TheAstrophysicalJournal,710:1422–1431,2010February20 doi:10.1088/0004-637X/710/2/1422 (cid:2)C2010.TheAmericanAstronomicalSociety.Allrightsreserved.PrintedintheU.S.A. INTERGALACTICMAGNETICFIELDANDARRIVALDIRECTIONOFULTRA-HIGH-ENERGYPROTONS DongsuRyu1,4,SantabrataDas2,andHyesungKang3 1DepartmentofAstronomyandSpaceScience,ChungnamNationalUniversity,Daejeon305-764,Korea;[email protected] 2DepartmentofPhysics,IndianInstituteofTechnologyGuwahati,Guwahati781039,Assam,India;[email protected] 3DepartmentofEarthSciences,PusanNationalUniversity,Pusan609-735,Korea;[email protected] Received2009October18;accepted2010January11;published2010January29 ABSTRACT Westudiedhowtheintergalacticmagneticfield(IGMF)affectsthepropagationofsuper-Greisen–Zatsepin–Kuz’min (GZK) protons that originate from extragalactic sources within the local GZK sphere. To this end, we set up hypothetical sources of ultra-high-energy cosmic rays (UHECRs), virtual observers, and the magnetized cosmic webinamodeluniverseconstructedfromcosmologicalstructureformationsimulations.Wethenarrangedasetof referenceobjectsmimickingactivegalacticnuclei(AGNs)inthelocaluniverse,withwhichcorrelationsofsimulated UHECReventsareanalyzed.WithourmodelIGMF,thedeflectionanglebetweenthearrivaldirectionofsuper-GZK protonsandtheskypositionoftheiractualsourcesisquitelargewithameanvalueof(cid:3)θ(cid:4)∼15◦andamedianvalue ofθ˜ ∼7◦–10◦.Ontheotherhand,theseparationanglebetweenthearrivaldirectionandtheskypositionofnearest referenceobjectsissubstantiallysmallerwith(cid:3)S(cid:4) ∼ 3◦.5–4◦,whichissimilartothemeanangulardistanceinthe skytonearestneighborsamongthereferenceobjects.Thisisadirectconsequenceofourmodelthatthesources, observers,referenceobjects,andtheIGMFalltracethematterdistributionoftheuniverse.Theresultimpliesthat extragalacticobjectslyingclosesttothearrivaldirectionofUHECRsarenotnecessarilytheiractualsources.With ourmodelforthedistributionofreferenceobjects,thefractionofsuper-GZKprotonevents,whoseclosestAGNsare truesources,islessthan1/3.WediscussedimplicationsofourfindingsforcorrelationstudiesofrealUHECRevents. Keywords: cosmicrays–large-scalestructureofuniverse–magneticfields–methods:numerical Online-onlymaterial:colorfigures 2004). More recent data from the Pierre Auger Observatory 1.INTRODUCTION (Auger)supporttheexistenceoftheGZKsuppression(Abraham The nature and origin of ultra-high-energy cosmic rays etal.2008b;Schu¨ssleretal.2009).BelowE ,however,the GZK (UHECRs), especially above the so-called Greisen–Zatsepin– fourexperimentsreportedthefluxesthataredifferentfromeach Kuz’min(GZK)energyofE ≈50EeV(1EeV=1018eV), otherbyuptoafactorofseveral,implyingthepossibleexistence GZK hasbeenoneofthemostperplexingpuzzlesinastrophysicsover of systematic errors in their energy calibrations (Berezinsky fivedecadesandstillremainstobeunderstood(seeNagano& 2009). Watson2000,forareview).ThehighestenergyCR(cosmicray) The overall sky distribution of the arrival directions of detectedsofaristheFly’sEyeeventwithanestimatedenergyof UHECRsbelowE seemstosupporttheisotropyhypothesis GZK ∼300EeV(Birdetal.1994).Atthesehighenergies,protonsand (see,e.g.,Nagano&Watson2000;Abbasietal.2004;Mollerach nucleicannotbeconfinedandacceleratedeffectivelywithinour etal.2008).Thisisconsistentwiththeexpectationofuniform Galaxy,sothesourcesofUHECRsarelikelytobeextragalactic. distribution of distant extragalactic sources; the interaction AtenergieshigherthanE ,itisexpectedthatprotonslose length (i.e., horizon distance) of protons below E is a GZK GZK energy and nuclei are photo-disintegrated via the interactions few Gpc and the universe can be considered homogeneous withthecosmicmicrowavebackground(CMB)radiationalong and isotropic on such a large scale.5 The horizon distance for their trajectories in the intergalactic space (Greisen 1966; super-GZKevents,however,decreasessharplywithenergyand Zatsepin & Kuz’min 1966; Puget et al. 1976). The former R ∼100MpcforE =100EeV(Berezinsky&Grigor’eva GZK is known as the GZK effect. So a significant suppression in 1988). The matter distribution inside the local GZK horizon the energy spectrum above E could be regarded as an (R )isinhomogeneous.Sincepowerfulastronomicalobjects GZK GZK observationalevidencefortheextragalacticoriginofUHECRs are likely to form at deep gravitational potential wells, we (see, e.g., Berezinsky et al. 2006). However, the accurate expect that the distribution of the UHECR sources would be measurement of the UHECR spectrum is very difficult, partly inhomogeneous as well. Hence, if super-GZK proton events becauseofextremelylowfluxofUHECRs.Butamoreserious pointtheirsources,theirarrivaldirectionsshouldbeanisotropic. hurdle is the uncertainties in the energy calibration inherent The anisotropy of super-GZK events, hence, has been re- in detecting and modeling extensive air shower events (e.g., gardedtoprovideanimportantcluethatunveilsthesourcesof Nagano&Watson2000;Watson2006).Nevertheless,boththe UHECRs.Sofar,however,theclaimsderivedfromanalysesof Yakutsk Extensive Air Shower Array (Yakutsk) and the High differentexperimentsareoftentantalizingandsometimescon- Resolution Fly’s Eyes (HiRes) reported observations of the flicting.Forinstance,withanexcessivenumberofpairsandone GZK suppression (Egorova et al. 2004; Abbasi et al. 2008a), tripletinthearrivaldirectionofCRsabove40EeV,theAGASA while the Akeno Giant Air Shower Array (AGASA) claimed a conflicting finding of no suppression (Shinozaki & Teshima 5 Wenotethatinprinciple,iflocalinhomogeneoussourcesdominateover distantbackgroundsources,onemightgetanisotropysignalsevenbelow EGZK,whichhavenotbeenobservedinreality(see,e.g.,Lemoine&Waxman 4 Authortowhomanycorrespondenceshouldbeaddressed. 2009). 1422 No.2,2010 IGMFANDARRIVALDIRECTIONOFUHEPROTONS 1423 datasupporttheexistenceofsmallscaleclustering(Hayashida intheIGMF(seeKotera&Lemoine2009,foradescriptionof et al. 1996; Takeda et al. 1999). On the other hand, the HiRes thepicture).Inthepicture,whateverthedeflectionangleis,the stereodataareconsistentwiththehypothesisofnullclustering arrival direction of UHECRs is expected to be correlated with (Abbasietal.2004,2009).Theautocorrelationanalysisofthe thedistributionoftheIGMFwhichtracesthematterdistribution Auger data reported a weak excess of pairs for E > 57 EeV inthecosmicweb. (Abraham et al. 2008a). In addition, the Auger Collaboration In this contribution, as a follow-up work of Paper I, we foundacorrelationbetweenhighestenergyeventsandthelarge- investigate the effects of the IGMF on the arrival direction scalestructure(LSS)oftheuniverseusingnearbyactivegalactic of super-GZK protons above 60 EeV coming from sources nuclei(AGNs)intheVe´ron-Cetty&Ve´ron(2006)catalog(The within75Mpc.Thelimitingparametersforenergyandsource PierreAugerCollaboration2007;Abrahametal.2008a;Hague distance are chosen to match the recent analysis of the Auger etal.2009)aswellasusingnearbyobjectsindifferentcatalogs collaboration. Without knowing the true sources of UHECRs, (Aublin et al. 2009). A correlation between highest AGASA thestatisticsthatcanbeobtainedwithobservationaldatafrom eventswithnearbygalaxiesfromSloanDigitalSkySurveywas experiments are limited; some statistics that are essential to reported (Takami et al. 2009). The HiRes data, however, do revealthenatureofsourcesaredifficultorevenimpossibletobe notshowsuchcorrelationofhighestenergyeventswithnearby constructed.Ontheotherhand,withdatafromsimulations,any AGNs(Abbasietal.2008b),butinsteadindicateapossible(yet statisticscanbeexplored.Inthatsense,simulationscomplement controversial)correlationwithdistantBLLacobjects(see,e.g., experiments. Here, with the IGMF suggested by Ryu et al. Tinyakov&Tkachev2001;Abbasietal.2006). (2008), we argue that the large deflection angle of super-GZK The interpretation of anisotropy and correlation analyses protonsduetotheIGMFisnotinconsistentwiththeanisotropy is, however, complicated owing to the intervening galactic and correlation recently reported by the Auger collaboration. magneticfield(GMF)andintergalacticmagneticfield(IGMF); However, the large deflection angle implies that the nearest thetrajectoriesofUHECRsaredeflectedbythemagneticfields objecttoaUHECReventintheskyisnotnecessarilyitsactual astheypropagatethroughthespacebetweensourcesandus,and source.InSection2,wedescribeourmodelsfortheLSSofthe hence,theirarrivaldirectionsarealtered.Despiteconsiderable universe,IGMF,observers,andsourcesofUHECRs,reference observationalandtheoreticalefforts,thenatureoftheGMFand objectsforcorrelationstudy,andsimulations.InSection3,we theIGMFisstillpoorlyconstrained.Yet,modelsfortheGMF present the results, followed by a summary and discussion in generally assume a strength of ∼ a few μG and a coherence Section4. length of ∼1 kpc for the field in the Galactic halo (see, e.g., Stanev 1997) and predict the deflection of ultra-high-energy 2.MODELSANDSIMULATIONS (UHE) protons due to the GMF to be θ ∼ a few degrees (see, e.g., Takami & Sato 2008). The situation for the IGMF in the In our study, the following elements are necessary: (1) a LSShasbeenconfusing.AdoptingamodelfortheIGMFwith model for the IGMF on the LSS, (2) a set of virtual observers an average strength of (cid:3)B(cid:4) ∼ 100 nG in filaments, Sigl et al. thatrepresent“us,”anobserverattheEarth,inastatisticalway, (2003)showedthatthedeflectionofUHECRsduetotheIGMF (3)asetofhypotheticalsourcesofUHEprotonswithaspecified could be very large, e.g.,θ > 20◦ for protons above 100 EeV. injectionspectrum,and(4)asetofreferenceobjectswithwhich On the other hand, Dolag et al. (2005) adopted a model with weperformedacorrelationstudyofsimulatedevents.InPaperI, (cid:3)B(cid:4)∼0.1nGinfilamentsandshowedthatthedeflectionshould wedescribedindetailhowwesetup(1),(2),and(3)byusing benegligible,e.g.,θ (cid:8)1◦forprotonswith100EeV. datafromcosmologicalstructureformationsimulations.Below, Recently,Ryuetal.(2008)proposedaphysicallymotivated webrieflysummarizemodelsfor(1),(2),and(3)andexplainin modelfortheIGMF,inwhichapartofthegravitationalenergy detailthereasontointroduce“referenceobjects”inthisstudy. releasedduringstructureformationistransferredtothemagnetic 2.1.Large-scaleStructureoftheUniverse fieldenergyasaresultoftheturbulentdynamoamplificationof weak seed fields in the LSS of the universe. In the model, the WeassumedaconcordanceΛCDMmodelwiththefollowing IaGndMtFhefosltlroewngstlharigseplyrethdeicmteadttteorbdeist(cid:3)rBib(cid:4)ut∼ion10innthGeicnosfimlaimcwenetbs,. hpa≡ramHet/e(r1s0:0ΩkBmMs=−1 0M.0p4c3−,1)Ω=DM0.7=,a0n.d22σ7,=an0d.8Ω.TΛh=em0o.7d3el, 0 8 Cho&Ryu(2009)studiedvariouscharacteristiclengthscales universe for the LSS was generated through simulations in a of turbulent magnetic field and predicted that those are in the cubicregionofcomovingsize100 h−1(≡143)Mpcwith5123 rangeof∼0.1–0.5MpcfortheIGMinfilaments.Suchafield gridzonesforgasandgravityand2563particlesfordarkmatter, in filaments is expected to induce the Faraday rotation (Cho usingaPM/Eulerianhydrodynamiccosmologycodedescribed & Ryu 2009), which is consistent with observation (Xu et al. in Ryu et al. (1993). The simulations have a uniform spatial 2006).WiththismodelIGMF,Dasetal.(2008,PaperIhereafter) resolution of 195.3 h−1 kpc. The standard set of gasdynamic calculated thetrajectories of UHE protons (E > 10EeV) that variables, the gas density, ρ , temperature, T, and the flow g wereinjectedatextragalacticsourcesassociatedwiththeLSSin velocity, v, were used to calculate the quantities required in asimulatedmodeluniverse.Wethenestimatedthatonly∼35% our model such as the X-ray emission weighted temperature, ofUHEprotonsabove60EeVwouldarriveatuswithθ (cid:2) 5◦ T , the vorticity, ω, and the turbulent energy density, ε , at andtheaveragevalueofdeflectionanglewouldbe(cid:3)θ(cid:4) ∼ 15◦. X turb eachgrid. Notethatthedeflectionangleof(cid:3)θ(cid:4)∼15◦ ismuchlargerthan the angular window of 3◦.1 used by the Auger collaboration 2.2.IntergalacticMagneticField inthestudyofthecorrelationbetweenhighestenergyUHECR eventsandnearbyAGNs(ThePierreAugerCollaboration2007; WeadoptedtheIGMFfromthemodelbyRyuetal.(2008); Abrahametal.2008a;Hagueetal.2009).Wepointoutthatina themodelproposesthatturbulent-flowmotionsareinducedvia simplifiedpicture,thedeflectionoftrajectoriesofUHECRsmay the cascade of the vorticity generated at cosmological shocks bedescribedasanaccumulationofscatteringsbyirregularities duringtheformationoftheLSSoftheuniverse,andtheIGMF 1424 RYU,DAS,&KANG Vol.710 isproducedasaconsequenceoftheamplificationofweakseed fieldsofanyoriginbytheturbulence.Then,theenergydensity (or the strength) of the IGMF can be estimated with the eddy turnovernumberandtheturbulentenergydensityasfollows: (cid:2) (cid:3) t ε =φ ε . (1) B turb t eddy Here,theeddyturnovertimeisdefinedasthereciprocalofthe vorticityatdrivingscales,t ≡ 1/ω (ω ≡ ∇ ×v),and eddy driving φ is the conversion factor from turbulent to magnetic energy that depends on the eddy turnover number t/t . The eddy eddy turnover number was estimated as the age of universe times the magnitude of the local vorticity, that is, t ω. The local age vorticity and turbulent energy density were calculated from cosmological simulations for structure formation described above.Afunctionalformfortheconversionfactorwasderived fromaseparate,incompressible,magnetohydrodynamic(MHD) simulationofturbulencedynamo. For the direction of the IGMF, we used that of the pas- sive fields from cosmological simulations, in which magnetic fieldsweregeneratedthroughtheBiermannbatterymechanism (Biermann1950)atcosmologicalshocksandevolvedpassively alongwithflowmotions(Kulsrudetal.1997;Ryuetal.1998). Figure1.DistributionoftheIGMFinatwo-dimensionalsliceof(143Mpc)2 In principle, if we had performed full MHD simulations, we inthesimulateduniverse.Locationsofvirtualobservers(circles)andmodel couldhavefollowedtheamplificationoftheIGMFthroughtur- AGNs(stars)areschematicallymarkedatclustersandgroupsofgalaxies.Paths ofUHECRsfromsourcestoobserversarealsoschematicallydrawn. bulence dynamo. In practice, however, the currently available (Acolorversionofthisfigureisavailableintheonlinejournal.) computational resources do not allow a numerical resolution highenoughtoreproducethefulldevelopmentofMHDturbu- lence.Sincethenumericalresistivityislargerthanthephysical 2.3.ObserverLocations resistivitybymanyordersofmagnitude,thegrowthofmagnetic In the study of the arrival direction of UHECRs, the IGMF fields is saturated before dynamo action becomes fully opera- around us, that is, in the Local Group, is important, too. It tive(see,e.g.,Kulsrudetal.1997).Thisisthereasonwhywe wouldhavebeenidealtoplace“theobserver”wheretheIGMF adoptedthemodelofRyuetal.(2008)toestimatethestrengthof is similar to that in the Local Group. Unfortunately, however, theIGMF,butwestillusedthepassivefieldsfromcosmological little is known about the IGMF in the Local Group. Hence, simulationstomodelthefielddirection. instead, we placed “virtual” observers based on the X-ray Figure 1 shows the distribution of magnetic field strength in a slice of (143 Mpc)2 in our model universe. It shows that emissionweightedtemperatureTX.Thegroupsofgalaxiesthat have the halo temperature similar to that of the Local Group, the IGMF is structured like the matter in the cosmic web. As 0.05 keV < kT < 0.5 keV (Rasmussen & Pedersen 2001), a matter of fact, the distribution of the IGMF is very well X were identified. About 1400 observer locations were chosen correlated with that of matter. The strongest magnetic field of B (cid:3) 0.1 μG is found in and around clusters, while the field bythetemperaturecriterion.Inreality,thereshouldbeonlyone observerontheEarth,butinourmodeling,wechoseanumberof is weaker in filaments, sheets, and voids. In filaments which observerlocationsinordertorepresentourpositionwithoutloss are mostly composed of the warm–hot intergalactic medium with T = 105–107 K, the IGMF has (cid:3)B(cid:4) ∼ 10 nG and ofgenerality,sincethesimulateduniverseisonlyonestatistical (cid:3)B2(cid:4)1/2 ∼ a few ×10 nG (Ryu et al. 2008). Note that the representationoftherealuniverse.Then,wemodeledobservers asasphereofradius0.5 h−1 Mpclocatedatthecenterofhost deflectionofUHECRsarisesmostlyduetothefieldinfilaments groups,inordertoreducethecomputingtimetoapracticallevel. (see Paper I). The energy density of the IGMF in filaments is ε ∼10−16ergcm−3,whichisafewtimessmallerthanthegas The distribution of handful observers is shown schematically B in Figure 1. One can see that the observers (groups) are not thermalenergydensityandanorderofmagnitudesmallerthan the gas kinetic energy density there.6 The IGMF in filaments distributeduniformly,butinsteadtheyarelocatedmostlyalong filaments. inducestheFaradayrotation;thermsvalueofrotationmeasure (RM)ispredictedtobeafewradm−1(Cho&Ryu2009).This 2.4.AGNsasReferenceObjects is consistent with the values of RM toward the Hercules and Perseus–PiscessuperclustersreportedinXuetal.(2006).7 As noted in Section 1, the Auger Collaboration recently reported a correlation between the direction of their highest 6 Wenotethatourmodeldoesnotincludeapossiblecontributiontothe energy events and the sky position of nearby AGNs from the IGMFfromgalacticblackholes,AGNfeedback(see,e.g.,Kronbergetal. 12theditionoftheVe´ron-Cetty&Ve´ron(2006,VCV)catalog; 2001);soourmodelmayberegardedtoprovideabaselinefortheIGMF.With suchacontribution,therealIGMFmightbeevenstronger,resultingineven thecorrelationhasthemaximumsignificanceforUHECRswith largerdeflection(seeSection3.1). E (cid:3) 60 EeV and AGNs with distance D (cid:4) 75 Mpc (The 7 Thevaluesof|RM|inXuetal.(2006)areanorderofmagnitudelargerthan PierreAugerCollaboration2007;Abrahametal.2008a;Hague thevalueabove,afewradm−1.Butthepathlengthtowardthesuperclusters, et al. 2009). There are about 450 AGNs with D (cid:4) 75 Mpc throughwhichRMisinduced,isabout2ordersofmagnitudelargerthanthe thicknessoftypicalfilaments. (moreprecisely,442AGNswithredshiftz (cid:2) 0.018,forwhich No.2,2010 IGMFANDARRIVALDIRECTIONOFUHEPROTONS 1425 themaximumsignificanceofthecorrelationwasfound)inthe Table1 VCV catalog. In that study, it is not known which subclass of ModelsofDifferentNumberDensitiesofSources thoseAGNsorwhatfractionofthemarereallytruesourcesof Model Nsrca HostClusters (cid:3)θ(cid:4)b θ˜ (cid:3)Ssim(cid:4)b S˜sim UHECRS.Here,weregardthoseAGNsas“referenceobjects,” A ∼500 kTX(cid:2)0.1keV 13.98 7.01 3.58 2.80 withwhichcorrelationstudiesareperformed. B ∼60 kTX(cid:2)0.55keV 15.33 8.80 3.97 3.19 In order to compare our correlation study with that of the C ∼28 kTX(cid:2)0.8keV 17.76 10.45 4.23 3.43 Auger collaboration, we specified the following condition to determine“model”referenceobjectsinthesimulateduniverse: Notes. (1)thenumberoftheobjectswithin75Mpcfromeachobserver aAveragenumberofsourceswithinsphereofradius75Mpc. should be on average ∼500 and (2) their spatial distribution bDeflectionangleθandseparationangleSaredefinedinSection3. shouldtracetheLSSinawaysimilartotheAGNdistribution that the spatial clustering of our model AGNs is on average in the real universe. To set up the location of such reference objects,weidentified“clusters”ofgalaxieswithkT (cid:3)0.1keV comparable to that of the AGNs from the VCV catalog. This X providesajustificationforourselectioncriteriaformodelAGNs inthesimulateduniverse.Ofcoursesomeoftheseclusterswith kT (cid:4)afewkeVshouldbeclassifiedasgroupsofgalaxies.But inthesimulateduniverse.WenotethatQisanintrinsicproperty X of the distribution of the reference objects in the sky and has for simplicity we call all of them clusters. The reason behind nothingtodowithUHECRs. this selection condition is that the gas temperature is directly relatedwiththedepthofgravitationalpotentialwell;thehottest 2.5.SourcesofUHECRs gas resides in the densest, most nonlinear regions of the LSS where the most luminous and energetic objects (e.g., AGNs) Although AGN is one of the viable candidates that would form through frequent mergers of galaxies. We then assumed produce UHECRs (see, e.g., Nagano & Watson 2000, for the that each cluster hosts one reference object at its center. For listofviablecandidates),thereisnocompellingreasonthatall eachobserver,wegeneratedalistofreferenceobjectsinsidea the nearby AGNs are the sources of UHECRs. In this paper, sphereofradius75Mpc,whosenumberisonaverage∼500;the weconsideredthreemodelswithdifferentnumbersofsources exactnumberofreferenceobjectsvariessomewhatfordifferent (see Table 1) to represent different subsets of AGNs. (1) In observers. Then, each observer has its own sky distribution ModelA,weregardedallthemodelAGNs(referenceobjects) of reference objects, with which we studied the correlation as true sources of UHECRs. (2) In Model B, we regarded on of simulated events. Although our reference objects could be average 60 model AGNs located at 60 hottest host clusters anyastronomicalobjectsthattracetheLSS,hereafterwerefer (kT (cid:3) 0.55 keV) within a sphere of radius 75 Mpc as true x to them as “model AGNs,” because the selection criteria were sources of UHECRs. Based on the ratio of singlet to doublet chosentomatchthenumberofAGNswiththatfromtheVCV events, Abraham et al. (2008a) argued that the lower limit on catalog.Figure1showstheschematicdistributionofahandful the number of sources of UHECRs would be around 61. (3) ofmodelAGNsatthecenterofhostclusters.Obviouslythehost In Model C, we regarded on average 28 model AGNs located clusters(andtheAGNs)arenotuniformlydistributedeither. at 28 hottest host clusters (kT (cid:3) 0.8 keV) within a sphere x In our setup, the distance to the model AGNs, D, can be of radius 75 Mpc as true sources of UHECRs. Among AGNs, arbitrarily small. In reality, however, the closest AGN in the radiogalaxiesareconsideredtobethemostpromisingsourcesof VCV catalog is NGC 404 at D ∼ 3 Mpc in the constellation UHECRs (see, e.g., Biermann & Strittmatter 1987), and there Andromeda (Karachentsev et al. 2004). So the model AGNs are 28 known radio galaxies within D (cid:2) 75 Mpc. We note, withthedistancefromeachobserverD <D ≡3Mpcwere however,thatnotallradiogalaxieswithin75Mpcresideinside min excluded. clusters,andinfactFRIIgalaxiesarefoundmainlyinfilaments. We note that Cuoco et al. (2008) showed that local AGNs ThemainreasontoconsiderModelsBandChereistoexplore with z (cid:4) 0.02 in the VCV catalog exhibit, similarly to the howthenumberdensityofsourcesaffectsouranalysis. brightestgalaxies,strongersmall-scaleclusteringthanaverage 2.6.SimulationsofPropagationofUHEProtons galaxiesinPSCzcatalog.ThedistributionofourmodelAGNs insidehostclustersshouldbebiasedagainsttheaveragematter At sources, UHE protons were injected with the power-law distribution too, in the sense that they represent statistically energy spectrum; N (E ) ∝ E−γ for 6×1019 eV (cid:2) E (cid:2) the highest density peaks of baryonic matter in the simulated inj inj inj inj 1021eV,whereγ istheinjectionspectralindex.Weconsidered universe. thetwocasesofγ =2.7and2.4.Ateachsource,protonswere WecheckedtheangulardistanceQbetweenagivenreference randomlydistributedoverasphereofradius0.5 h−1 Mpcand objecttoitsnearestneighboringobject.Forasetof442objects (thenumberoftheAGNswithz(cid:2)0.018intheVCVcatalog), thenlaunchedinrandomdirections. We then followed the trajectories of UHE protons in our iftheyaredistributedisotropicallyovertheskyof4πradian,the averagevalueofQwouldbe(cid:3)Q (cid:4)≈11◦.Withthe442AGNs modeluniversewiththeIGMF,bynumericallyintegratingthe from the VCV catalog, on theisoother hand, (cid:3)Q (cid:4) = 3◦.55. equationsofmotion, VCV The fact that (cid:3)Q (cid:4) < (cid:3)Q (cid:4) means that the distribution of VCV iso dr dp the AGNs from the VCV catalog is not isotropic, but highly =v, =e(v×B), (2) dt dt clustered, following the matter distribution in the LSS of the universe.Wenotethat(cid:3)QVCV(cid:4)=3◦.55issimilartotheangular where r, v, and p are the position, velocity, and momentum, windowof3◦.1usedintheAugerstudy.Clearlythisagreement respectively.DuringpropagationUHEprotonsinteractwiththe isnotaccidental,butratherconsequential.Forthesetsof∼500 CMB,andthedominantprocessesforenergylossarethepion modelAGNsinoursimulations,theaverageangulardistanceis and pair productions. The energy loss was treated with the (cid:3)QAGN(cid:4) = 3◦.68±1◦.66.Theerrorwasestimatedwith(cid:3)QAGN(cid:4) continuous-loss approximation (Berezinsky et al. 2006). The for∼1400observers.Thefactthat(cid:3)QAGN(cid:4)∼(cid:3)QVCV(cid:4)indicates adiabaticlossduetothecosmicexpansionwasignored. 1426 RYU,DAS,&KANG Vol.710 Figure 2. Geometry of the deflection angle, θ, the separation angle, S, the distancetothetruesource,Dθ,andthedistancetothenearestobject,DS.The path of the UHECR event from the source to the observer is schematically drawn. (Acolorversionofthisfigureisavailableintheonlinejournal.) We let UHE protons continue the journey, visiting several observersduringflight,untiltheenergyfallsto60EeV.Atthe observerlocations,theeventswithE (cid:5)60EeVwererecorded andanalyzed. 3.RESULTS 3.1.DeflectionAngle In Paper I, we considered the deflection angle, θ, between the arrival direction of UHECR events and the sky position of their sources (see Figure 2). Obviously this angle can be calculatedonlywhenthetruesourcesareknown,whichisnot the case in experiments. In the simulated universe, our model AGNsandobserversarelocatedinstronglymagnetizedregions. As illustrated in Figure 1, UHECRs first have to escape from magnetic halos surrounding sources, then travel through more orlessvoidregions(path1)orthroughfilaments(path2),and finallypenetrateintomagnetichalosaroundobservers,toreach observers.Sothedegreeofdeflectiondependsnotonlyonthe magnetic field along trajectories but also on the fields at host clusters and groups of sources and observers. Since the gas temperature, the depth of gravitational potential well, and the magnetic field energy density are related as kT ∝ Φ ∝ ε X B in our model, hotter clusters and groups would have stronger fields.Soweexpectthatifsourcesandobserversarelocatedat hotterhosts,θ wouldbelargeronaverage. Figure3showsθ versusD forUHEprotoneventsrecorded θ at the observer locations in our simulations. Here, D denotes θ thedistancetotheactualsourcesofevents.Thetop,middle,and bottompanelsareforModelsA,B,andC,respectively.Onlythe caseofinjectionspectralindexγ = 2.7ispresented.Thecase ofγ =2.4issimilar.Eachdotrepresentsonesimulatedevent, andthereareabout105eventsineachModel.Theuppercircles connected with dotted lines represent the mean values of θ in thedistancebinsof[D ,D +ΔD ].Themeandeflectionangle θ θ θ averaged over all the simulated events is (cid:3)θ(cid:4) = 13◦.98, 15◦.33, and17◦.76forγ =2.7inModelsA,B,andC,respectively.The lower circles connected with solid lines represent the median Figure3.Distributionofdeflectionangles(θ)asafunctionofdistancetotrue values of θ. The median value for all the simulated events is sources(Dθ).DotsrepresentUHEprotoneventsrecordedinoursimulations. θ˜ = 7◦.01, 8◦.80, and 10◦.45 for γ = 2.7 in Models A, B, Circlesconnectedwithdottedlines(upper)andsolidlines(lower)showthe and C, respectively. The values of (cid:3)θ(cid:4) and θ˜ for γ = 2.4 mfiresatnanadndthmireddqiaunarvtialleusesin,rgeisvpeenctDivθelby.inVse.rTtiocpa,lmlinidedslceo,nannedcbtothtteommapraknseolsftahree are similar. The marks connected with vertical solid lines on forModelsA,B,andC,respectively.Thecasesofγ =2.7areshown. both sides of median values are the first and third quartiles in (Acolorversionofthisfigureisavailableintheonlinejournal.) No.2,2010 IGMFANDARRIVALDIRECTIONOFUHEPROTONS 1427 the distance bins, which provide a measure of the dispersion ofθ. Wenotethefollowingpoints.(1)WithourIGMF,themean deflectionangleofUHEprotonsduetotheIGMFisquitelarge, muchlargerthantheangularwindowof3◦.1usedintheAuger correlationstudy.Itisalsomuchlargerthanthemeandeflection anglethatisexpectedtoresultfromtheGalacticmagneticfield, which is a few degrees (Takami & Sato 2008). (2) The mean deflectionangleislargestinModelCandsmallestinModelA. Recall that in Model C sources are located only at 28 hottest clusters, while in Model A all 500 clusters include sources (see Table 1). The UHECR events from hotter clusters tend toexperiencemoredeflection,asnotedabove.Sothemeanof deflectionanglesinthemodelwithhotterhostclustersislarger. (3)ThemeanvalueofθhasaminimumatD ∼20–30Mpc, θ,min whichcomparestoatypicallengthoffilaments.Aswepointed outinPaperI,thisisaconsequenceofthestructuredmagnetic fieldsthatareconcentratedalongfilamentsandatclusters.Inan eventwithD <D ,thesourceandobserveraremorelikely θ θ,min tobelongtothesamefilament,andsotheparticleismorelikely to travel through strongly magnetized regions and suffer large deflection(seepath2inFigure1).Intheoppositeregime,the sourceandobserverarelikelytobelongtodifferentfilaments, sotheparticlewouldtravelthroughvoidregions(seepath1in Figure 1). (4) For the events with D > D , the mean and θ θ,min dispersionofθincreasewithD .Suchatrendisexpected,since θ inthediffusivetransportmodelofthepropagationofUHE√CRs, the deflection angle increases with distance as θ ∝ D rms θ (see,e.g.,Waxman&Miralda-Escude´1996).(5)Therearemore eventsfromnearbysourcesthanfromdistantsources,although allthesourcesinjectthesamenumberofUHECRsinourmodel. The smaller number of events for larger D should be mostly θ a consequence of energy loss due to the interaction with the CMB. 3.2.SeparationAngles Inthisstudy,wealsoconsidertheseparationangle,S,between the arrival direction of UHECR events and the sky position of nearestreferenceobjects(seeFigure2).Theanglecanbecal- culatedwithobservationdata,onceaclassofreferenceobjects (e.g.,AGNs,galaxiesgamma-raybursts,etc.)isspecified.For example,ThePierreAugerCollaboration(2007)tooktheAGNs within75MpcintheVCVcatalogasthereferenceobjectsfor theircorrelationstudy.However,foragivenUHECRevent,the nearestAGNintheskymaynotbetheactualsource;hence,the separationanglebetweenaUHECReventanditsnearestAGN isnotnecessarilythesameasthedeflectionangleoftheevent (Hillas2009;Ryuetal.2009). WeobtainedSforsimulatedeventswithourmodelreference objects(AGNs).Figure4showsSversusD .Here,D denotes S S thedistancetonearestAGNs.Againonlythecaseofγ = 2.7 ispresented,andthecaseofγ = 2.4issimilar(seeFigure5). Thecirclesconnectedwithsolidlinerepresentthemeanvalues of S for the events with nearest AGNs in the distance bins of [D ,D +ΔD ].Themeanseparationangleaveragedoverallthe S S S simulatedeventsis(cid:3)Ssim(cid:4) = 3◦.58,3◦.97,and4◦.23forγ = 2.7 Figure 4. Distribution of separation angles between the directions of UHE inModelsA,B,andC,respectively. protonsandnearestmodelAGNs(S)asafunctionofdistancetonearestmodel Wenotethefollowingpoints.(1)Themeanseparationangleis AGNs(DS).DotsrepresentUHEprotoneventsrecordedinoursimulations. muchsmallerthanthemeandeflectionangle,(cid:3)S (cid:4)∼(1/4)(cid:3)θ(cid:4) Circles connected with solid lines show the mean values. Top, middle, and sim bottom panels are for Models A, B, and C, respectively. The cases of the (see the next section for further discussion). (2) The mean injectionspectralindexγ =2.7areshown. separationangleislargestinModelCandsmallestinModelA, (Acolorversionofthisfigureisavailableintheonlinejournal.) althoughthedifferenceof(cid:3)S (cid:4)amongthemodelsislessthan sim 1428 RYU,DAS,&KANG Vol.710 that of (cid:3)θ(cid:4). With larger deflection angles in Model C, there is ahigherprobabilityforaeventtobefoundfurtherawayfrom theregionwheremodelAGNsareclustered,soSisonaverage largeraswell.(3)SimilarlyasintheθversusD distribution,the θ distributionof(cid:3)S (cid:4)hastheminimumataroundD ∼35Mpc. sim S This is again a signature of the filamentary structures of the LSS.(4)ContrarytoD ,therearemoreeventswithlargerD θ S thanwithsmallerD .ItissimplybecausetherearemoreAGNs S withlargerD . S 3.3.ComparisonwiththeAugerData We also obtained S for the 27 Auger events of highest energies,publishedinAbrahametal.(2008a),with442nearby AGNs from the VCV catalog. In Figure 5, we compare the S versus D distribution for the Auger data with that of our s simulations. The upper circles connected with dashed/dot- dashed lines represent the mean values of S of simulated sim events as in Figure 4, but this time both cases of γ = 2.7 and2.4arepresented.Thelowercirclesconnectedwithsolid/ dottedlinesrepresentthemedianvaluesofS .Thedifference sim between the cases of γ = 2.7 and 2.4 is indeed small. The medianvalueofS forallthesimulatedeventsisS˜ =2◦.80, sim sim 3◦.19,and3◦.43forγ =2.7inModelsA,B,andC,respectively. AsterisksdenotetheAugerevents.Themeanseparationangle fortheAugereventsis(cid:3)S (cid:4)=3◦.23for26events,excluding Auger oneeventwithlargeS(≈27◦),while(cid:3)S (cid:4)=4◦.13forallthe Auger 27events.Wenotethat(cid:3)S (cid:4)∼(cid:3)S (cid:4),eventhoughthemean Auger sim deflectionangleismuchlargerthanthemeanseparationangle inoursimulations,thatis,(cid:3)θ(cid:4)(cid:13)(cid:3)S (cid:4).Inallthemodels,about sim half of the Auger events lie within the quartile marks: 15, 13, and13eventsforModelsA,B,andC,respectively. With(cid:3)θ(cid:4)∼15◦inoursimulations,onemightnaivelyexpect that such large deflection would erase the anisotropy in the arrival direction and the correlation between UHECR events and AGNs (or the LSS of the universe). However, we argue thatthelargedeflectiondoesnotnecessarilyleadtothegeneral isotropyofUHECRarrivaldirection,iftheagentofdeflection, the IGMF, traces the local LSS. Suppose that UHECRs are ejected from sources inside the Local Supercluster. Some of them will fly along the supergalactic plane and arrive at the Earth;theirtrajectorieswouldbedeflectedbythemagneticfield between sources and us, but the arrival directions still point toward the supergalactic plane. Others may be deflected into voidregions,andthentheywillhavelesschancetogetreflected back to the direction toward us due to lack of the turbulent IGMF there. As pointed out in Section 1, we may regard the irregularitiesintheIGMFasthe“scatters”ofUHECRs(Kotera &Lemoine2009);inthepicture,thelastscatteringpointwould be the arrival direction of UHECRs. As a result, even with large deflection, we still see more UHECRs from the LSS of clusters,groups,andfilaments,andfewerUHECRsfromvoid regions where both sources and scatters are underpopulated. Figure 5. Mean (upper circles) and median (lower circles) values of S as Consequently,theanisotropyinthearrivaldirectionofUHECRs functionsofDSforUHEprotoneventsinoursimulations.Verticallinesconnect canbemaintainedandthearrivaldirectionstillfollowstheLSS dthaeshmeadrlkisneosf(tuhpepfierrs)taannddstohliirddlqinueasrt(illoeswienr)gaivreenfoDrSγb=ins2..C7,iracnledsthcoonseneccotnendewctiethd oftheuniverse. withdot-dashedlines(upper)anddottedlines(lower)areforγ =2.4.Themean Below the GZK energy, the proton horizon reaches out to Sforγ =2.7arethesameasthoseinFigure2.Themedianandquartilesfor afewGpc,sothesourcedistributionshouldlookmoreorless γ =2.4arehorizontallyshiftedforbettervisibility.AsterisksdenoteSforthe isotropicandthearrivaldirectionsshouldnotshowacorrelation 27Augereventsofhighestenergies,publishedinAbrahametal.(2008a),with with nearby AGNs. Thus, we do not expect to see anisotropy nearbyAGNsfromtheVCVcatalog.Top,middle,andbottompanelsarefor andcorrelationforUHECRswithsuchenergy. ModelsA,B,andC,respectively. InSection2.4,weshowedthatthedegreeofclusteringofour (Acolorversionofthisfigureisavailableintheonlinejournal.) modelAGNsissimilartothatofAGNsfromtheVCVcatalog; No.2,2010 IGMFANDARRIVALDIRECTIONOFUHEPROTONS 1429 the mean of the angular distance Q between a given AGN to itsnearestneighboringAGNissimilar,(cid:3)Q (cid:4) ∼ (cid:3)Q (cid:4).In AGN VCV both cases, AGNs follow the matter distribution in the LSS, highlystructuredandclustered.Wepointoutthatifalongwith thereferenceobjects,theCRsourcesandtheIGMFalsofollow thematterdistribution,with(cid:3)θ(cid:4)(cid:13)(cid:3)S(cid:4),(cid:3)S(cid:4)∼(cid:3)Q(cid:4)isexpected. Theresultthat(cid:3)S (cid:4)∼(cid:3)S (cid:4)∼(cid:3)Q (cid:4)∼(cid:3)Q (cid:4)isindeed Auger sim AGN VCV consistentwithsuchexpectation.Thismeans,however,thatthe statistics of S reflect mainly on the distribution of reference objectsratherthanthedeflectionangle. TofurthercomparetheAugerdatawithoursimulations,we plotthecumulativefractionofevents,F((cid:2)logS),versuslogS for the simulated events (lines) and the Auger events (open circles)inFigure6.Thesolidanddottedlinesareforthecases of γ = 2.7 and 2.4, respectively, and the difference between thetwocasesisagainsmall.TheKolmogorov–Smirnov(K–S) test yields the maximum difference of D = 0.17, 0.23, and 0.26betweentheAugerdataandthesimulationdata(γ =2.7) in Models A, B, and C, respectively; the significance level of the null hypothesis that the two distributions are statistically identicalisP ∼ 0.37,0.09,and0.04forModelsA,B,andC, respectively. So the null hypothesis that the two distributions for our simulated events and the Auger events are statistically identical cannot be rejected, especially for Model A. Also we seethatModelAwithmoresourcesispreferredoverModelsB andCwithfewersources.Butthisdoesnotnecessarymeanthat alltheAGNswouldbetheactualsourcesofUHECRs.Wenote thatthenumberoftheAugereventsused,27,isstilllimited.In addition, we consider only UHE protons in this paper. Hence, before we argue the above statements for sure, we will need more observational events and need to know the composition of UHECRs (see summary and discussion section for further discussiononcomposition). 3.4.ProbabilityofFindingTrueSources With (cid:3)θ(cid:4) (cid:13) (cid:3)S (cid:4), there is a good chance that the AGNs sim found closest to the direction of UHECRs are not the actual sources of UHECRs. To illustrate this point, we first show the distributionofD versusD inFigure7.Forsomeevents,the S θ closest AGNs are the actual sources. They are represented by thediagonalline.Aroundthediagonalline,anoticeablefraction ofeventsarefound.Thosearetheeventsforwhichtheclosest AGNsarefoundaroundthetruesources;bothsourcesandclose- byAGNsareclusteredasapartoftheLSSoftheuniverse.For the events away from the diagonal line, it is more likely that D > D . It is because there are more AGNs with larger D ; S θ S awayfromtruesources,observedeventsaremorelikelytopick upclosestAGNswithlargerD . S Toquantifytheconsequenceof(cid:3)θ(cid:4) (cid:13) (cid:3)S (cid:4),wecalculated sim thefractionoftrueidentification,f,astheratioofthenumberof eventsforwhichnearestAGNsaretheirtruesourcestothetotal numberofsimulatedevents.Thisisameasureoftheprobability tofindthetruesourcesofUHECRs,whennearestcandidatesare blindlychosen(whichisthebestwecandowithobserveddata). InFigure8,weshowthefractionasafunctionoftheseparation angle,S.ThefractionislargestinModelAwithlargestN and src smallestinModelCwithsmallestN .AtS ∼2◦thefractionis src about50%forModelA,closeto40%forModelB,andalittle Figure 6. Cumulative fraction of UHECR events with the separation angle above30%forModelC,butonly20%–30%atS = 3◦–4◦.As smaller than S. Solid and dotted lines denote the results calculated with the theseparationangleincreases,thefractiondecreasesgradually UHEprotoneventsinoursimulationsforγ =2.7and2.4,respectively.Top, to∼10%,indicatinglower probabilitiestofindtruesources at middle,andbottompanelsareforModelsA,B,andC,respectively.Opencircles denotetheresultforthe27Augerevents(Abrahametal.2008a)withnearby larger separation angles. On average, we should expect that in AGNsfromtheVCVcatalog. lessthanoneoutofthreeevents,thetruesourcesofUHECRscan (Acolorversionofthisfigureisavailableintheonlinejournal.) 1430 RYU,DAS,&KANG Vol.710 Figure8.Fraction(f)ofUHEprotoneventsrecordedinoursimulations,for whichtheirtruesourcesareidentifiedasclosestAGNsinthesky,asafunction Figure7.DistancetonearestmodelAGNs,DS,vs.distancetotruesources,Dθ, ofS.Dashed,dotted,andsolidlinesareforModelsA,B,andC,respectively. fortheUHECReventsinModelA.Thecaseofγ =2.7isshown.Colorcodes Darkandlightlinesdenotethefractionsforγ =2.7and2.4,respectively. thenumberofeventsinthelog10scaleinbinsofΔDθ×ΔDS.Themaximum (Acolorversionofthisfigureisavailableintheonlinejournal.) distanceis75MpcforbothDSandDθ. (Acolorversionofthisfigureisavailableintheonlinejournal.) the simulated universe is (cid:3)Q (cid:4) = 3◦.68±1◦.66, while that AGN beidentified,ifourmodelfortheIGMFisvalidandUHECRs for 442 AGNs from the VCV catalog is (cid:3)QVCV(cid:4) = 3◦.55. This areprotons. demonstrates that the two samples have a similar degree of clusteringandarehighlystructured(e.g.,(cid:3)Q (cid:4) ≈ 11◦ forthe iso isotropicdistribution). 4.SUMMARYANDDISCUSSION With our model IGMF, the deflection angle, θ, between the In the search for the nature and origin of UHECRs, under- arrival direction of UHE protons and the sky position of their standingthepropagationofchargedparticlesthroughthemag- actualsourcesisquitelargewiththemean(cid:3)θ(cid:4)∼14◦–17◦.5and netizedLSSoftheuniverseisimportant.Atpresent,thedetails the median θ˜ ∼ 7◦–10◦, depending on models with different of the IGMF are still uncertain, mainly due to limited avail- numbers of sources (see Table 1). On the other hand, the ableinformationfromobservation.Here,weadoptedarealistic separation angle between the arrival direction and the sky modeluniversethatwasdescribedbysimulationsofcosmolog- position of nearest reference objects is substantially smaller ical structure formation; our simulated universe represents the withthemean(cid:3)S (cid:4)∼3◦.5–4◦andthemedianS˜ =2◦.8–3◦.5. sim sim LSS,whichisdominatedbythecosmicweboffilamentsinter- Thatis,wefoundthatwhile(cid:3)θ(cid:4) ∼ 4(cid:3)S (cid:4),(cid:3)S (cid:4)issimilarto sim sim connectingclustersandgroups.ThedistributionoftheIGMFin (cid:3)Q (cid:4).FortheAugereventsofhighestenergiesinAbraham AGN theLSSoftheuniversewasobtainedwithaphysicallymotivated etal.(2008a),with442nearbyAGNsfromtheVCVcatalogas modelbasedonturbulencedynamo(Ryuetal.2008). the reference objects, the mean separation angle is (cid:3)S (cid:4) = Auger ToinvestigatetheeffectsoftheIGMFonthearrivaldirection 3◦.23 for the 26 events, excluding one event with large S ofUHECRs,wefurtheradoptedthefollowingmodels.Virtual (≈27◦), while (cid:3)S (cid:4) = 4◦.13 for all the 27 events. Hence, Auger observersofabout1400wereplacedatgroupsofgalaxies,which (cid:3)S (cid:4) ∼ (cid:3)Q (cid:4)∼ (cid:3)S (cid:4) ∼ (cid:3)Q (cid:4). This implies that the Auger VCV sim AGN represent statistically the Local Group in the simulated model separation angle from the Auger data would be determined universe.Then,wesetupasetofabout500AGN-like“reference primarilybythe distributionof reference objects (AGNs),and objects” within 75 Mpc from each observer, at clusters of maynotrepresentthetruedeflectionangle. galaxies (deep gravitational potential wells) along the LSS. Wefurthertestedwhetherthedistributionsoftheseparation They represent a class of astronomical objects with which we angle, S, for our simulated events and for the Auger events performedacorrelationanalysisforsimulatedUHECRevents. are statistically comparable to each other. According the K–S Weconsideredthreemodels,inwhichsubsetsofthereference test for the cumulative fraction of events, F((cid:2) logS), versus objects were selected as AGN-like sources of UHECRs (see logS,thesignificancelevelofthenullhypothesisthatthetwo Table 1). UHE protons of E (cid:5) 60 EeV with the power- distributionsaredrawnfromtheidenticalpopulationisaslarge low energy spectrum were injected at those sources, and the as P ∼ 0.37 for Model A (see Table 1). Thus, we argued that trajectoriesofUHEprotonsinthemagnetizedcosmicwebwere oursimulationdata,especiallyinModelA,areinfairagreement followed.Attheobserverlocations,theeventswithE (cid:5)60EeV withtheAugerdata.Thistestalsoshowedthatthemodelwith from sources within a sphere of radius 75 Mpc were recorded moresources(ModelA)ispreferredoverthemodelswithfewer andanalyzed. sources(ModelsBandC). To characterize the clustering of the reference objects, we The fact that (cid:3)θ(cid:4) (cid:13) (cid:3)S (cid:4) implies that the AGNs found sim calculatedtheangulardistance,Q,fromagivenreferenceobject closest to the direction of UHECRs may not be the true toitsnearestneighbor.ThemeanvalueforourmodelAGNsin sources of UHECRs. We estimated the probability of finding No.2,2010 IGMFANDARRIVALDIRECTIONOFUHEPROTONS 1431 the true sources of UHECRs, when nearest reference objects Abbasi,R.U.,etal.(HiResCollaboration)2008a,Phys.Rev.Lett.,100,101101 are blindly chosen: f(S) is the ratio of the number of true Abbasi, R. U., et al. (HiRes Collaboration) 2008b, Astropart. Phys., 30, 175 source identifications to the total number of simulated events. This probability is ∼50%–30% at S ∼ 2◦, but decreases to Abbasi,R.U.,etal.(HiResCollaboration)2009,Proc.31stInt.CosmicRay Conf.(Lodz),arXiv:0907.0498 ∼10%atlargerseparationangle.Onaverage,inlessthan1out Abraham,J.,etal.(AugerCollaboration)2008a,Astropart.Phys.,29,188 of3events,thetruesourcesofUHECRscanbeidentifiedinour Abraham, J., et al. (Auger Collaboration) 2008b, Phys. Rev. Lett., 101, simulations,whennearestreferenceobjectsarechosen. 061101 Aublin,J.,etal.(AugerCollaboration)2009,Proc.31stInt.CosmicRayConf. The distribution of θ versus D shows a bimodal pattern θ (Lodz),491 in which θ is on average larger either for nearby sources (for Berezinsky,V.2009,Nucl.Phys.B,188,227 D (cid:4)15Mpc)orfordistantsources(forD (cid:3)30Mpc)withthe Berezinsky, V., Gazizov, A., & Grigor’eva, S. I. 2006, Phys. Rev. D, 74, θ θ minimumatanintermediatedistanceofD ∼ 20–30Mpc. 043005 θ,min Berezinsky,V.,&Grigor’eva,S.I.1988,A&A,199,1 ThedistributionofSversusD showsasimilar,butweakersign s Biermann,L.1950,Z.Naturforsch.A,5,65 ofthebimodalpattern.Thisbehaviorisacharacteristicsignature Biermann,P.L.,&Strittmatter,P.A.1987,ApJ,322,643 ofthemagnetizedcosmicweboftheuniverse,wherefilaments Bird,D.J.,etal.(Fly’sEyeCollaboration)1994,ApJ,424,491 arethemostdominantstructure.Whenalargenumberofsuper- Cho,J.,&Ryu,D.2009,ApJ,705,L90 GZKeventsareaccumulated,wemayfindthesignatureofthe Cuoco,A.,Hannestad,S.,Haugbolle,T.,Kacheleriess,M.,&Serpico,P.D. 2008,ApJ,676,807 cosmicweboffilamentsintheSversusD distribution. s Das,S.,Kang,H.,Ryu,D.,&Cho,J.2008,ApJ,682,29(PaperI) Finally,weaddressthelimitationsofourwork.(1)Weworked Dolag,K.,Grasso,D.,Springel,D.,&Tkachev,I.2005,J.Cosmol.Astropart. in a simulated universe with specific models for the elements Phys.,JCAP1(2005)009 such as the IGMF, observers, sources, and reference objects, Egorova,V.P.,etal.(YakutskCollaboration)2004,Nucl.Phys.B,136,3 Greisen,K.1966,Phys.Rev.Lett.,16,748 but not in the real universe. So we could make only statistical Hague,J.D.,etal.(AugerCollaboration)2009,Proc.31stInt.CosmicRay statements. (2) It has been shown previously that adopting Conf.(Lodz),143 differentmodelsfortheIGMF,verydifferentdeflectionangles Hayashida, N., et al. (AGASA Collaboration) 1996, Phys. Rev. Lett., 77, areobtained(see,Sigletal.2003;Dolagetal.2005;PaperI). 1000 WearguethatourmodelfortheIGMFismostplausible,since Hillas,A.M.2009,Astropart.Phys.,32,160 Kang,H.,Rachen,J.P.,&Biermann,P.L.1997,MNRAS,286,25 itisaphysicallymotivatedmodelbasedonturbulencedynamo Kang,H.,Ryu,D.,&Jones,T.1996,ApJ,456,422 withoutinvolvinganarbitrarynormalization(Ryuetal.2008). Karachentsev,I.D.,Karachentseva,V.E.,Huchtmeier,W.K.,&Makarov,D.I. Nevertheless,ourIGMFmodelshouldbeconfirmedfurtherby 2004,AJ,127,2031 observation. (3) The sources of UHECRs may not be objects Kotera,K.,&Lemoine,M.2009,Phys.Rev.D,77,123003 Kronberg, P. P., Dufton, Q. W., Li, H., & Colgate, S. A. 2001, ApJ, 560, likeAGNs,butcouldbeobjectsextinguishedawhileago,such 178 as gamma-ray bursts (see, e.g., Vietri 1995; Waxman 1995), Kulsrud,R.M.,Cen,R.,Ostriker,J.P.,&Ryu,D.1997,ApJ,480,481 or sources spread over space like cosmological shocks (see, Lemoine, M., & Waxman, E. 2009, J. Cosmol. Astropart. Phys., e.g.,Kangetal.1996,1997).Theinjectionenergyspectrumof JCAP11(2009)009 power-law with cutoff at an arbitrary maximum energy (see Mollerach,S.,etal.(AugerCollaboration)2008,Proc.30thInt.CosmicRay Conf.(Me´rida),4,279 Section 2.6) would be unrealistic. The IGMF in the Local Nagano,A.,&Watson,A.A.2000,Rev.Mod.Phys.,72,689 Group (see Paper I), although currently little is known, might Puget,J.L.,Stecker,F.W.,&Bredekamp,J.H.1976,ApJ,205,638 be strong enough to substantially deflect the trajectories of Rasmussen,J.,&Pedersen,K.2001,ApJ,559,892 UHECRs. All of those will have effects on the quantitative Ryu,D.,Kang,H.,&Biermann,P.L.1998,A&A,335,19 Ryu,D.,Kang,H.,Cho,J.,&Das,S.2008,Science,320,909 results, which should be investigated further. (4) Recently, the Ryu, D., Kang, & Das, S. 2009, Proc. 31st Int. Cosmic Ray Conf. (Lodz), Augercollaborationdisclosedtheanalysis,whichsuggeststhat arXiv:0906.4850 a substantial fraction of highest energy UHECRs might be Ryu,D.,Ostriker,J.P.,Kang,H.,&Cen,R.1993,ApJ,414,1 iron nuclei (Unger et al. 2008; Wahberg et al. 2009). This Schu¨ssler,K.,etal.(AugerCollaboration)2009,Proc.31stInt.CosmicRay is in contradiction to the analysis of the HiRes data, which Conf.(Lodz),114 Shinozaki,K.,&Teshima,M.(AGASACollaboration)2004,Nucl.Phys.B, indicatesthathighestenergyUHECRswouldbemostlyprotons 136,18 (Sokolsky & Thomson 2007). The issue of composition still Sigl,G.,Miniati,F.,&Ensslin,T.A.2003,Phys.Rev.D,68,043002 needs to be settled down among experiments. Iron nuclei, on Sokolsky, P., & Thomson, G. 2007, J. Phys. G: Nucl. Part. Phys., 34, thewayfromsourcestous,suffermuchlargerdeflectionthan R401 Stanev,T.1997,ApJ,479,290 protons. Hence, if a substantial fraction of UHECRs is iron, Takami, H., Nishimichi, T., & Sato, K. 2009, J. Cosmol. Astropart. Phys., some of our findings will change, a question which should be submitted(arXiv:0910.2765) investigatedinthefuture. Takami,H.,&Sato,K.2008,ApJ,681,1279 Takeda,M.,etal. (AGASACollaboration)1999,ApJ,522,225 ThePierreAugerCollaboration, 2007,Science,318,939 TheauthorsthankP.L.Biermannforstimulatingdiscussion. Tinyakov,P.G.,&Tkachev,I.I.2001,JETPLett.,74,445 Wealsothanktheanonymousrefereeforclarifyingcomments. Unger,M.,etal.(AugerCollaboration)2008,Proc.30thInt.CosmicRayConf. The work was supported by the Korea Research Foundation (Me´rida),4,373 (KRF-2007-341-C00020)andtheKoreaFoundationforInterna- Ve´ron-Cetty,M.P.,&Ve´ron,P.2006,A&A,455,773(VCV) tionalCooperationofScienceandTechnology(K20702020016- Vietri,M.1995,ApJ,453,883 Wahlberg,H.,etal.(AugerCollaboration)2009,Proc.31stInt.CosmicRay 07E0200-01610). Conf.(Lodz),56 Watson,A.A.2006,Nucl.Phys.B,151,83 REFERENCES Waxman,E.1995,Phys.Rev.Lett.,75,386 Waxman,E.,&Miralda-Escude´,J.1996,ApJ,472,L89 Abbasi,R.U.,etal.(HiResCollaboration)2004,ApJ,610,L73 Xu,Y.,Kronberg,P.P.,Habib,S.,&Dufton,Q.W.2006,ApJ,637,19 Abbasi,R.U.,etal.(HiResCollaboration)2006,ApJ,636,680 Zatsepin,G.T.,&Kuz’min,V.A.1966,JETPLett.,4,78
Description: