ebook img

Interferometric data reduction with AMBER/VLTI. Principle, estimators, and illustration PDF

14 Pages·2007·0.46 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Interferometric data reduction with AMBER/VLTI. Principle, estimators, and illustration

A&A464,29–42(2007) Astronomy DOI:10.1051/0004-6361:20064799 & (cid:1)c ESO2007 Astrophysics Special feature AMBER:Instrumentdescriptionandfirstastrophysicalresults Interferometric data reduction with AMBER/VLTI. (cid:1) Principle, estimators, and illustration E.Tatulli1,2,F.Millour1,3,A.Chelli1,G.Duvert1,B.Acke1,14,O.HernandezUtrera1,K.-H.Hofmann4,S.Kraus4, F.Malbet1,P.Mège1,R.G.Petrov3,M.Vannier3,6,13,G.Zins1,P.Antonelli5,U.Beckmann4,Y.Bresson5,M.Dugué5, S.Gennari2,L.Glück1,P.Kern1,S.Lagarde5,E.LeCoarer1,F.Lisi2,K.Perraut1,P.Puget1,F.Rantakyrö6, S.Robbe-Dubois3,A.Roussel5,G.Weigelt4,M.Accardo2,K.Agabi3,E.Altariba1,B.Arezki1,E.Aristidi3,C.Baffa2, J.Behrend4,T.Blöcker4,S.Bonhomme5,S.Busoni2,F.Cassaing7,J.-M.Clausse5,J.Colin5,C.Connot4, A.Delboulbé1,A.DomicianodeSouza3,5,T.Driebe4,P.Feautrier1,D.Ferruzzi2,T.Forveille1,E.Fossat3,R.Foy8, D.Fraix-Burnet1,A.Gallardo1,E.Giani2,C.Gil1,15,A.Glentzlin5,M.Heiden4,M.Heininger4,D.Kamm5, M.Kiekebusch6,D.LeContel5,J.-M.LeContel5,T.Lesourd9,B.Lopez5,M.Lopez9,Y.Magnard1,A.Marconi2, G.Mars5,G.Martinot-Lagarde5,9,P.Mathias5,J.-L.Monin1,D.Mouillet1,16,D.Mourard5,E.Nussbaum4, K.Ohnaka4,J.Pacheco5,C.Perrier1,Y.Rabbia5,S.Rebattu5,F.Reynaud10,A.Richichi11,A.Robini3, M.Sacchettini1,D.Schertl4,M.Schöller6,W.Solscheid4,A.Spang5,P.Stee5,P.Stefanini2,M.Tallon8, I.Tallon-Bosc8,D.Tasso5,L.Testi2,F.Vakili3,O.vonderLühe12,J.-C.Valtier5,andN.Ventura1 (Affiliationscanbefoundafterthereferences) Received2January2006/Accepted1March2006 ABSTRACT Aims.Inthispaper, wepresent aninnovative datareduction method for single-mode interferometry. Ithasbeen specificallydeveloped for the AMBERinstrument,thethree-beamcombineroftheVeryLargeTelescopeInterferometer,butitcanbederivedforanysingle-modeinterferometer. Methods.Thealgorithmisbasedonadirectmodellingofthefringesinthedetectorplane.Assuch,itrequiresapreliminarycalibrationofthe instrumentinordertoobtainthecalibrationmatrixthatbuildsthelinearrelationshipbetweentheinterferogramandtheinterferometricobservable, whichisthecomplexvisibility.Oncethecalibrationprocedurehasbeenperformed,thesignalprocessingappearstobeaclassicalleast-square determination of a linear inverse problem. From the estimated complex visibility, we derive the squared visibility, the closure phase, and the spectraldifferentialphase. Results.Thedatareductionprocedureshavebeengatheredintotheso-calledamdlibsoftware,nowavailableforthecommunity,andarepresented inthispaper.Furthermore,eachstepinthisoriginalalgorithmisillustratedanddiscussedfromvariouson-skyobservationsconductedwiththe VLTI,withafocusonthecontrolofthedataqualityandtheeffectiveexecutionofthedatareductionprocedures.Wepointoutthepresentlimited performancesoftheinstrumentduetoVLTIinstrumentalvibrationswhicharedifficulttocalibrate. Keywords.technique:interferometric–methods:dataanalysis–instrumentation:interferometers 1. Introduction baseline lengths and number of recombined telescopes, the in- terestofusingthepracticalcharacteristicsofsingle-modefibers AMBER is the first-generation near-infrared three-way beam to carry and recombine the light, as first proposed by Connes combiner (Petrov et al. 2007) of the Very Large Telescope etal.(1987)withhisconceptualFLOATinterferometer,isnow Interferometer(VLTI).Thisinstrumentsimultaneouslyprovides well established. Furthermore, in the light of the FLUOR ex- spectrally dispersed visibility for three baselines and a closure periment on the IOTA interferometer, which demonstrated the phase at three different spectral resolutions. AMBER has been “on-sky” feasibility of such interferometers for the first time, designed to investigate the milli-arcsec surrounding of astro- CoudéDuForestoetal.(1997)showedthatmakinguseofsingle physical sources like young and evolved stars or active galac- modewaveguidescouldalsoincreasetheperformancesofopti- tic nuclei, and to possibly detect exoplanet signal. The main calinterferometry,thankstotheirremarkablepropertiesofspa- new feature of this instrumentcomparedto other interferomet- tial filtering, which change the phase fluctuations of the atmo- ric instrumentsisthesimultaneoususe ofmodalfilters(optical spheric turbulent wavefront into intensity fluctuations. Indeed, fibers)andadispersedfringecombinerusingspatialcoding.The bymonitoringthesefluctuationsinrealtimethankstodedicated AMBER team has therefore carefully investigated a data pro- photometricoutputsandbyperforminginstantaneousphotomet- cessingstrategyforthisinstrumentandisprovidinganewtype ric calibration, he experimentally proved that single-mode in- ofdatareductionmethod. terferometrycould achieve visibility measurementswith preci- Given the astonishingly quick evolution of ground based sions of 1% or lower. Achievement of such performance level optical interferometers in only two decades, in terms of hassincebeenconfirmedwiththeIONICintegratedopticbeam combiner set up on the same interferometer (LeBouquin et al. (cid:1) Based on observations collected at the European Southern 2004). Observatory,Paranal,Chile. Article published by EDP Sciences and available at http://www.aanda.orgor http://dx.doi.org/10.1051/0004-6361:20064799 30 E.Tatullietal.:InterferometricdatareductionwithAMBER/VLTI.Principle,estimators,andillustration Spatial filtering DK P1 P2 IF P3 Recombination Spectral dispersion 2200 h IFP3 WavelengthWavelengt 2180 P2 2160 P1 K D 2140 50 100 Single−mode fibers Output pupils Spectrograph Raw Data #Pipxiexlesls Fig.1.Leftpanel:SketchoftheAMBERinstrument.Thelightenterstheinstrumentfromtheleftandispropagatingfromlefttorightuntilthe rawdataarerecordedonthedetector.Furtherdetailsaregiveninthetext.Rightpanel:AMBERreconstitutedimagefromtherawdatarecorded duringthe3-telescopeobservationofthecalibratorHD135382inFebruary2005,inthemediumspectralresolutionmode.DKcorrespondstoa darkregion,Pkaretheverticallydispersedspectraobtainedfromeachtelescope,andIFisthespectrallydispersedinterferogram. Surprisingly,theeffectofsingle-modewaveguidesonthein- reductionmethodshavealreadybeenproposedforsingle-mode terferometric signal has only been studied recently from a the- interferometersusingtemporalcoding(Colavita1999b;Kervella oreticalpointofview.Ruilieretal.(1997)usednumericalsim- etal.2004),thispaperisthefirsttopresentasignal-processing ulationsinthe presenceofpartialcorrectionbyadaptiveoptics algorithm dedicated to single-mode interferometrywith spatial to show that spatial filtering provided a gain on the visibility beamrecombination.Moreover,inthecaseofAMBER,thecon- signaltonoiseratio.Howeverhisstudywaslimitedtothecase figurationoftheoutputpupils,i.e.thespatialcodingfrequency, ofapointsource.Thecaseofsourceswithagivenspatialextent imposes a partial overlap of the in the three telescopes case wasfirsttheoreticallyaddressedbyDyer&Christensen(1999) interferometric peaks in the Fourier plane. As a consequence, fromageometricalpointofview.Theyprovedthatthevisibility data reduction based on the classical estimators in the Fourier obtained from single-mode interferometry was biased, the ob- plane (Roddier & Lena 1984; Mourard et al. 1994) cannot be jectbeingmultipliedbytheantennalobe(thepointspreadfunc- performed. The AMBER data reduction procedureis based on tion of one single telescope) exactly as it happens in radio in- a direct analysis in the detector plane, a principle that is an terferometry(Guilloteau2001).Anequivalentgeometricalbias optimization of the “ABCD” estimator as derived in Colavita was also characterizedfor the closurephase (Longueteauet al. (1999b). The specificity of the AMBER coding and its sub- 2002).Then Guyon(2002)noticedin his simulationsthattook sequent estimation of the observables arises from the desire the presenceofatmosphericturbulenceintoaccount,thatinter- to characterize and to make use of the linear relationship be- ferometric observations of extended objects (resolved by one tweenthepixels(i.e.theinterferogramsonthedetector)andthe single telescope) could not be completely corrected for atmo- observables (i.e. the complex visibilities). In other words, the spheric perturbations, therefore lowering the performances of AMBERdatareductionalgorithmisbasedonmodellingthein- single-mode interferometry. Finally, by thoroughly describing terferograminthedetectorplane. thepropagationoftheelectricfieldthroughsingle-modewaveg- InSect.2,wepresenttheAMBERexperimentfromasignal- uidesinthegeneralcaseofpartialcorrectionbyadaptiveoptics processing point of view and we introduce the interferometric andforasourcewitha givenspatialextent,Mègeetal. (2003) equationgoverningthisinstrument.Wedevelopthespecificdata unified previous studies and introduces the concept of modal reduction processes of AMBER in Sect. 3, and then derive the visibility, which in the general case does not equal the source estimators of the interferometric observables. Successive steps visibilityV andexhibitsajointlygeometricalandatmospheric inthedatareductionmethodaregiveninSect.4,asperformed o bias. Neverthelesstheyalsoshowthatforcompactsources,i.e. by the software provided to the community. Finally, the data- smallerthanoneAirydisk,themutualcoherencefactorµcould reductionalgorithmisvalidatedinSect. 5throughseveral“on- bewrittenintheformofasimpleproductµ = TT V whereT sky” observations with the VLTI (commissioning and science i a o i and T are, respectively, the instrumental and the atmospheric demonstrationtime(SDT)).Presentandfutureperformancesof a transferfunctionsthatcanbe calibrated.Recently,Tatullietal. thisinstrumentarediscussed. (2004)deducedfromananalyticalapproachthatinthespecific caseofcompactobjects,thebenefitofsingle-modewaveguides issubstantial,notonlyintermsofthesignal-to-noiseratioofthe 2. Presentationoftheinstrument visibilitybutalsooftherobustnessoftheestimator. 2.1.Imageformation Hence, following the path opened by the FLUOR experi- ment, the AMBER instrument – the three-beam combiner of TheprocessofimageformationofAMBERissketchedinFig.1 theVLTI(Petrovetal.2007)–makesuseofthefilteringprop- (left)fromasignal-processingpointofview.Itconsistsofthree erties of single-mode fibers. However, in contrast to FLUOR, major steps. First, the beams from the three telescopes are fil- PTI (Colavita 1999a) or VINCI on the VLTI (Kervella et al. teredbysingle-modefiberstoconvertphasefluctuationsofthe 2003), where the fringes are coded temporally with a movable corrugatedwavefrontsintointensityfluctuationsthatare moni- piezzo-electric mirror, the interference pattern is scanned spa- tored. The fraction of light entering the fiber is called the cou- tially thanks to separated output pupils, the separation fixing pling coefficient (Shaklan & Roddier 1988) and it depends on the spatial coding frequency of the fringes, as in the case of the Strehl ratio (CoudéduForesto et al. 2000).At this point, a the GI2T interferometer (Mourard et al. 2000). Thus, if data pair of conjugated cylindrical mirrors compresses, by a factor E.Tatullietal.:InterferometricdatareductionwithAMBER/VLTI.Principle,estimators,andillustration 31 Table1. Detectorproperties. The individualimage that is recorded during the detector inte- grationtime(DIT)iscalledaframe.Acubeofframesobtained Detectorspecifications duringtheexposuretimeiscalledanexposure. Society/Name Rockwell/HAWAII Composition HgCdTe Numberofpixels 512×512 2.2.AMBERinterferometricequation Pixelsize 18.5µm×18.5µm The following demonstration is given considering a generic SRpeeacdtoraultwnoidisteh 0.8µm9−e−2.5µm Ntel ≥ 2 telescope interferometer. In the specific case of e−/ADU 4.18 AMBER, however, Ntel = 2 or Ntel = 3. Each line of the Cooling Liquidnitrogen detector being independent of each other, we can focus our Temperature 78K attention on one single spectral channel1, which is assumed to Autonomyofcryostat 24h be monochromatichere. The effect of a spectral bandwidth on theinterferometricequationistreatedinSect.3.6.1. Interferometric output: when only the ith beam is illu- minated, the signal recorded in the interferometric channel is of about 12, the individual beams exiting from fibers into one the photometricflux Fi spreadon theAiry patternai, whichis k dimensionalelongatedbeamsto be injectedin the entranceslit the diffraction pattern of the ith output pupil weighted by the ofthespectrograph.Foreachofthethreebeams,beam-splitters single-modeof the fiber, k is the pixelnumberon the detector, placedinsidethespectrographselectpartofthelightandinduce andαistheassociatedangularvariable.Then, Fi resultsinthe threedifferenttiltanglessothateachbeamisimagedatdifferent totalsourcephotonfluxNattenuatedbythetotaltransmissionof locationsofthedetector.Thesearecalledphotometricchannels the ithopticaltrainti,i.e. theproductofthe opticalthroughput andareeachonerelativetoacorrespondingincomingbeam.The (including atmosphere and optical train of the VLTI and the remaining parts of the light of the three beams are overlapped instrument) and the coupling coefficient of the single-mode onthedetectorimageplanetoformfringes.Thespatialcoding fiber: frequenciesofthefringes f arefixedbytheseparationofthein- dividualoutputpupils.Theyare f = [1,2,3]d/λ,wheredisthe Fi =Nti. (1) outputpupildiameter.Sincethebeamshitaspectraldispersing Whenbeamsiand jareilluminatedsimultaneously,thecoherent element(a prism gluedon a mirroror one of the two gratings) additionofbothbeamsresultsinaninterferometriccomponent in the pupil plane, the interferogram and the photometries are superimposedonthephotometriccontinuum.Theinterferomet- spectrally dispersed perpendicularly to the spatial coding. The ric part, i.e. the fringes, arises from the amplitude modulation dispersed interferogramarisingfromthe beamcombination,as of the coherent flux Fij at the coding frequency fij. The co- wellasthephotometricoutputsarerecordedontheinfraredde- c herentfluxisthegeometricalproductofthephotometricfluxes, tector,whichcharacteristicsaregiveninTable1. The detector consists in a 512 × 512 pixel array with the weightedbythevisibility: √ (cid:1) (cid:2) vertical dimension aligned with the wavelength direction. The Fij =2N titjVijeiΦij+φipj (2) first 20 pixels of each scanline of the detector are masked and c neverreceiveanylight,allowingustoestimatethereadoutnoise whereVijeiΦij isthecomplexmodalvisibility(Mègeetal.2003) and bias during an exposure. The light from the two (resp. 3) andφij takesapotentialdifferentialatmosphericpistonintoac- telescopes comes in three (resp. 4) beams, one “interferomet- p count.Notethat,strictlyspeaking,themodalvisibilityisnotthe ric” beam where the interference fringes are located, and two sourcevisibility.However,thestudyoftherelationbetweenthe (resp.three)“photometric”beams.These3 (resp.4)beamsare modalvisibilityandthesourcevisibilityisbeyondthescopeof dispersed and spread over three (resp. 4) vertical areas on the this paper, but further informationcan be foundin Mège et al. detector.Thedetectorisreadinsubwindows.Horizontally,these (2003) and Tatulli et al. (2004). Here we consider our observ- subwindowsarecenteredontheregionswherethebeamsaredis- abletobethecomplexmodalvisibility. persed,withatypicalwidthof32to40pixels.Vertically,thede- Suchananalysiscanbedoneforeachpairofbeamsarising tectorcanbesetuptoreaduptothreesubwindows(coveringup tothreedifferentwavelengthranges).Therawdataformatused fromtheinterferometer.Asaresult,theinterferogramrecorded onthedetectorcanbewritteninthegeneralform: by AMBER recordsindividuallythese subframes.However,as sketchedintherightpanelofFig.1,theAMBERrawdatacan (cid:3)Ntel (cid:3)Ntel (cid:4) (cid:5) (cid:1) (cid:2)(cid:6) beconceivedasthegroupingtogetherofthesesubwindows: ik = aikFi+ aikakjCBijRe Fcijei2παkfij+φisj+ΦiBj . (3) i i<j – Theleftcolumn(noted“DK”)containsthemaskedpixels. – The two following columns(noted“P1” and “P2”) and the Here,φijistheinstrumentalphasetakingpossiblemisalignment s right one in the three telescope mode (noted “P3”), usu- and/or differential phase between the beams ai and aj into k k ally of 32 pixels wide, are the photometric outputs. They account, and Cij and Φij are, respectively, the loss of contrast record the photometric signal coming from the three tele- B B and the phase shift due to polarization mismatch between the scopes. When dealing with 2-telescope observations, only two beams (after the polarizers), such as the rotation of the channelsP1andP2arelit. single-mode fibers might induce. This equation is governing – The fourth column is the interferometric output (de- the AMBER fringe pattern, that is the interferometric channel noted“IF”).itexhibitstheinterferencefringesarisingfrom therecombinationofthebeams(thatis,twoorthreebeams, 1 In practice, there is a previous image-centering step, where each accordingtothenumberoftelescopesused).WecallNpixthe channel isre-centeredwithrespecttotheothersalongthewavelength numberofpixelsinthiscolumn,whichisusuallyN =32. dimension,asexplainedinSect.4. pix 32 E.Tatullietal.:InterferometricdatareductionwithAMBER/VLTI.Principle,estimators,andillustration ofthefourthcolumn.ThefirstsuminEq.(3),whichrepresents Table2.Acquisitionsequenceofcalibrationfiles. the continuum part of the interference pattern, is called the DC component from now on, and the second sum, which Step Sh1 Sh2 Sh3 Phaseγ DPRkey 0 describes the high frequencypart(that is the coded fringes),is 1 O X X NO 2P2V,3P2V calledtheACcomponentoftheinterferometricoutput. 2 X O X NO 2P2V,3P2V 3 O O X NO 2P2V,3P2V Photometric outputs: thanks to the photometric channels, 4 O O X YES 2P2V,3P2V the number of photoevents pi(α) coming from each telescope 5 X X O NO 3P2V 6 O X O NO 3P2V canbeestimatedindependentlywith 7 O X O YES 3P2V pi = Fibi (4) 8 X O O NO 3P2V k k 9 X O O YES 3P2V wherebi isthebeamprofileintheithphotometricchannel.The Sh=Shutter;O=Open;X=Closed. k previousequationrulesthephotometricchannels. 3. Datareductionalgorithm We then can compute the DC continuum corrected interfero- gramm , TheAMBERdata-reductionalgorithmisbasedonthemodelling k of the interferogram in the detector plane. Such a method (cid:3)Ntel requiresanaccuratecalibrationoftheinstrument. m =i − Pivi, (11) k k k i=1 3.1.Modellingtheinterferogram whichcanberewritten: Inordertomodeltheinterferogram,wedistinguishbetweenthe m =cijRij−dijIij. (12) astrophysical and instrumental parts in the interferometric k k k equation.Itbecomes: This equation defines a system of N linear equations with pix 2N = N (N −1) unknowns(i.e. twice the number of base- i =(cid:3)Ntel aiFi+(cid:3)Ntel (cid:7)cijRij+dijIij(cid:8) (5) linebs). Itctehlarateclterizesthe linear linkbetweenthe pixelsonthe k k k k detectorandthecomplexvisibility: i i<j wcikijth=CBij (cid:4)(cid:4)(cid:9)akikaaikkjakj cos(cid:1)2παkfij+φisj+ΦiBj(cid:2), (6) ⎛⎜⎜⎜⎜⎜⎜⎜⎝mmN|1pix ⎞⎟⎟⎟⎟⎟⎟⎟⎠=⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝(cid:17)(cid:1)..(cid:1)|(cid:1)..(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)c(cid:18)NciN:(cid:19)jbi1pji(cid:1)x(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)..(cid:1)|..(cid:20)(cid:17)..|(cid:1)..(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)d(cid:1)(cid:1)d(cid:18)NiN:1jip(cid:19)bjix(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)..(cid:1)|(cid:1)..(cid:1)(cid:20)⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝RI:::iijj⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠=V2PM⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝RI:::iijj⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (13) (cid:4) TheV2PMmatrix(namelyvisibilitytopixelmatrix),whichcon- dij =Cij (cid:4) aikakj sin(cid:1)2πα fij+φij+Φij(cid:2), (7) tainsthe carryingw(cid:4)aves, holdstheinformationaboutthe inter- k B (cid:9)kaikakj k s B ferometric beams aikakj, the coding frequencies fij, and the instrumental differential phases φij. Together with the vi, they s k and entirely describe the instrumentfrom a signal processing point (cid:10)(cid:3) (cid:7) (cid:8) (cid:10)(cid:3) (cid:7) (cid:8) ofview.Thesequantities,namelycij,dij,andvi,have,however, k k k Rij = aiajRe Fij , Iij = aiajIm Fij . (8) tobecalibrated. k k c k k c k k 3.2.Calibrationprocedure Asananalogywithtelecomdataprocessing,cijanddijarecalled k k the carrying waves of the signal at the coding frequency fij, The calibration procedure is performed thanks to an internal sincetheycarry(intermsofamplitudemodulation)Rij andIij, sourcelocatedintheCalibrationandAlignmentUnit(CAU)of AMBER(Petrovetal.2007).Itconsistsofacquiringasequence whicharedirectlylinkedtothecomplexcoherentflux(asshown of high signal-to-noiseratio calibration files, whose successive byEq.(8)). Theestimatedphotometricfluxes Pi arecomputedfromthe configurationsaresummarizedinTable2andexplainedbelow. Since the calibration is done in laboratory, the desired level of photometricchannels(seeEq.(4)): (cid:3) accuracyforthemeasurementsisinsuredbychoosingtheappro- Pi =Fi bi. (9) priateintegrationtime.Asanexample,typicalintegrationtimes k in“averageaccuracy”modeare(forthefullcalibrationprocess) k τ = 17s, 30 s, 800s for,respectively,low, medium,andhigh Ifweknowtheratiovi –whichonlydependsoftheinstrumental spectralresolutionmodesintheKbandand100timeshigherfor k configuration–betweenthemeasuredphotometricfluxesPiand the“highaccuracy”calibrationmode. thecorrespondingDCcomponentsoftheinterferogram,wecan The sequence of calibration files has been chosen to ac- haveanestimationofthelatterthankstothefollowingformula: commodatebothtwoandthree-telescopeoperations.Foratwo- telescopeoperation,onlythe4firststepsareneeded.Raw data aiFi = Pivi. (10) FITSfilesproducedbytheESOinstrumentsbearnoidentifiable k k E.Tatullietal.:InterferometricdatareductionwithAMBER/VLTI.Principle,estimators,andillustration 33 Calibration matrix − 2200nm vk functions − 2200nm ck & dk functions − 2200nm 1−2)0.015 30 1−2) 00..12 ne (0.010 ne ( 0.0 eli eli−0.1 Bas0.005 Bas−0.2 10 20 30 10 20 30 −3)0.015 20 −3) aseline (200..000150 # pixels aseline (2−000...101 B B −3) 10 20 30 10 −3) 10 20 30 10.015 1 0.1 ne (0.010 ne ( 0.0 seli0.005 seli−0.1 a a B 10 20 30 B 10 20 30 #pixels 0 2 4 6 #pixels Fig.2.Outputsofthecalibrationprocedures.Exampleshavebeenchosenforonegivenwavelength:λ = 2.2µm.Left:thevi functions.Middle: k the matrix containing the carrying waves; the first three columns are the cij functions for each baseline, and the three last columns are the k respectivedijfunctions.Onecanseethatforeachbaselinecijanddijareinquadrature.Right:anotherrepresentationofthecarryingwaves.From toptobottomk,bothsinusoidalfunctionscorrespondtocolumkns1−4k,2−5,and3−6ofthecalibrationmatrix. nameandcanonlybeidentifiedas,e.g.,filesrelevanttothecal- −2) 1.0 ibrationoftheV2PMmatrix,bythepresenceofdedicatedFITS ne (1 00..68 Vc.CB = 0.88 keywords (ESO’s pipeline Data PRoduct keys or “DPR keys”) Baseli 00..24 intheirheader.TheDPRkeysusedarelistedinTable2. 2140 2160 2180 2200 3) 1.0 − etearchoFpitreesnltees(dsc.toeTppheseb1feraaanmcdt,io2ann–oiamfnfladgu5exiwmshereeancsouirrndede3d-btewelteiwtsheceoonpneltyhmethoinidstee)sr,hffueort-r- Baseline (2 0000....2468 Vc.CB = 0.79 ometric channeland the illuminatedphotometricchannelleads −3) 1.0 2140 2160 2180 2200 to an accurate estimation of the vi functions. Then, in order to ne (1 00..68 compute the carryingwaves cikj ankd dkij, one needsto have two Baseli 00..24 2140 21V60c.CB = 0. 720180 2200 independent(intermsofalgebra)measurementsoftheinterfer- Wavelength ogramsincetherearetwounknowns(perbaseline)tocompute. Fig.3. Contrast loss due to polarization effects and partial resolution The principle is the following: two shutters are opened simul- oftheinternalsourceasafunctionofthewavelength.The3-telescope taneously(steps3/4,6/7,and8/9)andforeachpairofbeams, P2VMusedisthesameastheonepresentedinFig.2.Theerrorsbars then the interferogramis recorded on the detector. Such an in- areroughlyatthelevelofthecontrastlossrmsalongthewavelength. terferogram corrected for its DC component and calibrated by Inotherwords,thecontrastlossisconstantoverthewavelengthrange. the photometry yields the knowledge of the cij carrying wave. k To obtain its quadratic counterpart, the previous procedure is repeated by introducing a known phase shift close to 90 de- However, since cij and dij are shifted by π/2, they insure the k k gree γ using piezoelectric mirrors at the entrance of beams 2 followingrelation: 0 and 3. Computing the dij function from the knowledge of cij andγ isstraightforwardk.Notethatbyconstruction:(i)thecark- (cid:3)Npix rying0waves are computed with the unknown system phase Φc c2k +dk2 =CB2Vc2. (16) (possible phase of the internal source, differential optical path k difference introducedat the CAU level, etc.), and (ii) since the Hence,theconjugatedlossofvisibilityduetotheinternalsource internal source in the CAU is slightly resolved by the largest and the polarization effects can be known and calibrated1 by baseline (1−3)ofthe outputpupils,the carryingwaves forthis computing the previous formula. Unfortunately, since it is not specificbaselineareweightedbythevisibilityV oftheinternal c possibletodisentanglebothcontrastlosses,andsincetheV fac- c source.Hence,atthispoint,thecarryingwavesarefollowingex- tor only affects the interferograms arising from the calibration pressionsthatareslightlydifferentfromtheiroriginaldefinition procedure,andnotfromtheobservation,thevisibilityestimated givenbyEqs.(6)and(7): on a star will be affected from this factor as well, as shown in (cid:4) Sect.3.5.1. aiaj (cid:1) (cid:2) Figure 3 illustrates Eq. (16). For the baselines (1,2) cij = (cid:4) k k CijVijcos 2πα fij+φij+Φij+Φij (14) and (2,3), the contrast loss arises from polarization effects, k (cid:9) B c k s B c since the internalsource is unresolved.We findC12 (cid:4) 0.9 and aiaj B k k k C23 (cid:4)0.8,respectively.Forthethirdbaseline(1,3),theinternal B source is partially resolved, which explains an higher contrast (cid:4) loss,C13V13 (cid:4)0.7. aiaj (cid:1) (cid:2) B c dkij = (cid:4)(cid:9) k k CBijVcijsin 2παkfij+φisj+ΦiBj+Φicj . (15) 1 This step is not yet provided in the amdlib software described aiaj inSect.4. k k k 34 E.Tatullietal.:InterferometricdatareductionwithAMBER/VLTI.Principle,estimators,andillustration 3.3.Fringefitting Itisthenstraightforwardthat (cid:3) (cid:3) ToestimatethecoherentfluxesRij and Iij,whichareattheba- σ2 = (ζb)2σ2(m ); σ2 = (ξb)2σ2(m ). (22) sis of the computation of the whole AMBER observables, one Rb k k Ib k k k k hastosolvetheinverseproblemdescribedbyEq.(13),i.e.one has to performan χ2 linear fit of the fringes,with the coherent fluxesbeing the unknownparameters.The solution is givenby 3.5.Estimationoftheobservables thefollowingequation For each spectral channel, the squared visibility and closure [R(cid:21)ij,(cid:21)Iij]=P2VM[m ], (17) phase(inthethreetelescopecase)canbeestimatedfromthein- k terferogram.Takingadvantageofthespectraldispersion,thedif- where ferentialphasecanbecomputedaswell.Inthefollowingpara- P2VM=(cid:7)V2PMTC−1V2PM(cid:8)−1V2PMTC−1 (18) gqruaapnhtist,iewse. Tdehnisotaevweriathge(cid:5).c..a(cid:6)nthbeeenpseerfmobrmleeadveeritahgeeroofnthtehedifffraemreenst M M withinanexposureand/oronthewavelengths. is the generalized inverse of the V2PM matrix, C being the M covariance matrix of the measurements m , and XT denoting k the transpose of the X matrix. P2VM means Pixel to Visibility 3.5.1. Thesquaredvisibility Matrixsinceitallowsestimationofthecomplexvisibilityfrom Theoretically speaking, the squared visibility is given by com- the interferogram recorded on the detector. Assuming that the pixels on the detector are uncorrelated, the C matrix is diag- putingtheratiobetweenthesquaredcoherentfluxandthepho- M tometricfluxes.FollowingEqs.(1),(2),(8)and(9)itbecomes: onal,with eachtermofthediagonaldefinedbythe varianceof the DC-correctedinterferogramσ2(mk). Thefundamentalerror |Fij|2 Rij2+Iij2 |Vij|2 ontheDCcorrectedinterferogramarisesfromthephotonnoise c = (cid:9) = · (23) anddetectornoise(ofvarianceσ)corruptingthemeasurements, 4FiFj 4PiPj kvikvkj Vcij2 thatis,eachpixeloftheinterferogrami andtheestimatedpho- k tometricfluxesPi.Itbecomes: Notethat,thankstothecalibrationprocess,thecomputedvisibil- ityisfreeoftheinstrumentalcontrast,whichisthelossofcon- (cid:3)Ntel (cid:7) (cid:8) trastduetotheinstrument;butasmentionedinSect.3.2,theob- σ2(m )=i +σ2+ P +N σ2 (vi)2. (19) k k i pix k jectvisibilityisweightedbythevisibilityoftheinternalsource. i=1 However,thisfactor(Vij2)automaticallydisappearswhendoing c thenecessaryatmosphericcalibration(seeSect.3.6.2). 3.4.Fringedetection Asaresultthevisibility–atmosphericissuesapart–hasstill tobecalibratedbyobservingareferencesource.Inpractice,be- Positive detection of fringes in the measurements requires, at cause data are noisy, we perform an ensemble average on the thesametime,enoughfluxenteringthefibersandhighenough framesthatcomposethedatacube(seeSect.2.1)toestimatethe fringe contrast, so that the fringesrise with the noise level. As expectedvaluesofthesquarecoherentfluxandthephotometric a result, the computationof the signal-to-noiseratio of the co- fluxes,respectively.Takingtheaverageofthesquaredmodulus herent flux, which takes both of the parameters into account, ofthecoherentflux,i.e.doingaquadraticestimation,allowsus appearsnaturallyastherelevantcriteriontouse. ⎡⎛ ⎞ ⎛ ⎞⎤ to handlethe problemofthe randomdifferentialpiston φij, but SNR2(t)= 1 1 (cid:3)Nb (cid:3)Nl ⎢⎢⎢⎢⎢⎣⎜⎜⎜⎜⎜⎝Rb2(l,t) −1⎟⎟⎟⎟⎟⎠+⎜⎜⎜⎜⎜⎝Ib2(l,t) −1⎟⎟⎟⎟⎟⎠⎥⎥⎥⎥⎥⎦ (20) introducesaquadraticbiasduetothezero-meanphotonanpdde- N N σ2 σ2 tectornoises(Perrin2003).Theexpressionofthesquaredvisi- b l b l Rb Ib bilityestimator,unbiasedbyfundamentalnoisesistherefore: bbeingforsakeofsimplicitythebaselinenumberthatdescribes (cid:29) (cid:30) eachpairoftelescopes(i, j),N thenumberofbaselines,andN |V(cid:28)ij|2 Rij2+Iij2 − Bias{Rij2+Iij2} b l = (cid:31) (cid:9) · (24) tqhueanntuitmiebseRrbo2fasnpdeIcbtr2atlenchdatnonwealrsd. Iσn2thaendabσs2en,creesopfecftriivnegleys,,ththues Vcij2 4 PiPj kvikvkj Rb Ib driving the fringe criterion toward 0. In contrast, the presence Thequadraticbiasofthesquaredamplitudeofthecoherentflux of fringes above the noise level, that is, when Rb2(l,t) > σ2 writes as the quadratic sum of the biases of R2 and I2. From Rb Eq.(22),weget: and/or Ib2(l,t) > σ2Ib imposes the fringe criterion to be strictly (cid:3)(cid:7) (cid:8) superiorto0 andisdirectlylinkedtothequalityoftheframes. Bias{Rij2+Iij2}= (ζij)2+(ξij)2 σ2(m ). (25) Itthusallowsustooperateafringeselectionpriortotheproper k k k k estimation of the observables,a step thatcan be usefulforsets of data recorded in bad observational conditions, as shown in The previousequation is nothing but the mathematical expres- Sect.5.2. sionthatdescribesthebiasasthequadraticsumoftheerrorsof The values σ2Rb and σ2Ib, the bias part of R2 and I2, can be themeasurementsσ2(mk)(asdefinedbyEq.(19))projectedon easily computed from the definition of the real and imaginary therealandimaginaryaxisofthecoherentflux. partofthecoherentfluxes,whicharelinearcombinationsofthe Usingthesquaredvisibility estimatorofEq.(24),thetheo- DCcontinuum-correctedinterferogramsm .Ifζb andξb arethe reticalerrorbarsonthesquaredvisibilitycanbecomputedfrom k k k coefficientsoftheP2VMmatrix,Rb andIbverifytherespective itssecond-orderTaylorexpansion(Papoulis1984;Kervellaetal. followingequations: 2004): ⎡ ⎤ Rb =(cid:3)Npixζbm , Ib =(cid:3)Npixξbm . (21) σ2(|Vij|2)= 1 ⎢⎢⎢⎢⎢⎢⎢⎣σ2(|Cij|2) + σ2(PiPj)⎥⎥⎥⎥⎥⎥⎥⎦|Vij|22 (26) k=1 k k k=1 k k M |Cij|22 PiPj2 E.Tatullietal.:InterferometricdatareductionwithAMBER/VLTI.Principle,estimators,andillustration 35 where |Cij|2 = Rij2 + Iij2 − Bias{Rij2 + Iij2} is the unbiased 3.5.4. Thepiston squared coherent flux. In practice, the expected value and the Theinterferometricphaseinducedbytheachromaticpistonterm varianceofthesquaredcoherentfluxandthephotometricfluxes takestheform are computedempirically from the M available measurements. Wethengetthefollowingsemi-empiricalformula: 2πδij φij = =2πδijσ (32) ⎡(cid:29) (cid:30) (cid:29) (cid:30) λ λ σ2stat(|V(cid:28)ij|2) = M1 ⎢⎢⎢⎢⎢⎢⎢⎢⎣ |Cij|4(cid:31)|MCi−j|2 |2Cij|2 2M swchoepreeiδaijndisj,thλe iascthhreomwaatviceledniffgtehr,enatniadlσpiisstotnhebwetawveeennumteblee-r M (cid:29) (cid:30) (cid:29) (cid:30) ⎤ (i.e.σ=1/λ). + Pi2Pj(cid:31)2PMiP−j 2PiPj 2M⎥⎥⎥⎥⎥⎥⎥⎥⎦|V(cid:28)ij|22. (27) First order Taylor expansion: at first order, the estimated M differential phase of Eq. (31) is a linear function that takes the genericform∆φ =φ +2π(σ −σ )δ.Itsslopeδdependson 12 1 2 1 Notefinallythat,althoughquadraticestimationofthevisibility thesumofatmosphericpistonδ ,whichvariesframebyframe, p hasbeencomputed,thesquaredvisibilitywillbesystematically and of the linear componentof the objectdifferentialphaseδ . o decreasedbythe atmospherejitter duringtheframeintegration A good estimate of this slope in the presence of noise is the time.WefocusonthiseffectinSect.3.6. argumentoftheaveragecrossspectrumalongthewavelengths: (cid:29) (cid:30) 3.5.2. Theclosurephase δ!ij+!δij = ar(cid:31)g Wλi2jl,λ2l+1 l · (33) Bydefinition,theclosurephaseisthephaseoftheso-calledbis- p o 2π σλ2l+1 −σλ2l l pectrumB123.Thebispectrumresultsintheensembleaverageof Estimation of the piston is unbiased when the wave number thecoherentfluxtripleproductandthenestimatedas varies linearly with the spectral pixel index (linear grating dis- persion law). Thiscan be true with an excellentapproximation (cid:29) (cid:30) B(cid:21)123 = C12C23C13∗ (28) atmediumspectralresolutionandhighspectralresolutioninthe AMBER case. However,for the low spectralresolution, biases ashighas5%intheestimationofpistoncanoccur. whereCij =Rij+iIij.Theclosurephasethenisstraightforward: ⎡ ⎤ Fitting the complex phasor: the achromatic piston can φ!123 =atan⎢⎢⎢⎢⎣Im(B(cid:21)123)⎥⎥⎥⎥⎦· (29) alsobeestimatedfromaleast-squarefitofthecomplexcoherent B (cid:21) flux.Ifwedefinethecomplexphasoras Re(B123) Theclosurephasepresentsthe advantageofbeingindependent Ψλ =Cλij×e2iπλδij, (34) of the atmosphere(e.g. Roddier 1986).However in the case of δij can be retrieved by minimizing the phase of such complex AMBER,theclosurephaseoftheimagemightnotcoincidewith phasoror,equivalently,by minimizingthetangentofthe phase. theoneoftheobjectandmightbebiasedbecauseofthecalibra- Theχ2isthendefinedas: tion process. If the so-called system phase presents a non-zero (cid:1) (cid:2) closure phase Φ1c2 +Φ2c3 −Φ1c3, this biasmustbe calibratedby (cid:3) Im(Ψλ) 2 observingapointsourceoratleastacentro-symmetricalobject. Re(Ψλ) So far, no theoretical computation of the error of the closure σ2 +σ2 phase has been provided for the AMBER data-reduction algo- χ2 = (cid:3)λ Rλ Iλ · (35) 1 rithm.Thus,closure-phaseinternalerrorbars(i.e.thatdoesnot σ2 +σ2 includesystematicserrors)are computedstatistically bytaking λ Rλ Iλ the root mean square of all the individual frames, then divid- ing by the square root of the number of frames, as illustrated Thisχ2 ishighlynon-linearandsimpletechniquessuchasgra- inSect.5.5. dient fitting cannot be used here. On the contrary, non-linear fitting techniques such as genetic or simulated annealing algo- rithms(Kirkpatricketal.1983)mustbeusedinstead. 3.5.3. Thedifferentialphase Note that, in order to distinguish between the atmospheric piston δ andthe linearcomponentofthe differentialphaseδ , The differential phase is the phase of the so-called cross spec- p o thefittingtechniquesdescribedabovecanbeperformedbyonly trumW .Foreachbaseline,thelatterisestimatedfromthecom- 12 using spectral channels correspondingto the continuum of the plexcoherentfluxtakenattwodifferentwavelengthsλ1andλ2: source(i.e.outsidespectralfeatures)whereitsdifferentialphase (cid:29) (cid:30) oftheobjectisassumedtobezero. (cid:28) ∗ Wij = CijCij . (30) 12 λ1 λ2 3.6.Biasesofthevisibility Andthedifferentialphaseis: 3.6.1. Lossofspectralcoherence ⎡ " #⎤ ∆(cid:28)φi1j2 =atan⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣IRme"WW(cid:28)(cid:28)1ii2jj#⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦· (31) Tmofhoeonnoaecbhosrvpoeemcdtaertariiclvascpthieaocnntnroaeflltcihsheannionnnteelrz.feIernroopmaranecdttriidcceee,pqethuneadtssioponencatsrthasulemwreeidssotha- 12 lution R of the spectrograph. As a consequence the coherence 36 E.Tatullietal.:InterferometricdatareductionwithAMBER/VLTI.Principle,estimators,andillustration length L of the interferogram is finite and equals L = λ R, hardly calibratable, are clearly identified and suppressed. Note c c 0 where λ is the reference wavelength in the spectral channel. as well thatthe use of the accuratefringetrackerFINITO(Gai 0 Assuming a lineardecompositionof the phaseof theinterfero- etal.2002),soonexpectedtooperateontheVLTI,shoulddrasti- gram andneglectinghigherorders,the interferogramis attenu- callyreducethejitterattenuation,henceallowingintegrationon atedbyafactorρ ,whichcanbewritten muchlongertimesthanthecoherencetimeoftheatmospherein k $$ & ’$$ ordertoreachfainterstars. $ δ +δ +δ $ ρ =$$F% π k p o $$, (36) k $ L $ c 4. Theamdlibdatareductionsoftware whereF%istheFouriertransformofthespectralfilterfunction, δ isthespatialsamplingoftheinterferogram(thatis,thepixel A dedicatedsoftwaretoreduceAMBERobservationshasbeen k coordinates expressed in optical path difference (OPD) units), developed by the AMBER consortium. This consists of a li- δ and δ the atmospheric piston and the slope of the object braryofCfunctions,calledamdlib,plushigh-levelinterfacepro- p o spectraldifferentialphase,respectively,asdefinedinSect.3.5.4. grams. The amdlib functionsare used at all stages of AMBER Notethatforasquarefilter,theattenuationcoefficienttakesthe dataacquisitionandreduction:intheobservationsoftware(OS) forwavelengthcalibrationandfringeacquisition,inthe(quasi) well-knownformofthesincfunction: $$ & ’$$ real time display program used during the observations, in the $ δ +δ +δ $ ρ =$$sinc π k p o $$· (37) online data reduction pipeline customary for ESO instruments, k $ L $ andinvariousofflinefrontendapplications,noticeablyaYorick c implementation(AmmYorick).Theamdliblibraryismeanttoin- Inthelow-resolutionmodewhereR = 35,theattenuationcoef- corporateall the expertiseonAMBER data reductionandcali- ficient stronglydependson the pixelpositionδ , which is cali- k brationacquiredthroughoutthelifeoftheinstrument,whichare bratablequantity.Nonetheless,the compensationfor thiseffect boundtoevolvewithtime. requiresaniterativeprocessintwostepswhere(i)theestimation The data obtainedwith AMBER (“raw data”) consistof an of δ +δ is performedas described in Sect. 3.5.4 and (ii) the p o exposure,i.e.,atimeseriesofframesreadontheinfraredcam- ρ attenuationcorrectionisapplieddirectlytotheDCcorrected k era, plus all relevant information from AMBER sensors, ob- interferogramsm .Theloopisthenrepeateduntilconvergence. k servedobject,VLTI setup, etc.,stored in FITSTABLE format, Thisalgorithm,whichhasnotyetbeenimplementedinthesoft- according to ESO interface document VLT-ICD-ESO-15000- ware,willbedescribedingreaterdetailinaforthcomingpaper. 1826. Saving the raw, uncalibrated data, although more space- In the medium and high resolutions (where R = 1500 and consuming, permits us to benefit afterwards, by replaying the R = 10000, respectively), however, the OPD δ due the spa- k calibration sequences and the data reduction anew, from all tialsamplingofAMBERcanbeneglected.Indeedthisapprox- the improvementsthat could have been deposited in amdlib in imation leads to a relative error of the coefficient below 10−3 themeantime. and 10−5, respectively, which is within the specified error bars Thelibrarycontainsasetof“softwarefilters”thatrefinethe of the visibility. In such a case, the loss of spectral coherence raw data sets to obtain calibrated “science data frames”. This simply resultsin biasingthe visibility frameto framebya fac- treatmentisperformedonalloftherawdataframes,irrespective torρ(δ +δ ).Thisbiascanbecorrectedbyknowingtheshape p o of their futureuse (calibrationor observation).A secondset of ofthespectralfilterandbyestimatingthepistonδ +δ thanks p o functionsperformshigh-leveldataextractiononthesecalibrated toEq.(33). frames,eithertocomputetheV2PM(seeSect.4.3)fromasetof calibrationdataortoextractthevisibilitiesfromasetofscience 3.6.2. Atmosphericjitter targetobservations,theendproductinthiscasebeingareduced setofvisibilitiesperobject,storedintheopticalinterferometry Although a quadratic estimation of the visibility has been per- standardOI_FITSformat(Paulsetal.2005). formedtoavoidthedifferentialpistontocompletelycancelout thefringes,thehighfrequencyvariationsofthelatterduringthe integration time – so called high-pass jitter – neverthelessblur 4.1.Detectorcalibration thefringes.Asaresult,thecoherentflux,thusthevisibility,isat- First,allframespixelsaretaggedvalidifnotpresentinthecur- tenuated.Onaverage,theattenuationcoefficientΓofthesquared rentlyavailablebadpixellistoftheAMBERdetector.Thenthey visibilityisgivenbyColavita(1999b): are converted to photoevent counts. This step necessitates, for Γ=exp(−σ2 ) (38) each frame,precisely modellingof the spatially andtemporar- φp hf ilyvariablebiasaddedbytheelectronics.Thedetectorexhibits whereσ2 isthevarianceofthehigh-passjitterφp . a pixel-to-pixel(highfrequency)biaswhosepatternisconstant φp hf Forthheftimebeing,thisatmosphericeffectiscompensatedby intimebutwhichdependsonthedetectorintegrationtime(DIT) andthesizeandlocationofthesubwindowsreadonthedetector. calibratingthesourcevisibilitywithareferencesourceobserved Thus, after each change in the detector setup, a new pixel bias shortlybeforeandafterthescientifictargettoinsuresimilarat- map(PBM)ismeasuredpriortotheobservationsbyaveraginga mosphericconditions.Wehavealsoplannedinthenearfutureto largenumberofframesacquiredwiththedetectorfacingacold provideamoreaccuratecalibrationofthiseffect,basedoncom- shutter2.ThisPBMisthensimplyremovedfromallframesprior puting the variance of the so-called “first difference phase jit- toanyothertreatment. ter”,whichisthedifferenceoftheaveragepistontakenbetween Oncethisfixedpatternhasbeenremoved,thedetectormay two successive exposures,as proposedbyColavita (1999b)for still be affected by a time-variable “line” bias, i.e., a variable thePTIinterferometerandsuccessfullyappliedbyMalbetetal. (1998).However,jitteranalysis(asillustratedinSect.5.2)can- 2 Duetomechanical overheads, “hot dark” observations, i.e.,using notbetestedandvalidatedaslongastheextra-sourcesofvibra- onlyanambienttemperaturebeamshutterexternaltothedewarofthe tionsduetoVLTIinstabilities(delaylines,adaptiveoptics,etc.), detector,arecurrentlyusedtocomputethePBM. E.Tatullietal.:InterferometricdatareductionwithAMBER/VLTI.Principle,estimators,andillustration 37 offsetforeachdetectorline.Thisbiasisestimatedforeachscan them with their “governing”calibration matrix. The amdlib li- lineandeachframeasthemeanvalueofthecorrespondingline brary takes the opportunity of the P2VM file being pivotal to ofmaskedpixels(“DK”columninFig.1)andthensubstracted the data reduction,and unique,to make it a placeholderfor all from the rest of the line of pixels. The detector has an image the other calibration tables needed to reduce the science data, persistenceof∼10%;consequently,allframesarecorrectedfor namelythespectralcalibration,badpixels,andflatfieldtables. this effect before calibration. Pixels are then converted to pho- toeventcountsbymultiplyingbythepixel’sgain.Currentlythe mapofthepixelgainsusedissimplyaconstante−/ADUvalue 4.4.Fromsciencedatatovisibilities (seeTable1)multipliedbya“flatfield”mapacquiredduringlab- The computation of visibilities is performed by the oratorytests. Finally,thermsofthevaluesin themaskedpixel amdlibExtractVisibilities() function, using a valid set, which were calibrated as the rest of the detector, gives the P2VM file. Then amdlibExtractVisibilities()is able to frame’sdetectornoise. performvisibilityestimates on aframe-by-framebasis, or over agroupofframes,calledbin. The amdlibExtractVisibilities() function, in se- 4.2.Imagealignmentandsciencedataproduction quenceis Once the cosmetics on the pixels is done, amdlib corrects the 1. inverttheV2PMcalibrationmatrix; datafromthespatialdistortionspresentintheimage.Presently, theonlycorrectedeffectisadisplacementofthespectraacquired 2. extractrawvisibilities; 3. correctforbiases,computedebiasedV2visibilities; inthe“photometricchannels”(labeledP1,P2,P3inFig.1)with 4. computephaseclosures; regards to the fringed spectrum in the interferometric channel. 5. computecrossspectra; Thisdisplacementof a few pixelsin the spectraldispersiondi- 6. fitpistonvaluesfromcrossspectra; rectionisduetoaslightmisalignmentofthebeam-splittersde- scribed in Sect. 2.1,and correctingfor this effect is mandatory 7. writetheOI-FITSoutputfile. forcomputingtheDCcontinuuminterferogram(Eq.(11)).The A typical data reduction process will first process all calibration of this displacementis performedby amdlib during raw data files related to the calibration procedures per- thespectralcalibrationprocedure,oneofthefirstcalibrationse- formed before acquiring the science data, thus perform- quencestobeperformedpriortoobservations. ing spectral calibration (e.g., using the command line pro- Finally,eachframeisconvertedtothehandier“sciencedata” gram amdlibComputeSpectralCalibration), then P2VM structure, which contains only the calibrated image of the “in- file computation (e.g., using the command line program terferometric channel” and (up to) three 1D vectors, the corre- amdlibComputeP2vm).OncetheP2VMfileiscomputed,itcon- spondinginstantaneousphotometryofeachbeam,correctedfor tains all the calibration quantities needed to process science theabove-mentionedspectraldisplacement. object observations. One then uses the amdlibExtractVis programonasciencedatasettogetthefinalOI-FITSfilecon- tainingthemeasuredscienceobjectvisibilities. 4.3.Calibrationmatrixcomputation ComputationoftheV2PMmatrixisperformedbythefunction amdlibComputeP2vm().Thisfunctionprocessesthe4or9files 5. Illustrationsanddiscussions describedinSect.3.2applyingbyeachofthemthedetectorcal- ibration,imagealignment,andconversionto“sciencedata”de- This section aims to present, step-by-step, the data reduction scribedabove,thencomputingthevi (Eq.(10))andthecarrying procedures performed on real interferometric measurements k waves cij and dij of the V2PM matrix (Eq. (13)). The result is arisingfromVLTIobservations.Resultsarediscussed,focusing k k stored in a FITS file, improperly called, for historical reasons, onkeypointsintheprocess. “theP2VM”3. The P2VM matrix is the most important set of calibration valuesneededto retrievevisibilities. Theshape of the carrying 5.1.Fringefitting waves(thec sandd s)and,inlessermeasure,theassociatedv s k k k aretheimprintsofallthechangesinintensityandphasethatthe Assuming the calibration processhas been properlyperformed beamssufferbetweenthe outputofeach fiberanddetectionon followingSect.3.2,thefirststepinthederivationoftheobserv- theinfraredcamera.AnychangeintheAMBERopticssituated ablesistoestimatetherealandimaginarypartsofthecoherent in this zone, either by moving, e.g., a grating, or just thermal flux.Thisisdonebyinvertingthecalibrationmatrixandobtain- long-termeffects,rendertheP2VM unusable.Thus,theP2VM ing the P2VM matrix, shown by Eqs. (17) and (18). Figure 4 matrix must be recalibrated each time a new spectral setup is givesanexampleofthefringefittingprocessforanobservation calledthatinvolveschangingtheopticalpathbehindthefibers. ofthecalibratorstarHD135382withthreetelescopes. All the instrument observing strategies and operations are However,beforegoingfurtherinthedatareductionprocess, governedbytheneedtoavoidunnecessaryopticalchanges,and itmightbeworthwhilefortheuserstocheckthevalidityofthe care is taken at the operating system level to assure a recali- fitandthentodetectanypotentialproblemsinthedata.Sucha bration of the P2VM whenever a “critical” motor affecting the step canbeeasilydonebycomputingtheresidualχ2res between optical path is set in action. To satisfy these needs, the P2VM themeasurementsmk andthemodelm(cid:21)k: computationhasbeenmademandatorypriortoscienceobserva- [m(cid:21) ]=V2PM[R(cid:21)ij,(cid:21)Iij] (39) tionsandisgivenanuniqueIDnumber.Allthesciencedatafiles k produced after the P2VM file inherit this ID, which associates and 3 Actually“theV2PM”shouldbethepropername. χ2res =[m(cid:21)k−mk]TC−M1[m(cid:21)k−mk]. (40) 38 E.Tatullietal.:InterferometricdatareductionwithAMBER/VLTI.Principle,estimators,andillustration Chi2 residual = 1.21628 Then, we have added the photometry taken on the (cid:14) Sco data, whichallowedustokeeprealisticphotometricrealizationstak- 100 ing the correcttransmissionsof the instrumentinto account.In thatcase,selectingthebestfringeshasnoothergoalthantoim- prove the SNR of the observables by excluding the data with 50 poorflux. mk In the presence of atmospheric turbulence and lack of a 0 fringetracker,thefringesaremovingduringtheintegrationtime, leadingtolowerthevisibility.Onaverage,thesquaredvisibility −50 isattenuatedbyafactorexp(−σ2 ),whereσ2 isthevariance φp φp hf hf of the atmospheric high pass jitter, as explained in Sect. 3.6.2. 10 20 30 The frame-by-framevisibility, though,undergoesa randomat- # pixels tenuationaroundthisaveragelossofcontrast.Anexampleofthe Fig.4. Example of fringe-fitting by the carrying waves in the effectoftheatmosphericjitterisgiveninFig.6(middle),where 3-telescope case. The DC-corrected interferogram is plotted (dashdot aprevioussetofsimulateddatahasbeenused,addingaframe- line)withtheerrorbars.Theresultofthefitisoverplotted(solidline). by-frame randomattenuation taking the τ = 25 ms integration time of the (cid:14) Sco observation into account. Once again, fringe Using this checking procedure,the user can verify two critical selectiononlyenablesustoincreasetheSNRoftheobservables pointsofthedataprocessing: here. However,whenwelookattherealsetofdataobtainedfrom – thecorrectsubtractionoftheDCcomponent(seeEq.(11)): theobservationof(cid:14) Sco, weobtaintheplotdisplayedinFig.6 if such a condition is not fulfilled, the computed visibility (right).Thedispersionofthevisibility,especiallyforlowfringe will inevitably be biased since the fringe fitting by the car- SNRisunexpectedlylargeandcandefinitivelynotbeexplained ryingwavessupposestheonlypresenceofspecificfrequen- bypureatmosphericOPDvibrations.Asamatteroffact,these cies,thatis,thespatialcodingfrequenciesoftheinstrument. variations are due to the present strong vibrations along the A wrong DC subtraction might occur with sudden atmo- VLTIinstrumentation(adaptiveoptics,delaylines,etc.),asthis sphericchangesbetweentherecordingoftheinterferometric effectwaspreviouslyrevealedbytheVINCIrecombiner.These channelandtheassociatedphotometricones,asthesechan- vibrationsstronglyreducethefringe contrastand subsequently nels are not on the same line of the detector, as mentioned thevalueoftheestimatedvisibilities,whichexplainsthebehav- inSect.4.2. ior of the visibilities as a function of the fringe SNR. Indeed, – theuseofacorrectbadpixelmap:ifnot,thepresenceofbad whenthevisibilitytendstoward0,becauseofseverejitteratten- pixelsinduceshighfrequenciesinthefringes,whichcannot uation, the fringe criterion tends toward 0 as well. In contrast, betakenintoaccountbythecarryingwaves,drivingoneto the visibility plotted as a function of the fringe SNR saturates compute biased visibility, as well. Note that the bad pixel forhighvaluesofthelatter. map is computed every time a detector calibration is per- The major issue is thatsuch an effect is hardly calibratable formedinthemaintenanceprocedure. because potentially non stationary.Hence, one convenientway toovercometheproblem,besideincreasingtheerrorbarsartifi- ciallytotakethisphenomenonintoaccount,istoonlyselectthe 5.2.Fringecriterionandfringeselection fringesthatarelessaffectedbythevibrations,thatis,thefringes For each frame of the set of data, Eq. (20) provides an es- withthehighestfringeSNR.Onecanthenchoosethepercentage timation of the fringe signal-to-noise ratio. As an example, of selected frames from which the visibility will be estimated. Fig. 5 presents100 fringesrecordedon the detectorduringthe Thethresholdmustbechosenaccordingtothefollowingtrade- 2-telescopeobservationofthecalibrator(cid:14)ScoinJuly2005,first off:reducingthenumberofframesconsideredallowstogetrid intheordertheyappearedduringtheobservationandthenafter ofmostofthejitterattenuation,but,fromacertainnumberwhen re-orderingthemfollowingthefringecriterion. thesampleisnotlargeenoughtoperformstatistics,itincreases Theaimofcomputingthiscriterioncanbetwofold:(i)dur- thenoiseonthevisibility.Furthermore,itleadstomis-estimate ing the observations, as mentioned in Sect. 3.4, it allows us to thequadraticbias(seeEq.(25)),whichisbyessenceastatisti- detect the fringes and therefore to initiate the recording of the cal quantity,and consequentlydrives to introducea bias in the dataonlywhenitismeaningful;and(ii)calculatedaposteriori visibility. duringthe data reductionphase, it enablesus to select the best Obviously, such a selection process must be handled with frames(intermsofSNR)beforeestimatingtheobservables.This care,anditsrobustnesswithregardtotheselectionlevelhasto secondpointisespeciallyimportantwhereframesarerecorded beestablishedforanygivenobservation.Inotherwords,forthis inthepresenceofstrongandvariablefringejitter. method to be valid, the expected value for the calibrated visi- In the ideal and unrealistic case where the fringes are not bility must remain the same, with only the error bars changing movingduringtheintegrationtime,thefringecontrastisnotat- and eventually reaching a minimum at some specific selection tenuated by vibrations, and the frame-by-frameestimated visi- level. In particular, this method seems well adapted, above all, bility is constant, no matter what the photometric flux level is to cases where the calibrator exhibits a magnitude close to the in each arm of the interferometer. As a result, the visibility as source’sone,wherethevisibilitydistributionversustheSNRis a functionthe function of the fringe SNR is constant, with the expected to behave similarly. Going into further details af this errorbarsincreasingasthefringeSNRdecreases.Thisisillus- point is nevertheless beyond the scope of this paper as it will trated in Fig. 6 (left). To obtain this set of jitter-free data, we bedeeplydevelopedinMillouretal.(2007).Howevernotethat have built interferograms using the carrying waves of the cal- we experimentallyfoundthis procedureto be generallyrobust, ibration matrix that simulate perfectly stable AMBER fringes. andfortypicalobservationsperformeduntilnowwiththeVLTI,

Description:
Astronomy. & AMBER: Instrument description and first astrophysical results Furthermore, each step in this original algorithm is illustrated and discussed from 2 Due to mechanical overheads, “hot dark” observations, i.e., using.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.