegersk>1andm 0,1,2,...,n 2,n 1 ,that k k ∈{ − − } (cid:101) τ (p) ifν =0, σm(θ) (cid:22) −β,α m+1 τ+ (p) otherwise,  (cid:31) β,α wheSruepθpo(cid:66)se(νth1a,tν2l,...1,,ν2n,k.−.1.,,1k,νannk−dnmk−1+1,nνnk−,nnk−1++2,1..,..)...,n 2 ,wheren (cid:66)0. Ifν =1, l 1 l 1 l 0 m+1 ∈{ } ∈{ − − − } then σm(θ)=(ν ,ν ,...,ν ,ν ,ν ,...,ν ,1,ν ,ν ,...) m+1 m+2 nl−1 nl nl+1 nk−1 nk−nk−1+1 nk−nk−1+2 (ν ,ν ,...,ν ,ν ,ν ,...,ν ,0,ν ,ν ,...) (cid:31) m+1 m+2 nl−1 nl nl+1 nk−1 nk+1 nk+2 =σm(ν) τ+ (p). (cid:31) β,α Nowsupposev =0. By(4),wehave(ν ,ν ,...,ν ,1)=τ (p) ,and so, m+1 nl−1 nl−1+1 nl−1 −β,α |nl−nl−1+1 σm−nl−1+1(τ−β,α(p))=(νm+1,νm+2,...,νnl−1,1,νnl−nl−1+1,νnl−nl−1+2,...). Letusfirstconsiderthecasel=k.Sincebyassumptionv =0,andsince,byTheorem2.2, m+1 wehavethatσm−nl−1+1(τ−β,α(p))(cid:22)τ−β,α(p),itfollowsthat σm(θ)=(ν ,ν ,...,ν ,1,ν ,ν ,...) τ (p). m+1 m+2 nl−1 nl−nl−1+1 nl−nl−1+2 (cid:22) −β,α Therefore,inthiscase,namelyl=k,theresultfollows. Nowassumethatl<k. Inthiscase wehavethat σm(θ)=(ν ,ν ,...,ν ,ν ,ν ,...,ν ,1,ν ,ν ,...) m+1 m+2 nl−1 nl nl+1 nk−1 nk−nk−1+1 nk−nk−1+2 (ν ,ν ,...,ν ,1,ν ,ν ,...) ≺ m+1 m+2 nl−1 nl−nl−1+1 nl−nl−1+2 τ (p). (cid:22) −β,α Ifl 1,2,...,k 2 andm=n 1,thenbytheorderingsgivenin(4), l ∈{ − } − σm(θ)=( ν ,...,ν ,...,ν ,1,ν ,ν ,...) τ (p). n(cid:32)(cid:32)l(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:32)(cid:32)(cid:32)(cid:32)n(cid:32)(cid:32)l(cid:32)+(cid:32)1 nk−1 nk−nk−1+1 nk−nk−1+2 ≺ −β,α ≺τ−β,α(p)|nl+1−nl+1 (cid:124) (cid:123)(cid:122) (cid:125) Ifm=n 1,thenbytheorderingsgivenin(4), k 1 − − σm(θ)=(ν ,...,ν ,1,ν ν ,...)=τ (p). n(cid:32)(cid:32)(cid:32)k(cid:32)−(cid:32)(cid:32)(cid:32)1(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) (cid:32)(cid:32)(cid:32)n(cid:32)(cid:32)k(cid:32)(cid:32)−(cid:32)(cid:32)(cid:32)(cid:32)1(cid:32)(cid:32)(cid:32)(cid:32) n(cid:32)(cid:32)k(cid:32)(cid:32)−(cid:32)(cid:32)(cid:32)(cid:32)n(cid:32)(cid:32)k(cid:32)(cid:32)−(cid:32)(cid:32)(cid:32)1(cid:32)(cid:32)+(cid:32)(cid:32)(cid:32)1(cid:32)(cid:32)(cid:32) nk−(cid:32)(cid:32)(cid:32)n(cid:32)(cid:32)(cid:32)k(cid:32)(cid:32)−(cid:32)(cid:32)1(cid:32)(cid:32)(cid:32)+(cid:32)(cid:32)(cid:32)2(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32) −β,α =τ−β,α(p)|nk−nk−1+1 =σnk−nk−1+1(τ−β,α(p)) (cid:124) (cid:123)(cid:122) (cid:125) (cid:124) (cid:123)(cid:122) (cid:125) Finally, if m=n 1, then either ν =1, in which case the result follows from Remark1orelsekν− =0inwhnki−cnhk−c1a+s1e nk−nk−1+1 σm(θ)=(1,νnk−nk−1+1νnk−nk−1+2,...)=σnk−nk−1(τ−β,α(p))(cid:31)τ+β,α(p). Thisconcludestheproof. (cid:3) 10 BINGLI,TUOMASSAHLSTEN,ANDTONYSAMUEL 2.6. Symmetricintermediateβ-shifts. Thefollowingremarksandresultonsymmetric intermediateβ-shiftswillassistusinshorteningtheproofofTheorem1.3andtheproof ofTheorem1.1(ii). Forthis,letusrecallthattwomapsR: X(cid:9)andS: Y (cid:9)definedon compactmetricspacesarecalledtopologicallyconjugateifthereexistsahomeomorphism h: X Y suchthatS h=h R. → ◦ ◦ ThemapsT andT+ aretopologicallyconjugateandthemapsT andT+ β−,α β,2 α β β−,α β,2 α β aretopologicallyconjugat−e,−wheretheconjugatingmapisgivenbyh¯: x 1 x. Th−is−is (cid:55)→ − immediatefromthedefinitionofthemapsinvolved. Similarly,themapsT+ andT β,α β−,2 α β are topologically conjugate and the maps T and T+ are topologically conjug−a−te, β−,α β,2 α β − −N (cid:101) (cid:101) wheretheconjugatingmapisalsoh¯. Whenliftedto 0,1 themappingh¯ becomesthe symmetricmap : 0,1 N(cid:9)definedby, (cid:101) (cid:101){ } ∗ { } (ω ,ω ,...)=(ω +1mod2,ω +1mod2,...), 1 2 1 2 ∗ N for all ω 0,1 . From this we conclude that the following couples are topologically ∈{ } conjugatewheretheconjugatingmapisthesymmetricmap : ∗ σ|Ω−β,αandσ|Ω+β,2−α−β, σ|Ω+β,αandσ|Ω−β,2−α−β, σ|Ω−β,αandσ|Ω+β,2−α−β and σ|Ω+β,αandσ|Ω−β,2−α−β. Theorem2.5. Forall(β,α) ∆wehavethatΩ(cid:101) =Ω (cid:101) andΩ (cid:101)=Ω (cid:101). More- ∈ ±β,α ∓β,2 β α ±β,α ∓β,2 β α over,givenβ (1,2),thereexistsauniquepointα [0,2 −β]−,namelyα=1 β/−2,−suchthat ∈ ∈ − − τ+ (p)= (τ (p)),where p=p =(1 α)/β. (cid:101) (cid:101) β,α ∗ −β,α β,α − Proof. The first part of the result follows immediately from the above comments and Theorem2.2. Thesecondpartoftheresultfollowsfromanapplicationof[2,Theorem2] togetherwiththefactthatthemapsT aretopologicallyconjugatetoasub-classofmaps β±,α consideredin[2],wheretheconjugatingmaph¯ : [0,1] [ α/(β 1),(1 α)/(β 1)]is β,α givenbyh¯β,α(x)=(x α)/(β 1). (cid:101) → − − − − (cid:3) − − 3. ProofsofTheorem1.3andCorollary1 LetusfirstproveananalogousresultfortheextendedmodelΩ . Throughoutthissection, β,α foragiven(β,α) ∆,weset p=p . β,α ∈ (cid:101) Proposition1. Letβ (1,2). ∈ (i) Ifα (0,2 β),thenΩ isaSFTifandonlyifbothτ (p)areperiodic. ∈ − β,α ±β,α (ii) Ifα=2 β,thenΩ isaSFTifandonlyifτ (p)isperiodic. − β,α(cid:101) −β,α (iii) Ifα=0,thenΩ isaSFTifandonlyifτ+ (p)isperiodic. β,α β,α (cid:101) ProofofProposition1((cid:101)i). Wefirstprovethatτ−β,α(p)isperiodicifΩβ,αisaSFT.Assumeby wayofcontradictionthatΩ isaSFT,butthatτ (p)isnotperiodic. ThenbyLemma2.4 β,α −β,α (cid:101) theinfinitewordν=σ(τ (p))iszero-full,namely −β,α (cid:101) N (ν)= k>2: (ν ,ν ,...,ν ,1) Ω andν =0 0 1 2 k−1 ∈ −β,α|k k insumnobtefirsnsituec.hTthhauts, there(cid:12)(cid:12)(cid:12)(cid:12)(cid:110)exists a non-constant mono(cid:101)tonic sequence(cid:111)((cid:12)(cid:12)(cid:12)(cid:12)nk)k∈N of natural (ν ,ν ,...,ν 1) Ω and (0,ν ,ν ,...,ν ,0)=τ (p) . 1 2 nk−1 ∈ −β,α|∗ 1 2 nk−1 −β,α |nk+1 ThistogetherwithCorollary2impliesthatΩ isnotaSFT,contradictingourassumption. (cid:101) β,α The statement that if Ω is a SFT, then τ+ (p) is periodic, follows in an identical β,α β,α mannertotheabove,whereweuseone-ful(cid:101)lnessinsteadofzero-fullness. Wewillnowprovethe(cid:101)conversestatement: for(β,α) ∆,ifboththekneadinginvariants ∈ ofT areperiodic,thenΩ isaSFT.Withoutlossofgeneralitywemayassumethatboth β±,α β,α (cid:101) (cid:101)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.