ebook img

Interface dynamics of a two-component Bose-Einstein condensate driven by an external force PDF

2.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Interface dynamics of a two-component Bose-Einstein condensate driven by an external force

Interface dynamics ofatwo-component Bose-Einstein condensate driven by anexternal force D. Kobyakov,1 V. Bychkov,1 E. Lundh,1 A. Bezett,1 V. Akkerman,2 and M. Marklund1 1Department of Physics, Umea˚ University, 901 87 Umea˚, Sweden 2DepartmentofMechanicalandAerospaceEngineering, PrincetonUniversity,NJ-08544-5263Princeton,USA The dynamics of an interfaceinatwo-component Bose-Einsteincondensate driven bya spatiallyuniform time-dependent force is studied. Starting from the Gross-Pitaevskii Lagrangian, the dispersion relation for linearwavesandinstabilitiesattheinterfaceisderivedbymeansofavariationalapproach.Anumberofdiverse 1 dynamicaleffectsfordifferenttypesofthedrivingforceisdemonstrated, whichincludestheRayleigh-Taylor 1 instabilityforaconstantforce,theRichtmyer-Meshkovinstabilityforapulseforce,dynamicstabilizationofthe 0 Rayleigh-Taylorinstabilityandonsetoftheparametricinstabilityforanoscillatingforce. GaussianMarkovian 2 andnon-Markovianstochasticforcesarealsoconsidered.ItisfoundthattheMarkovianstochasticforcedoesnot n produceanyaverageeffectonthedynamicsoftheinterface,whilethenon-Markovianforceleadstoexponential a perturbationgrowth. J 1 3 I. INTRODUCTION As a particular experimental realization of such a force, Sasakietal.[12]suggestedasystemoftwophase-segregated, ] interacting BECs with different spins placed in an external s a Superfluid dynamics of interfaces between Bose-Einstein magnetic field gradient. This is possible, for example, for g condensates(BECs) ofdiluteatomic gaseshasgainedactive two magneticsublevelsof the F =1 hyperfinestate of 87Rb - interest,bothinexperimental[1–5],andtheoreticalworks[6– with F,m = 1, 1 and 1,1 . Starting from the Gross- nt 13]. These studies started with the experimental realization Pitaev|skiiF(GiP)|act−ionifor th|e twio component BEC system, a ofamulticomponentBEC[1,2]andthetheoreticalinvestiga- we derive the equations of motion of small perturbations of u tionoftheplanarinterfacestructure[6–9]. Atpresent,agood theinterface. q deal of the research focuses on the hydrodynamic instabili- at. ties at the interfaces in BECs, such as the Kelvin-Helmholtz Theotherpurposeofthepresentpaperistodemonstratethe diversityofhydrodynamiceffectsinasystemoftwoseparated m instability,theRayleigh-Taylor(RT)instability,theferrofluid BECs under the action of a time-dependentforce. Recently, normal-field instability, and the Richtmeyer-Meshkov (RM) - withinclassicalgasdynamics,therehasbeenincreasedinter- d instability [12–17]. A common feature of these fundamen- est in the problems of the modified RT and RM instabilities n tal instabilities in the classical gas dynamics is the produc- o subjecttotime-dependentgravity,e.g. see[18–21]. Thecon- tion of vortices at the unstable interface. In that sense, dy- c figurationoftime-dependentgravitywasdiscussedinthecon- namicsofaninterfacebetweentwoquantumfluidshassome [ textofspeciallydesignedlaboratoryexperiments[22],inthe uniquefeatureswith quantizedvorticity being, probably,the scope of the problemof inertial confinedfusion [19, 23, 24] 1 most specific and the most interesting among them. At the v andinrelationtoflamedynamics[25–28].Inparticular,stabi- sametime,thereisalsomuchsimilaritybetweentheclassical 8 lizationoftheRTinstabilitybyanoscillatinghigh-frequency andquantumgasdynamics,whichallows”borrowing”some 9 addition to the gravity acceleration has been proposed both classical results and applying them directly or with modifi- 9 in the traditional RT configuration [29] and for the inertial 5 cations to the quantum case, see Refs. [12–15]. Such ”bor- confinedfusion[23, 24]. Developmentof the parametricin- . rowing”is especially typicalin studiesof the linear instabil- 1 stability at a flame front under the action of acoustic waves itystages,forwhichthedifferencebetweentheclassicaland 0 andpossiblestabilizationofthehydrodynamicflameinstabil- 1 quantumcases is expectedto be minimal. Still, the problem ity has been investigated experimentally and theoretically in 1 of rigorous derivation of such effects in BEC systems from Refs. [30–32]. Here we show that similar effectstake place : thebasicprinciplesofquantumtheoryremainsopenformost v inBECs. ApartfromtheRTandRMinstabilitiesconsidered cases. The derivation is needed not only to justify the ex- i beforein[12,15],wedemonstratealsothepossibilityofdy- X trapolationsfromtheclassicaltoquantumgasdynamics,but namicalstabilization of the RT instability by high-frequency r also to find limits of such extrapolation as well as to indi- a oscillations,aswellastriggeringoftheparametricinstability. cate intrinsic quantumeffectsinvolvedinto the problem. As Anotherinterestingoption,whichhasnotbeenconsideredyet an example,we pointoutthestudy ofthe interfacewavesin evenintheclassicalgas-dynamicscorrespondstoaGaussian a system of two BECs undertaken in Ref. [8]. Apart from stochasticforce,whichmaybeMarkovianornon-Markovian common capillary waves anticipated from the classical gas- with zero or non-zero time correlations, respectively. In the dynamicsandrelatedtoin-phaseperturbationsoftwoBECs, present paper we show that the Markovian stochastic force Ref.[8]demonstratedalsothepossibilityofquantumcounter- does not produce any average effect on dynamics of the in- phaseperturbations,forwhichthelocalinterpenetrationdepth terface, while the non-Markovian force leads to exponential of two wave functions for differentBECs oscillates in time. growthofperturbations. Thus, one purpose of the present paper is to provide rigor- ousderivationofthedispersionrelationsforsomefundamen- The paper is organized as follows. In section II we for- talquasi-hydrodynamicinstabilitiesinatwo-componentBEC mulate the model. In section III we consider a planar (one- drivenbyatime-dependentforce. dimensional)quantumsystemwithamagneticgradientpush- 2 ingtheBECstowardseachother,forthecaseofbothconstant and time-dependentexternalforces. In section IV we derive theequation,whichdescribesthedynamicsofsmallinterface perturbations. In section V we consider interface dynamics undertheactionofdifferentforces,includingaconstantforce, a harmonicforce, a pulse force, and a noisy Gaussian force. TheresultsofthepaperaresummarizedinsectionVI. II. THEMODEL The system of two BECs at zero temperatureis described by two macroscopic wave functions Y˜ (t˜,r˜), and the mean- j fieldGPLagrangian[33]: L˜(t˜)= d3r˜ (cid:229) ih¯ Y˜ ¶ Y˜ j Y˜ ¶ Y˜∗j Z "j=1,2(2 ∗j ¶ t˜ − j ¶ t˜ ! FunIGifo.r1m: Smcahgenmetaitcicfioelfdt.hetwo-component BEC inan external non- g +m Y˜ 2 V˜ (t˜,r˜)Y˜ 2 jj Y˜ 4 j j j j j | | − | | − 2 | | h¯2 (cid:209) Y˜ 2 g Y˜ 2 Y˜ 2 , (1) particle of j-th condensate, which is madeup of the interac- j 12 1 2 −2mj (cid:27)− | | | | (cid:21) tionenergyduetos-wavescatteringandofenergyofthepar- (cid:12) (cid:12) ticleintheexternalpotential. Inordertostudylow-energetic whereV˜ (t˜,r˜)areexternal(cid:12)poten(cid:12)tialenergiesoftheBECcom- j hydrodynamicprocessesinBECsweassumethatenergyper ponents. The tildes in Eq. (1) designate dimensional vari- particleischangednegligibleduetotheexternalpotential,and ables,whichwillbescaledinthefollowing.Keepinginmind fornormalizationonecanusevalueofthechemicalpotential asystemwithtwomagneticsublevelsof87Rb,weassumethe forB =0inaninfinitesystem. Suchsystemischaracterized ′ sameparticlemassesforbothcomponentsm =m mand 1 2≡ byauniformdensitysufficientlyfarfromtheinterface(i.e.on thesameinteractionparametersg =g g.Theinteraction 11 22≡ length scales much larger than the interface thickness); then parameters g , g , g are related to the respective s-wave 11 22 12 thechemicalpotentialisgivenbyausualresultforauniform scattering lengths aij by gij≡4p h¯2aij/m. A dimensionless BECwithnumberdensityn˜0, m =gn˜0. However,realBECs interactionparameterisintroducedthroughthedefinition arealwaysfinite;ifthelengthscaleofoursystemalongz-axis g g /g 1. (2) is2Lz (eachcondensateisofsizeLz),thentheconditionthat 12 ≡ − theexternalpotentialisasmallperturbation,reads Thetwocomponentsareseparatedinspaceifg12>√g11g22, whichimpliesg >0,see[33]. Throughoutthispaperweuse the condition of weak separation g 1. Modification of all m B(t˜) ≪ L B ′ gn˜ . (4) results of the present paper to the case of different BECs is z 0 2 ≪ straightforward. Theunperturbedflatinterfacebetweentwocomponentsof Dimensionlessunitsareintroducedbyscalingcoordinates BEC is located in the (x,y) plane with z=0 indicating the byh¯/√mm , time byh¯/m , andatom numberdensity (orcon- planeofsymmetry,Fig. 1. Thecomponents1and2arechar- centration)bym /g. Thedimensionlessmagneticforceacting acterizedbytheirprojectionoftheatommagneticmomenton onthecomponentsis thex-axism = 1,respectively. F ± Using the states F,m = 1, 1 and 1,1 of the atoms makes it possible t|o apFpily t|he−Steirn-Ge|rlachi force, push- b (t)= b (t)= h¯m BB′(t) b(t). ing the components in the opposite directions perpendic- 1 − 2 −2m √mm ≡− ularly to the magnetic moment quantization axis. We use a magnetic field whose magnitude has the gradient The dimensionless Gross-Pitaevskii Lagrangian for two (cid:209) B(t) =xˆdBx(t)/dz xˆB′(t),whichisuniforminspacebut macroscopicwavefunctionsY j(t,r)atzerotemperaturereads m|aybe|time-dependen≡t.Forthecaseof87RbatomstheStern- GerlachpotentialenergyinEq.(1)reads L(t)= d3r (cid:229) i Y ¶ Y j Y ¶ Y ∗j V˜ (t˜,r˜)=z˜m BB′(t˜)( 1)j, (3) Z "j=1,2(cid:26)2(cid:18) ∗j ¶ t − j ¶ t (cid:19) j 2 − 1 + Y 2 Y(cid:209) 2 zb (t) Y 2 wherem istheBohrmagneton,and1/2istheLande´factor. j −2 j − j j B The chemicalpotentials m j in Eq.(1) define normalization 1(cid:12)(cid:12) Y (cid:12)(cid:12) 4 (cid:12)(cid:12)(1+(cid:12)(cid:12)g )Y 2 Y (cid:12)(cid:12) 2(cid:12)(cid:12), (5) ofstationarywave functionsY j, andare equalto energyper − 2 j − | 1| | 2| (cid:27) (cid:21) (cid:12) (cid:12) (cid:12) (cid:12) 3 andequationsofmotionareobtainedfromtheactionprinciple forz>Z . WiththeseapproximationsEq.(9)becomes: p 1d2y d S ¶ d S 01 =[g (2+g )b z]y . (12) = , (6) 2 dz2 − 0 01 d Y ∗j ¶ td ¶ Y ∗j/¶ t  The type of solution to Eq.(12) changes from exponentially  (cid:16) (cid:17) decaying to oscillating in space, as z becomes larger than where the action is S= dtL(t). The result is the coupled Z =g /[(2+g )b ] g /(2b ). However,themagnitudeofthe o 0 0 GPequations: R spatialoscillations≈dependsonthevaluey 01(Zo):itdecreases exponentially with increasing Z . Therefore, the spatial os- ¶ Y D o i ¶ t1 =(cid:20)−2 −1−zb(t)+|Y 1|2+(1+g )|Y 2|2(cid:21)Y 1, (7) cwililtahtiZopn,sobrewchoemnebs0ig=nigficagn/t2w;ihnenthiZsocabseecothmeeTsFcAombepcaorambeles ¶ Y D i ¶ t2 = −2 −1+zb(t)+|Y 2|2+(1+g )|Y 1|2 Y 2. (8) itniavlaolisdc,ilalantdionEsqms.(a9y),b(e10in)ptemrpursettebdeassoqlvueadnteuxmacitnlyte.rfeTrheencsepoa-f (cid:20) (cid:21) matter waves, caused by interplay between the non-linearity andthedispersion(thekineticterm).Thisphenomenonisbe- III. PLANARDENSITYPROFILESFORA yondthe scope ofthe presentwork, andit willbe studied in TWO-COMPONENTBEC detailelsewhere. Thus,hereweuseparameterssatisfyingthe condition Thepresentworkisdevotedtomultidimensionalinstabili- b b g g /2, (13) tiesbendinganinterfacebetweentwoBECcomponentsinan 0≪ 0cr≡ externalmagneticfieldgradient.Asthefirststepinthestudy, orthemagneticgradientB satisfyping ′ wehavetospecifytheplanar(one-dimensional,1D)quasista- tionarystate,whichisinfluencedbyaspatiallyuniformexter- B <B g 3m 3m/(m h¯), (14) nalfield. InthesubsectionsAandBweconsiderthecasesof ′ ′0cr≡ B constantandtime-dependentexternalfields,respectively. which means that the spatipal oscillations of the hydrostatic profiles may be neglected. It follows from Eq. (14) that the critical magnetic gradient B depends on the differ- ′0cr A. Planarprofilesinthecaseofastationaryforce ence between inter- and intra-species interaction parameters asg =(g g)/g,andondensityviathechemicalpotential 12 since m g−n˜ in the TFA for an infinite system in a suffi- Herewestudythe1DhydrostaticstateofBECs,whenthe 0 ≈ cientlyweakexternalfield. Therefore,theeffectofquantum constantexternalforceb isbalancedbyinternalforcesofthe 0 interferencebecomesstrongeratlowerdensitiesoftheBECs. condensates. Let us assume thatsuch a state was createdby Equation (13) yields the dimensionless condition of a well- adiabaticswitchingonoftheexternalfield, andnoperturba- definedinterfacebetweentwocondensatessubjecttothepar- tionsbendtheinterface. Thesteadystateisdescribedbytwo real-valuedfunctionsy (z),andthesystemofdimensionless ticularexternalforce.Inthesystemoftwomagneticsublevels 0j of87Rbwehaveg 10 2(see[2]),andthetypicaldensityis GPequationsreads − 5 1014cm 3. The≃numerical solution to Eqs. (9), (10) for − · 1d2y theseparametersshowsthatthespatialoscillationsarenotice- 0= 2 dz201 +y 01+zb0y 01−y 031−(1+g )y 022y 01, (9) ableatb0≈10−4;sowetakeb<10−4. Numericalsolutions forthewavefunctionsneartheinterfacearepresentedinFig. 0= 12dd2yz202 +y 02−zb0y 02−y 032−(1+g )y 021y 02. (10) 2dafsohrebd0l=ine7s.5in·1F0i−g5.;11(0a)−s4h,opwlottsh(ea)apapnrdo(xbi)m,raetespaencatlivyetilcya.lTshoe- lutionofEq.(11)obtainedforthecaseofzeromagneticfield. The time-independentforce pushesthe BEC componentsto- Aswecansee,theanalyticalsolutionEq.(11)fitsthenumer- wards each other when b > 0. With our choice of equal 0 ical results quite well even in the case of non-zeromagnetic massesandscatteringlengthsforbothcomponents,theprob- field. lem possesses the symmetry y (z)=y ( z). In the case 01 02 − ofzeromagneticgradientthedensityprofileshavebeenfound in[8]withinthelimitofweakseparationg 1as ≪ B. 1DBogoliubovexcitationsofBECduetoaharmonicforce 1 n01(z)=n02( z) 1+exp 2 2g z − . (11) Since we are interested in the development of hydrody- − ≈ − h (cid:16) p (cid:17)i namic instabilities for time-dependent external forces, we Wecalculatethewavefunctionofcondensate1inthebulk need to know how a harmonic force influences the planar of condensate 2. According to Eq. (9), the wave functions densityprofilesof BECs. Similar to the constantforcestud- penetrate into each other with the characteristic depth Zp = iedabove,fortime-dependentforceswe also considerrather 1/√2g , see also [7], which means that y 2 1 for z>Z . small magnetic fields, so that the respective 1D Bogoliubov 01 ≪ p The density profile of the bulk is described by the Thomas- excitationsmaybe interpretedas linear acousticwaves. An- Fermiapproximation(TFA), which meansthat y 2 1 bz othertypeofatime-dependentforcestudiedinthispaperisa 02 ≈ − 4 the ”wall”, then the wave function and density are specified onlyforz 0,nohealingofthecondensatewavefunctionis ≥ requirednearthewallinTFA,andequilibriumisspecifiedby the uniformdensity n =1. In that case the velocity pertur- 0 bationd U(z,t)iszeroatthewalld U(0,t)=0.Theperturba- tionsofdensityandvelocity,d nandd U,maybeexpressedin termsoftheperturbationwavefunctiondy y (z,t)=exp( it)(√n +dy ), (16) 0 − wheredy (z,t)=u(z)exp(iW t)+v (z)exp( iW t),andu(z), ∗ − v (z)aretime-independentfunctions.Sincetheperturbations ∗ aresmall,wefind d n=exp(iW t)(u+v)+c.c., ¶f 1 ¶ d U = = exp(iW t) (u v) c.c., ¶ z 2i ¶ z − − where c.c. denotes complex conjugate. Then the boundary conditionatthewallreads ¶ (u v) =0. (17) ¶ z − (cid:12)z=0 (cid:12) WelinearizetheGPequation(1(cid:12)5), (cid:12) ¶ 1 ¶ 2 i¶ tdy =−2¶ z2dy +2dy +dy ∗+zbsexp(iW t), andobtaintheBogoliubovequations 1¶ 2u FIG.2:Hydrostaticprofilesoftwocomponentspushedtoeachother −W u=−2¶ z2 +u+v+bsz, (18) byaconstantforce,b=7.510 5;10 4,figures(a)and(b),respec- − − · tively. ThedashedlinesshowtheanalyticalsolutionEq. (14). The insetinfigure(b)presentstheAiryfunctionofthesecondkind. 1¶ 2v W v= +v+u, (19) −2¶ z2 pulseforcecorrespondingtoaweakshockinhydrodynamics. which,inturn,maybereducedto Still,itisknownfromhydrodynamicsthataweakshockmay bealsodescribedasalinearacousticwave[34]. Forthisrea- W 2 ¶ (u v)= 1 ¶ 2 +1 2 1 ¶ (u v) W b . son, in the present subsection we study modifications of the ¶ z − "(cid:18)−2¶ z2 (cid:19) − #¶ z − − s BECdensityinthe1Dgeometryduetotheharmonicforce. (20) Becauseoftheproblemsymmetrywithrespecttoz=0,we The solution to Eq. (20) is a superposition of a running consider a one-componentsemi-infinite BEC for z<0 con- wave U exp(iW t iqz) and spatially uniform oscillations 1 finedbyawallatz=0. Themagnitudeandfrequencyofthe U exp(iW t), − 0 forcedeterminestheenergyofthegeneratedBogoliubovexci- ¶ tations.Inthissubsectionweexpressdensityandvelocityper- (u v)=U˜ +U˜ exp( iqz), (21) turbations,d nandd U, intermsofmagnitudeandfrequency ¶ z − 0 1 − of the externalforce, and find the restrictions on the driving force,forwhichthedensityperturbationsaresmalld n n . whereU˜0,1aretherespectiveamplitudes.Therunningwaveis 0 ≪ the Bogoliubov elementary excitation (the quantum acoustic Inthecaseofaharmonicforce,thedimensionlessexternal potentialiszb exp(iW t), whereb is theforceamplitudeand wave)withthewavenumberq(W )determinedviatheBogoli- s s W isthefrequency. Ourmodelsystemisthendescribedbya ubovspectrum time-dependentGPequation W 2=q4/4+q2. (22) i¶y¶ t =−12¶¶2zy2 +y ∗y 2+y Vtrap(z)+zbsexp(iW t)y . (15) ItUf˜oll=owsbfr/oWmatnhdeboundaryconditionatthe wallthatU˜0 = 1 s − − SwihnecreetVhteratpra(pz)p=ote+n¥tiafloVrtrzap<(z0) eaxnpdeVriteranpc(ezs)d=isc0onfotirnuzi≥ty0at. d U = bW s[sin(W t−qz)−sinW t]. (23) 5 The perturbations of density follow from the 1D continuity For the variational calculation, we employ an ansatz that is equation able to describe bending and compression of the interface between the two condensates. We are interested in pertur- ¶ ¶ d n= d U bation wavelengthsmuch largerthan the interfacethickness, ¶ t −¶ z kZ =k/√2g 1, so that the density deformationsmay be p ≪ treatedasabendingoftheunperturbedprofileasawhole, as d n= bsqsin(W t qz). (24) nj(z,x,t)=nj0[z−d zj(x,t)], (28) W 2 − wheren arethestationarydensityprofilesfortheBECs. The j0 Then,theconditionofweakperturbationsd n n becomes variational functions are taken to be of the form of Fourier 0 b q/W 2 1,orinthedimensionalform ≪ modeswithseparationofspaceandtimedependence, s ≪ m BB′q˜ 1, (25) d zj(x,t)=z j(t)cos(kx), (29) 2mW˜2 ≪ f (z,x,t)=x (t)f (z)cos(kx). (30) where q˜ and W˜ are the dimensional wave number and fre- j j j quencyoftheinducedexcitations,coupledbytheBogoliubov Inclassicalhydrodynamics,perturbationsofbothcomponents spectrum(22). In the low energylimit q4 q2, the Boguli- of an inert interface are related by the continuity condition ≪ ubovexcitationsaresoundwaveswithvelocitycs= gn˜0/m z 1 =z 2. In the quantum gas-dynamics of two BECs this is (unityinourdimensionlessunits). Thentherestrictiononthe notnecessarily the case, since we may have interpenetration p amplitudeofthemagneticforcereads ofthewavefunctions. TheLagrangeequationswithrespecttothevariablesx are m B gn˜ j B ′ W˜ 0. (26) 2m ≪ r m z˙ dzn f =x dz f d n f +k2f2n . (31) j ′j j j jdz j j′ j j The criterion (26) may be interpreted as the condition of Z Z (cid:20) (cid:21) (cid:0) (cid:1) incompressible condensates with the speed of sound much TheseLagrangeequationsaresatisfiediftherespectiveconti- larger than any other parameter of velocity dimension in- nuityequationsare volved in the problem. A more generalcondition(25) takes intWoaecscooluvnetdththeeBBogoogloiulibuobvovspeeqcutrautmionfsorfohrigahemroendeerlgiinefis.nite z˙jn′j=x j ddz njfj′ +k2fjnj . (32) (cid:20) (cid:21) system. Thecaseofafinitesystem,confinedbytwowalls,is (cid:0) (cid:1) First, the time-dependent terms on each side have to be solved analogously, and the boundary condition (17) should equated,which,uptoconstantfactors,leadsto be imposed for both walls. Real systems are always finite, and therefore the maximal wavelength is limited by the size z˙ (t)=x (t). (33) of the system L . In the low-frequency limit condition (25) j j z is equivalentto the energeticcondition(4). In this limit, the Thisreflectsthefactthatx andz arecollectivecanonically j j Bogoliubovexcitationsaresoundwaves,withmaximalwave- conjugate variables. For the functions f , Ref.[8] gave the lengthoforderL ; substitutingL =2p q˜ 1 to (4), andusing j z z − approximatesolution thesoundspectrum,oneobtains(26). (1+kz) 1, if z<0, f1(z)=−f2(−z) −k−1exp(− kz), if z>0. (34) IV. LINEARANALYSISOFTHEINTERFACEDYNAMICS (cid:26) − − The same solution holds in the presence of a small external Wenowconsiderthedynamicsoftheinterfacebetweentwo force under the conditions specified in Sec. III. We take Eq. infiniteBECsinthepresenceofanexternalforce,whichmay (34)asouransatzfor fj.Moreelaborateexpressionsfor f1(z), be time-dependent, b(t). Similarly to Refs. [8, 33, 35] we and f2(z)mayprovideasmoothtransitionintheinterfacere- use a variationalapproach. We representthe wave functions gion; however, the ansatz Eq. (34) yields reliable analytical intermsofdensityn andvelocitypotentialf asy (t,x,z)= results, as we will demonstrate below by comparison to the j j j √njexp(if j),sothattheactionforthesystemoftwoBECsis numericalsolutiontotheproblem. We now derive the Lagrange equation for z (t). No time j S= dt d3r (cid:229) n ¶f j +1n ((cid:209) f )2 + edqeuriavtaiotinverseaidnsz j appear in the Lagrangian, so the Lagrange j ¶ t 2 j j Z Z (j=1,2(cid:20) d S 12 (cid:209) √nj 2−nj +zb(t)(n2−n1)+ 0= dz j =I1(j)+I3(j)+I5(j)+I7(j), (35) (cid:21) (cid:0) 1(cid:1) where we introduce I to label the nonvanishing terms of n2+n2 +(1+g )n n . (27) l(j) 2 1 2 1 2 d S/dz j; thenumberingl inIl(j) refertotherespectiveterms (cid:27) (cid:0) (cid:1) 6 in Eq. (27). Forconvenience,we assume a finite size of the L d Lz+d z2 system,Lz,Lx,thoughthefinalresultdoesnotdependonthe 2xb(t)dz dz′ z′n02 z′ −d z2n02 z′ . sizerestrictions.Wehave 2 Z¥ − (cid:2) (cid:0) (cid:1) (cid:0) (cid:1)(cid:3) d ¶f I = d2rn j = Theintegralscanbecalculatedas 1 dz j ¶ t jZ L d 1 L dzdxn′0j(z+d zj)fjx˙jcos2(kx)= I5(1)=− 2xb(t)dz 1(cid:18)−2d z21+d z21(cid:19)=− 2xb(t)z 1, (40) Z L 2xx˙jZ dzn′j(z)fj(z). (36) I5(2)= L2xb(t)dzd 12d z22−d z22 =−L2xb(t)z 2. (41) The next nonvanishingterm comes from the zero-point mo- 2(cid:18) (cid:19) tionenergy, Thenexttermofd S/dz doesnotcontributetotheequations j d 1 ofmotion,whilethelast(seventh)termI7isimportant.Anal- I3≡ dz j Z d2r 2 (cid:209) √nj 2= yarseisgoofvethrneetderbmystwcaolccuoluapteleddsoosfcailrlasthoorweqsuthaatitotnhse,avnadriathbelecsozu-j 21dzd jZ d2r"(cid:18)¶¶x√(cid:0)nj(cid:19)2(cid:1)+(cid:18)¶¶z√nj(cid:19)2#= aparnleidngicdhoeaunpntiptceearnl-,pshtbhaeescean,uozsremo=aflI7m.zoSdi.nescFemirthsatey,elbqeeutauitnsi-opcnhasalfcsouerl,azzt1e1aI=ndfzzo22r, 1 2 7 1 d ¶ 2 ¶ 2 the case of z =z , whic−h we denote by I . In this case 2dz jZ d2r(cid:18)¶ z√nj(cid:19) "1+(cid:18)¶ xd zj(cid:19) #. (37) d z1=d z2≡1d z,an2dwefind 7(in) d The first term within the parentheses yields a constant inde- I = d2r(1+g )n n = 7(in) dz 1 2 pendentofz ,andthesecondtermequals jZ +¥ I3= 21dzd j Z d2r(cid:18)¶¶z√nj(cid:19)2(cid:18)¶¶xd zj(cid:19)2= L2xdzd j Z¥ dz(1+g )n01(z+d z)n02(z+d z)=0. (42) − L2x12dzd jZ dz(cid:18)ddz√n0j(cid:19)2(z jk)2= Nd ze1x=tw−edczo2n≡siddezrathnedcza1s=e o−fzc2ou≡ntze,r-wphhiacsheloesacdisllatotionswith L2xz jk2Z+¥ ¥ dz(cid:18)ddz√n0j(cid:19)2. (38) I7(co)= L2xdzd +¥ dz′(1+g )n01 z′ n02 z′−2d z . − Z¥ − (cid:0) (cid:1) (cid:0) (cid:1) Thenextnon-vanishingtermcorrespondstothe perturbation To calculate d /dz in the last expression, it is easiest to as- ofthepotentialenergyofthesystem, sumed zsmallandTaylorexpandn (z 2d z)tosecondor- 02 ′ d der,whichresultsin − I = d2rzb(t)(n n )= 5(j) dz j Z 2− 1 L +¥ d2n L2x(−1)jb(t)dzd jZ dzznj= I7(co)= 2x4(1+g )z −Z¥ dzn01 dz202. L d x( 1)jb(t) dzzn (z+d z ). (39) Thelastresultmaybetransformedtoasymmetricformsimi- 2 − dz jZ 0j j larto[8]: It is more convenient to calculate these terms for j=1 and +¥ L dn dn fzo+rdj=zj2wseempaordaitfeylyt.hUeslainstgetxhperceososirodninaastetransformationz′= I7(co)=− 2x4(1+g )z Z¥ dz dz01 dz02. (43) − L d +¥ Taking into account all the terms obtained above we write I5(1)=− 2xb(t)dz dzzn01(z+d z1)= equations of motion for z j. The integrals are calculated us- 1 Z ingthedensityprofile(11) Lz − −L2xb(t)dzd 1−LzZ++d¥ z1 dz′(cid:2)z′n01(cid:0)z′(cid:1)−d z1n01(cid:0)z′(cid:1)(cid:3), −Z+¥ ¥ dzddnz0j fj=1/k, (44) L d Lz +¥ d 2 I5(2)= 2xb(t)dz dzzn02(z+d z2)= dz dz√n0j = g /8, (45) 2 Z¥ Z¥ (cid:18) (cid:19) − − p 7 +¥ dn dn dz 01 02 = 8g /3. (46) dz dz − Z¥ − p Wedesignatetheinterfaceperturbationsofthein-phaseoscil- lationsbyz =z z andobtainthefinalequation 1 2 in ≡ ¶ 2z in +z k3 g /8 b(t)k =0. (47) ¶ t2 in − h p i In the opposite case of the counter-phaseperturbationsz = 1 z z wefind 2 co − ≡ ¶ 2z g 4 co +z k2 + (1+g ) 8g b(t) k=0. (48) ¶ t2 co 8 3 − (cid:20) r (cid:21) p Inthelimitingcaseofb=0ourtheoryreproducestheresults of[8]. Withinthelimitofaweakfield,b b =g √2g ,and m long wavelength perturbations k/√2g ≪1, the terms in the FIG.3: LowestBogoliubov modes(theRTdispersionrelation)for ≪ differentvaluesofthedrivingforce.Theanalyticalresultisobtained parenthesisof Eq. (48) are of differentordersof magnitude, withtheterm4(1+g )√8g /3dominating.Forthisreason,to fromEq. (49),andpresentedbylines. Dashedlinesshowrealparts oftheBogoliuboveigenvalues(waves),andsolidlinescorrespondto the leadingterms, the counter-phasemodeis notaffectedby the imaginary parts (instability). The markers show respective nu- theexternalpotential,andwedonotconsideritinthepresent mericalsolutiontothelinearizedGPequations; filledmarkerscor- work.Inthefollowing,weworkonlywiththein-phasemode respond to theinstabilityregime and empty markers correspond to omittingthesubscript”in”asz (t) z in(t),anduseEq. (47) waves. ≡ asthestartingpointforthesubsequentanalysis. iszero,wefindcapillarywaveswithfrequencyrelatedtothe V. DYNAMICSUNDERDIFFERENTTYPESOF wavenumberas TIME-DEPENDENTDRIVINGFORCE W 2=k3 g /8. (51) c In this section we demonstrate the diversity of hydrody- Inthe case of positivegradientpofthe magneticfield the dis- namic effects in a system of two separated BECs under the persionrelationEq. (49)yieldsw 2<0forperturbationswith actionof a time-dependentforce. In particular,we are inter- sufficiently long wavelengths, which corresponds to the RT estedintheRTinstabilitydevelopingduetoaconstantforce, instabilityz (t)(cid:181) exp(a t)withthegrowthratedependingon 0 in the RM instability for a pulse force, in the parametric in- thewavelengthas stabilityforanoscillatingforce,andintheinterfacedynamics undertheactionofastochasticGaussianforce. a 2=b k(1 k2/k2) (52) 0 0 − c andwiththecut-offwavenumber A. TheRTinstabilitydrivenbyaconstantforce k =(8/g )1/4 b . (53) c 0 Hereweconsideraconstantforceb(t)=b0=const,which AccordingtoEq. (49),themaximaplgrowthratecorresponds drivesthe RT instability and capillary-gravitationalwaves in tok =k /√3. Figure3comparestheanalyticalresultsof the unstable or stable configurations, respectively. Constant max c Eq. (49), (50) tothe numericalsolutionto thelinearizedGP coefficients of Eq. (47) lead to harmonic oscillations of the equations. The numerical solution is obtained by diagonal- interfacez (t)(cid:181) exp(iw t)withthedispersionrelation izationofthelinearizedGPequations,approximatedbyfinite g difference method on a grid of 3335 points on the interval √ w 2=k3 kb0, (49) [ 240;240]inthedimensionlesscoordinates.Figure3shows 2√2− − good agreement of the analytical theory with the numerical whichmaybewrittenindimensionalformas results. TheinstabilitygrowthrateEq. (52)agreesalsowith theformulasemployedin[12]. h¯2n˜1/2 m B Thoughthepresentworkconsidersonlythelinearstageof w˜2=k˜3 2m02 2p (a12−a)−k˜ 2Bm′, (50) theRTinstability,forillustrativepurposes,itisworthpresent- ing the results obtained for the nonlinear stage. For exam- p wherew˜ andk˜arethedimensionalperturbationfrequencyand ple,Fig. 4showsthedevelopmentoftheRTinstabilityatthe wave number. Note that Eq. (49) has the same form as the nonlinear stage in a confined system of two BECs obtained dispersion relation for capillary-gravitational waves in clas- numericallyusing the methodsof [15]. In the numericalso- sical hydrodynamics[34]. When the externalmagnetic field lution, we begin with a system of 3.2 107 atoms of 87Rb, · 8 FIG. 4: Development of the RT instability in a trapped system of two-componentBECpresentedforoneofthecomponents. FIG.5: StabilizationoftheRTinstabilitybyahigh-frequencyforce equally split between the two states, with F,mF = 1, 1 fortheamplituderatiosbs/b0=0;7;15;20,forb0=2.5 10−5,k= and 1,1 . We use the ”pancake” trap geo|metryiwith| w˜−x =i kmaxandW =20a 0. · w˜ =|2p i100Hz and w˜ =2p 5kHz. We solve the coupled z y · · GPequationsnumericallytofindthegroundstateofthesys- 1 1 tem. Thetwocomponentsoccupytheregionswithz>0and +b k z cos(W t)+ z + z cos(2W t) . s a f f z<0, respectively. A perturbationof size 9m m is used, and 2 2 (cid:20) (cid:21) the field of view for all images is 55m m square. The mag- Separatingthetermsoscillatingwithdifferentfrequencieswe netic field of magnitude B =1.78G/m is added to the sys- ′ findthe relationbetweenthe amplitudesof theslow andfast tem, directed so that the two componentsare pushed toward terms eachother. Thesystemisshownattimes15.9,19.08,22.26, 25.44(ms)afterthemagneticgradientisadded. Thenonlin- b k b k z = s z s z earstagemaybedescribedqualitativelyasdevelopmentofthe 2f −W 2+b k(1 k2/k2) a≈−W 2 a initialsinusoidalperturbationsintoamushroomstructurewith 0 − c subsequentgenerationofquantumvortices.Moredetailedin- andreduceEq. (47)to vestigation of the nonlinear stage of the RT instability will bepresentedelsewhere. Similarresultsmaybefoundalsoin z¨ =b k 1 k2 b2sk z . (54) [12]. a 0 −k2 −2b W 2 a (cid:18) c 0 (cid:19) Equation(54) describesstabilizationofthe RT instabilityby B. High-frequencystabilizationoftheRTinstabilityduetoan high-frequencyoscillationsfor oscillatingforceandparametricinstability k2 b2k 1 s <0. In this subsection we consider an oscillating force b(t)= −kc2 −2b0W 2 b +b cos(W t), where b and b are some constant ampli- 0 s 0 s tudes and W is the frequencyof the force. We show that an Thus, stabilization of the RT perturbations of wave number k by the high-frequency term is expected for the oscillation oscillating force leads to two interesting effects: 1) High- amplitude frequency oscillations may stabilize the RT instability pro- duced by the constant backgroundforce b ; 2) The oscillat- ingforcemaytriggera parametricinstabili0tyevenin theab- bs >√2 W 1 k2, (55) sence ofanyconstantacceleration, e.g. for b0=0. We start b0 √b0ks −kc2 with the first effect, which is similar to the mechanical phe- nomenon known as the Kapitsa pendulum [36]. We assume whichmaybewrittenindimensionalunitsas thatthefrequencyW oftheexternalforceismuchlargerthan tWhe≫RTa 0in.sTtahbeinlitwyegrsoewpatrharteattehae0sl=owpabv0ekra(g1e−dkte2r/mkc2s),(ltahbaetleisd, BB′0′s >sm4mBBW ′02k˜ (cid:18)1−kk˜˜c22(cid:19). (56) ”a”)andfastoscillatingterms(labeled”f”)inthesolutionto Eq.(47)asz =z a(t)+z f(t)cos(W t),wherez a(t)andz f(t) ThestabilizationoftheRTinstabilitybyhigh-frequencyos- changeslowlyonthetimescaleofhigh-frequencyoscillations cillationsisillustratedinFigure5,whichpresentstheresults 2p /W .Followingthecalculationmethodof[30],wetakeinto of directnumericalsimulation of Eq. (47) forthe amplitude account the relation z¨ z¨a W 2z fcos(W t) and modify Eq. ratiosbs/b0=0;7;15;20,forthestationarycomponentofthe (47)to ≈ − magneticfieldb0=2.5 10−5, thewavenumbercorrespond- · ingtothemaximalgrowthratek=k andfrequencyofthe max z¨ W 2z cos(W t)=b k 1 k2 z +z cos(W t) oscillatingmagneticfieldcomponentW =20a 0.Inagreement a− f 0 −k2 a f with the theoreticalpredictions, unstable exponentialgrowth (cid:18) c(cid:19) (cid:2) (cid:3) 9 Similar to [30, 36] we look for a solution to Eq. (47) in the form z =[x cos(W t/2)+x sin(W t/2)]exp(a t). Mark that 1 2 thegrowthoftheparametricinstabilityisaccompaniedbyos- cillationsoftheperturbationwithfrequencyW /2,i.e. halfof the drivingforcefrequency. Substitutingz intoEq. (47) we obtain W 2 W t W t a 2 +W 2 x cos +x sin 0 − 4 c 1 2 2 2 (cid:18) (cid:19)(cid:20) (cid:18) (cid:19) (cid:18) (cid:19)(cid:21) W t W t +a W x sin +x cos 0 1 2 − 2 2 (cid:20) (cid:18) (cid:19) (cid:18) (cid:19)(cid:21) W t W t W t =b kcos x cos +x sin . s 1 2 2 2 2 (cid:18) (cid:19)(cid:20) (cid:18) (cid:19) (cid:18) (cid:19)(cid:21) Separatingthetermswithcos(W t/2)andsin(W t/2)andomit- tinghigher-frequencyterms,wereducetheequationtothelin- FIG. 6: Stability limits (white line) in the parameter space of the earalgebraicsystemfortheamplitudesx andx scaledwavenumberk/kcandtheoscillationamplitudebs/b0,where 1 2 ibn0st=ab2il.i5ty·g1r0o−w5t,hWra=tei2n0tmheaxu(nas0ta)b.leSrheagdioinng,Einqd.i(c5a4te).s value of the a 2 W 2 +W 2 bsk x = a W x , 0 − 4 c− 2 1 − 2 (cid:18) (cid:19) W 2 b k a 2 +W 2+ s x =a W x . 0 − 4 c 2 2 1 (cid:18) (cid:19) Solvingthesystemweobtainthedispersionrelation W 2 2 b2k2 a 2 +W 2 s +a 2W 2=0. (57) − 4 c − 4 (cid:18) (cid:19) Substitutinga =0intoEq. (57)wefindthelimitingoscilla- tionamplitudeb requiredtoinducetheparametricinstability s 2 W 2 b > W 2 . (58) s k c− 4 (cid:12) (cid:12) (cid:12) (cid:12) Indimensionalvariablesthe(cid:12)lastrelatio(cid:12)nreadsas (cid:12) (cid:12) m B B ′s >k 1 4W˜2 W˜2 , (59) FIG. 7: The RT instability growth rate, Eq. (54), in presence of m − c− external high-frequency fieldwithW =20max(a 0) vs perturbation (cid:12) (cid:12) wave number for different values of b1/b0 =0;7;15;20 and b0 = wherethedimensionalfrequen(cid:12)cyofcapil(cid:12)larywavesis 2.5 10 5. − · h¯2n˜1/2 W˜ k˜ =k˜3 0 2p (a a). c 2m2 12− of perturbations (in average) for b /b =0;7 is replaced by s 0 (cid:0) (cid:1) p wavesattheinterfaceforsufficientlylargeamplitudesofthe Minimal(infinitelysmall)criticalamplitudeofthemagnetic oscillatingpartof the magneticfield, b /b =15;20. Figure field correspondsto the perturbationswith the wave number s 0 6 shows stability limits in the parameter space of the scaled determined by the equation W c(k)=W /2. Therefore, when wave number k/kc and the oscillation amplitude bs/b0; the applyinganexternalmagneticforceb(t)=bscos(W t)tothe shadingindicatestheabsolutevalueoftheinstabilitygrowth systemoftwoBECs,weshouldexpectresonancepumpingof rate in the unstable region. Figure 7 shows the RT instabil- thecapillarywaveswithfrequencyW /2andthewavenumber itygrowthrateinthepresenceoftheexternalhigh-frequency k=W 2/3(2g )1/6. If capillary wavesof anothernon-resonant magnetic field plotted versus the perturbation wave number wave number dominate initially, then pumping of the waves fordifferentvaluesoftheexternalfield. requiresfinite(notnecessarilysmall)amplitudeofthedriving The second effect related to the oscillating external field force.TheinstabilitydomainisshowninFig. 8intheparam- istheparametricinstability,whichisknownfrommechanics eter space of the force amplitude and the wave number with [36] and which has been encountered in gas dynamics, e.g., theshadingindicatingtheperturbationgrowthrate. Figure9 ofcombustionsystems[30–32]. Theconstantpartofthe”ac- presents the dispersion relation for the parametric instability celeration”isnotrequiredtoobtaintheparametricinstability (thegrowthrateversusthewavenumber)fordifferentampli- and it may be omitted in the calculations by taking b =0. tudevaluesoftheoscillatingmagneticfield. 0 10 whichyields 0 1 z (t)=exp t z (0) v W 2 0 v (cid:20) (cid:18)− c (cid:19)(cid:21) cos(W t) W 1sin(W t) = c −c c z (0). (61) W sin(W t) cos(W t) v c c c (cid:18)− (cid:19) Forconvenience,weintroducethedesignations 0 0 V , (62) 0≡ 1 0 (cid:18) (cid:19) cos(W t) W 1sin(W t) G (t) c −c c . (63) 0 ≡ W csin(W ct) cos(W ct) (cid:18)− (cid:19) FIG. 8: Stability limits (white line) in the parameter space of the wavenumberkandamplitudebsoftheexternalhigh-frequencyforce WelookforageneralsolutiontoEq. (60)intheformz v(t)= withW =3.6 10−3.Shadingindicatesvalueoftheinstabilitygrowth G0(t)n (t)andreduceEq.(60)to · rateintheunstableregion,obtainedfromEq.(57). n˙(t)=kb(t)V(t)n (t), (64) where V(t)=G 1(t)V G (t) −0 0 0 = −(2W c)−1sin(2W ct) −W −c2sin2(W ct) . (cid:18) cos2(W ct) (2W c)−1sin(2W ct)(cid:19) ThesolutiontoEq.(64)isthetime-orderedexponentialF(t ), e.g.see[37], t exp dt F(t ) 1+  ≡ FIG. 9: Growth rate of the parametric instability, Eq. (57), as Z 0 fmuangcntieotnicofofrckefbosr=di0ff.2er5en1t0a−m4;p1li.t7u5de1s0−of4;t3h.e5e1x0te−r4n;a5l o1s0c−il4lawtiinthg +(cid:229) ¥ t t1 tn−1   W =3.6 10 3. · · · · dt1 dt2 dtnF(t1)F(t2) F(tn). (65) · − n=1Z Z ··· Z ··· 0 0 0 C. RMinstabilityproducedbyamagneticpulse WesolveEq. (64),gobacktotheoriginalvariableandobtain thegeneralsolutiontoEq.(60) Within the context of quantum gases, the RM instability produced by a magnetic pulse b(t)= b d (t) has been dis- t d cussed recently in Ref. [15], which indicated considerable z v(t)=G0(t)exp dskb(s)V(s) z v(0). (66)   differencesintheinstabilitydevelopmentinBECsincompar- Z0  ison with thetraditionalconfigurationof classicalgasessep- On the basis of the generalsolution, we may recoverthe re- aratedbyaninertinterface. Hereweanalyzethelinearinter- facedynamicsbyamoregeneral(matrix)methodofsolving sults of Ref. [15] on the RM instability triggeredby a pulse Eq. (49)applicabletoawideclassoftime-dependentforces. b(t)=bdd (t). Inthiscasealltermsoftime-orderedexponen- Particularly, the matrix method will be extended to the case tialcommutewitheachotherandweobtain ofstochastic forcesin thenextsubsection. We introducethe vectorfunctionz = z z˙ T andrewriteEq. (49)as t v exp dskb d (s)V(s) d   d z =(cid:0) (cid:1) 0 1 z , (60) Z0  dt v W 2+kb(t) 0 v (cid:18)− c (cid:19)   where the matrix may be split into a constant and time- 0 0 1 0 =exp = , dependentparts. First, Eq. (60) issolvedforthecase b=0, kb 0 kb 1 d d (cid:18) (cid:19) (cid:18) (cid:19)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.