g or s. c a bs. Interactions of Nanomaterials u1 p0 p://w0 htt0.f with Emerging Environmental er 19, 2014 | bk-2013-115 Contaminants mb21/ e0 ept0.1 S1 on oi: GO 3 | d E1 DI20 N 9, A2 A Sber NIcto RO FOb): LIWe A Ce ( F at OD V n UNIcatio d by Publi e d a o nl w o D In Interactions of Nanomaterials with Emerging Environmental Contaminants; Doong, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013. g or s. c a s. b u1 p0 p://w0 htt0.f er 19, 2014 | bk-2013-115 mb21/ e0 ept0.1 S1 on oi: GO 3 | d E1 DI20 N 9, A2 A Sber NIcto RO FOb): LIWe A Ce ( F at OD V n UNIcatio d by Publi e d a o nl w o D In Interactions of Nanomaterials with Emerging Environmental Contaminants; Doong, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013. 1150 ACS SYMPOSIUM SERIES Interactions of Nanomaterials with Emerging Environmental Contaminants g or s. c a s. b u1 p0 p://w0 Ruey-an Doong, Editor htt0.f mber 19, 2014 | 21/bk-2013-115 ViNraetniodnaeHlrsTKisnicn.hgSu,hHTauaariwmUanani,veErdsiitytor e0 ept0.1 Florida Institute of Technology S1 on oi: Melbourne, Florida, United States GO 3 | d DIE201 Hyunook Kim, Editor AN 29, University of Seoul A Sber Seoul, Republic of Korea NIcto RO FOb): LIWe A Ce ( F at OD V n UNIcatio Sponsored by the d by Publi ACSDivisionofEnvironmentalChemistry e d a o nl w o D AmericanChemicalSociety,Washington,DC DistributedinprintbyOxfordUniversityPress In Interactions of Nanomaterials with Emerging Environmental Contaminants; Doong, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013. LibraryofCongressCataloging-in-PublicationData Interactionsofnanomaterialswithemergingenvironmentalcontaminants/Ruey-anDoong, g editor,NationalTsingHuaUniversity,Hsinchu,Taiwan,VirenderK.Sharma,editor,Florida or InstituteofTechnology,Melbourne,Florida,UnitedStates,HyunookKim, s. ac editor,UniversityofSeoul,Seoul,RepublicofKorea;sponsoredbytheACSDivisionof bs. EnvironmentalChemistry. u1 p0 pagescm-- (ACSsymposiumseries;1150) p://w0 Includesbibliographicalreferencesandindex. er 19, 2014 | httbk-2013-1150.f mNR1Iua.aSnetBePyorNo-siaatlrlnl9uus.7t-cIi-8toIEu-.n0rnSe-cvhd8oia4rnmor1tmnra2omta-el2,ere9Vinqa1itlu6raseil--pn7-amIdsn(epaedrelnukcKts.-tts-.prM-Iia-aICpIal.etoaerKnp)rgpiiamrlliesc,s-aHs-teCiysoou.nnn5sgo.--roCePksoo.slneIlVgus.rt.ie2Aos.nsme-C-seCa.rti4oac.nlaygnNsrtCeassn-hs-oeeCsmsot.rinucIgca.rtlDeuSsrosoeoedcnsi.egt3,y.. mb21/ DivisionofEnvironmentalChemistry. e0 ept0.1 TD192.3.I582013 GO on S3 | doi: 1 620.1’159--dc23 2013039591 E1 DI20 N 9, A2 A Sber ThepaperusedinthispublicationmeetstheminimumrequirementsofAmericanNational NIcto Standard for Information Sciences—Permanence of Paper for Printed Library Materials, FORb): O ANSIZ39.48n1984. ALIWe Copyright©2013AmericanChemicalSociety Ce ( OF Dat DistributedinprintbyOxfordUniversityPress V n UNIcatio AllRightsReserved. ReprographiccopyingbeyondthatpermittedbySections107or108 d by Publi o$f40th.2e5Up.Slu.sC$o0p.y7r5igphetrApacgtiesiasllpoawidedtofothreinCteorpnyarliguhsetConlelya,rapnroceviCdeednttehra,tIancp.e,r2-2c2haRpotesrefweoeoodf e d Drive,Danvers,MA01923,USA.Republicationorreproductionforsaleofpagesinthis a o nl bookispermittedonlyunderlicensefromACS.Directtheseandotherpermissionrequests w toACSCopyrightOffice,PublicationsDivision,115516thStreet,N.W.,Washington,DC o D 20036. Thecitationoftradenamesand/ornamesofmanufacturersinthispublicationisnottobe construedasanendorsementorasapprovalbyACSofthecommercialproductsorservices referenced herein; nor should the mere reference herein to any drawing, specification, chemicalprocess, orotherdataberegardedasalicenseorasaconveyanceofanyright or permission to the holder, reader, or any other person or corporation, to manufacture, reproduce,use,orsellanypatentedinventionorcopyrightedworkthatmayinanywaybe relatedthereto. Registerednames,trademarks,etc.,usedinthispublication,evenwithout specificindicationthereof,arenottobeconsideredunprotectedbylaw. PRINTEDINTHEUNITEDSTATESOFAMERICA In Interactions of Nanomaterials with Emerging Environmental Contaminants; Doong, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013. Foreword The ACS Symposium Series was first published in 1974 to provide a g mechanism for publishing symposia quickly in book form. The purpose of or s. the series is to publish timely, comprehensive books developed from the ACS c s.a sponsoredsymposiabasedoncurrentscientificresearch. Occasionally,booksare b pu01 developed from symposia sponsored by other organizations when the topic is of p://w0 keeninteresttothechemistryaudience. htt0.f er 19, 2014 | bk-2013-115 fpoarpaepBrspermfoopareyriaabtgeereeaexnicdnlcguodtmeodpptruoebhbleiesnthsteiavrebfoococoukvs,etrthahegeepbaroonopdkof;sooerdtihnteatrebsrlemesotatfyocbtoheneateadnudtdesideisntocreepv.riSoeovwmieddee mb21/ comprehensiveness. When appropriate, overview or introductory chapters are e0 ept0.1 added. Draftsofchaptersarepeer-reviewedpriortofinalacceptanceorrejection, on Soi: 1 andmanuscriptsarepreparedincamera-readyformat. GO 3 | d As a rule, only original research papers and original review papers are E1 DI20 included in the volumes. Verbatim reproductions of previous published papers AN 29, arenotaccepted. A Sber NIcto RO LIFOWeb): ACSBooksDepartment A Ce ( F at OD V n UNIcatio d by Publi e d a o nl w o D In Interactions of Nanomaterials with Emerging Environmental Contaminants; Doong, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013. Preface Emerging environmental contaminants are newly identified or previously g unrecognized pollutants, which primarily include human and veterinary or s. pharmaceuticals and personal-care products, surfactants, plasticizers, flame c a s. retardants, metals and metalloids, various industrial additives, pesticides, and b http://pu0.pr001 hpaesstbiceiednedmeemtaobnosltirtaetse.dTthoeinucsreeoafsenothveelrenmanoovmalaeteffiricailesnwcyithofuenmiqeuregicnhgarpaocltleurtiasntitcss, 014 | 3-115 cwohnitcahmpinroavnitds.esIanpardodmitiisoinng, nsatrnaotemgaytetoriaclosnatrlsooltchaendsisetrrvibeuatisonideoaflepnlvaitrfoonrmmesnftoarl 21 9, 20 precise and accurate detection and sensing of emerging contaminants in the ber 11/bk- environmentandbiologicalfluids;thisisbecauseoftheirnovelcharacteristicson m2 opticalandelectrochemicalproperties. Theinteractiveresearchofnanomaterials Septe10.10 with emerging environmental contaminants will improve our understanding of on oi: theimplicationandapplicationofnanomaterialsintheenvironment. GO 3 | d This book is derived from the symposium “Interactions of Nanomaterials DIE201 withEmergingEnvironmentalContaminants”atthe244thACSNationalMeeting N 9, in Philadelphia during the fall of 2012 sponsored by the American Chemical SAer 2 Society (ACS) Division of Environmental Chemistry. Many topics addressing NIA ctob issues of interaction of emerging environmental pollutants with nanomaterials LIFORWeb): O (inintchliusdsinygmppohsyisuimca,l,anpdhothtoecyhceomnisctaitlu,taentdhebmioaloingiccoanltienntteroafctthioisnsb)owoke.re presented CAe ( This book contains 12 peer-reviewed chapters that cover various aspects of OF Dat interaction of various nanomaterials with environmental contaminants. These UNIV cation cwhiathptebrisomcaonlebceuolergsafnoirzebdioinsetonstwinogmanadjordseetecctitoionns:o(fI)cinotnetraamctiinoannotsfn(Canhoamptaetrer1i-a4ls) by ubli and (II) interaction of nanomaterials with contaminants to enhance the removal d P de efficiency and rate of emerging pollutants (Chapter 5-12). Chapter 1 by Ren, a nlo Zang, Qie, and Baker provides an overview of the adjuvant effect of emerging w o nanomaterials. The nanoparticles can serve as drug delivery to deliver antigens D to species targets. In contrast, ambient nanoparticles exhibit adverse effect on human and ecological health. To address the accurate and precise detection of environmental contaminants in the environment (as well as in the human body), Chapter 2 and Chapter 3 have developed photoluminescent gold nanomaterials — including gold nanoparticles and gold nanodots — for the monitoring and detection of metal ions, proteins, and bacteria in an aquatic ecosystem. In Chapter 2, Unnikrishnan and Huang have synthesized luminescent core-shell Au nanodots using different kinds of capping ligands (including alkanethiols, proteins, DNA, thiol derived carbohydrates, and aptamers) as the shell layer for detection and determination of mercury ions, proteins, and E. coli. Chang and ix In Interactions of Nanomaterials with Emerging Environmental Contaminants; Doong, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013. histeam(Chapter3)havedevelopedseveralfunctionalAunanoparticlesandAu nanodot-basedsensorsthatallowthesensitiveandselectivedetectionofmercury, lead, and copper ions through analytes induced changes in colors, absorption, and fluorescence. In addition, a biosensing system (AlGaN/GaN high electron mobility transistors immobilized with antibodies) is developed by Wang and his team (Chapter 4) to effectively detect a short peptide only containing 20 amino acids,whichopensadoorforinvestigationintonanomaterialswithbiomolecules. Theapplicationsofnanomaterialsforvariousreactions(includingadsorption, photocatalytic degradation, and reductive dechlorination) are also addressed. Huang,Padhye,andWang(Chapter5)describethegenerationofN-nitrosamines g or fromtransformationofaminescatalyzedbyactivatedcarbons. Thisinteractionis s. ac important because activated carbon and amine are often used in water treatment s. 014 | http://pub3-1150.pr001 cappadrlaorsbnopotrrspan.ntionoIlannonlCobatehuthabatpehvtseeiortTro,6iO,HaD2du/swunogarabtneardnadniJndithneiglrsofaoeccxkoepllaleootanrgethuthteehesepm(hdCooyhtlnoeaaccpmautteliaarclry7atl)idecvscoeodrlme.pctbioIoinmnnepapodTrsdoiiiOcttiieo2osnnsanootdoff 21 bisphenol A, which is an endocrine disrupting chemical widely existing in the 9, 20 ber 11/bk- envirIoronnm-benast.ednanomaterialsareeffectivecatalystsfortheremovalofemerging m2 EGO on Septe13 | doi: 10.10 rf(peoComrhllaeuepdtnatievanrtitirsoo8innn),mtahednneidstacelunsosvsriileromdtnheemecdoeiannatptti.aopmnlRiicena—nat,itoiHoninna.ncol,fuFAdeidlrnirAgfafnteearw,ezanif,tteeNrrriiartodternase,g-abotaamunsddeeand,Tt,ainOnagd2nr-oDocuominmoadntpwyeorsasiiatioetluesr N DI9, 20 magnetic iron oxides are used for the removal of contaminants of emerging SAer 2 pollutants. Inadditiontoironoxidecatalysts,zerovalentmetalsarealsocommon A ob nanomaterials widely used for reduction of emerging pollutants. Su, Tso, Peng, RNIOct andShih(Chapter9)haveusednanoscalezerovalentiron(nZVI)andbimetallic FOb): Pd/Fe as the dual functional tools for adsorption and reduction of aromatic F CALIate (We pcoennrtaamchilnoarnotpshe(ninocll,uadnidngCodnegcoabrreodm).inTahteedcodmipbhineantyiolneothfebri,olhoegxicaaclholorrsoebqeuneznetniael, OD UNIV cation Feveanltuoantetdreaintmtehnitsocnhathpeterm.ineInralCizhaatipotnero1f0s,omMecPemheerrsgoinn,gGcoonlttza,mainnadntAsgisraawlsaol y bli summarizetheroleofpolyelectrolytestabilizationandcatalyticmetalmodification bu d P intheenhancedperformanceofnZVI.Theadditionofpolyelectrolytestabilizers e d a to nZVI decreases particle agglomeration and reduces particle size — resulting o wnl in the increase in reactivity and transport in porous media. The modification of o D nZVI with Pd and Ni for the enhancement of reactivity is also summarized and discussed. In addition, three field studies using Pd-nZVI for the remediation of chlorinated compounds in groundwater are introduced. Sharma, Siskova, and Zboril (Chapter 11) review the recent development of nanoscale zerovalent iron andmagneticbimetallicFe/Agnanoparticleswithcore-shellstructures. Theyalso show the usefulness of these nanomaterials on nutrient removal, transformation of halogenated aromatic contaminants, and antimicrobial activity. In addition to zerovalentiron,LeeandDoong(Chapter12)havedemonstratedthefeasibilityof usinganotherenvironmentallyfriendlymetaltoremovechlorinatedcompounds. In this chapter, the authors review and discuss the reductive dechlorination of chlorinated hydrocarbons and emerging pollutants by zerovalent silicon and x In Interactions of Nanomaterials with Emerging Environmental Contaminants; Doong, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013. bimetallic Fe/Si and Ni/Si. More importantly, they demonstrate the synergistic effectofnickelionsandpolyethyleneglycolonthedechlorinationrate. The understanding of interaction of emerging contaminant with various nanomaterialsisessentialtoexploringtheapplicationsofnanotechnologyinthe environment. We hope that this collection will benefit graduate students who areengagedinresearchanddevelopmentintheadvancementofnanotechnology and environmental science and technology. We wish to thank Anne Brenner and Timothy Marney of the editorial department of ACS for their assistance in preparingthisvolumeandforkeepingusonschedule. g or s. ac Ruey-anDoong s. http://pub0.pr001 D1N0ea1pti,aoSrntemacl.eTn2st,inoKgfuBHaniuogamFUeudniRicvoaelarsdEitnygineeringandEnvironmentalSciences 014 | 3-115 Hsinchu, 30013, Taiwan 21 [email protected](e-mail) 9, 20 ber 11/bk- m2 EGO on Septe13 | doi: 10.10 VCF15lhior0eremiWndidaesetsIrrtnysUKtDin.teuiSvpteeharraostrmiftmyTeeanBctohunloelvoagryd N DI9, 20 Melbourne,Florida32901,UnitedStates SAer 2 [email protected](e-mail) A ob NIct RO FOb): HyunookKim F CALIate (We DUenpivaertrmsiteyntooffSEeonuvlironmentalEngineering OD UNIV cation hS_ekoiuml,@Ruepous.balcic.korf(eK-moraeial) y bli bu d P e d a o nl w o D xi In Interactions of Nanomaterials with Emerging Environmental Contaminants; Doong, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013. Chapter 1 The Adjuvant Effect of Emerging Nanomaterials: A Double-Edged Sword g or s. ac Hong Ren,1,2 Quanxuan Zhang,*,3 Liangyi Qie,4 s. b and Gregory L. Baker3,† http://pu0.ch001 1AthinoulaA.MartinosCenter,DepartmentofRadiology,Massachusetts 014 | 3-115 GeneralHospital,HarvardMedicalSchool,Charlestown, 21 Massachusetts02129,U.S.A. 9, 20 mber 121/bk- 2DepartmentofCCamhebmriidstgrey,aMnadssCahcehmusiectatlsB0i2o1lo3g8y,,UH.Sa.rAv.ardUniversity, epte0.10 3DepartmentofChemistry, MichiganStateUniversity, EastLansing, S1 Michigan48824,U.S.A. GO on 3 | doi: 4DepartmSehnatnodfoGngerPiartorviicnsc,eK,eQyilLuaHboorsaptiotarlyooffSChaarnddioovnagsUcunliavrerPsriotyte,omicsof E1 DI20 Jinan250012,China N 9, A SAober 2 †Thismanuscriptisin*Em-emmaoilr:[email protected],Dr. GregoryL. RNIOct Bakerwhopassedawayunexpectedlywhilethispaperwasbeingwritten. FOb): LIWe CAe ( F at OD V n Nanoparticleshavegrowingapplicationsinindustry,consumer UNIcatio products, biology and medicine. One of those applications d by Publi cinovmoplvoensentthse. iTnhteerancatinoonpabrteitcwleesencannaancotpaasrtiacnletisgeanndcairmriemrsuntoe e d a deliverandreleaseantigenstospecifictargets,andenhancethe o wnl immune response against a variety of antigens as adjuvants. o D The adjuvant effects of nanoparticle size, shape, surface charge,linkagemethodontheimmunologicalresponsearealso discussed. In contrast, as-prepared nanomaterials and ambient particulate matter (PM) from air pollution exhibit adverse adjuvant effect in vitro and in vivo, and recent advances to address their potential risk on human health are also included inthisreview. ©2013AmericanChemicalSociety In Interactions of Nanomaterials with Emerging Environmental Contaminants; Doong, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013. Introduction Nanomaterials are characterized by their sizes which are in the range of severalnanometerstoseveralhundredsofnanometers,wellbelowthemicrometer range. Because of their nanoscale dimensions and hence large specific surface area, nanomaterials exhibit remarkable physicochemical properties, such as optical property (1), catalytic property (2), mechanical property (3) and drug delivery property (4), which are usually not active for their bulk materials. Due to these specific properties, research and development of new nanomaterials have steadily increased, which can be reflected by the increasing number g or of publications on nanomaterials research, from about 110 publications in s. ac 1990 to 4200 publications in 2000 followed by a burst to more than 77900 s. http://pub0.ch001 rpaenusdbullictc,oamtniaopnnoossmitienatm2er0ai1ate3lsr,i(aklresa,ypiawdrleoyrmdi:notrrneoadnaunocd,eIdmSIoinrwetoepbereloesfcetknrntooninwiclweddoegrvkeip,cle0as5c,/e2cs0oa1ns3s)twr.uecAltlisoanas 014 | 3-115 consumerproductssincelarge-scaleproducing,handlingandprocessingfacilities 21 ofnanomaterialsareeasilyavailable. 9, 20 mber 121/bk- viewApoltihnot,utghheypraolpsoerrtiaeisseosfanfeatnyomcoantecreiranlssoafreniamnopmreastseivriealfsr.omOnpehmysaijcoorchcoemnciecranl epte0.10 isthatnanomaterialsmayleadtopotentialtoxiceffectonenvironmentorhuman S1 health,becausenanomaterialsreadilypenetratecellmembranes,travelthroughout GO on 3 | doi: rthesepobnosdeys, (a5n,d6)d.eIpnosrietceinnttyaregaerst,onragnaontso.xicTohloegreyfohraes,bietcmomaye otrnieggoefrthinejumriaojuosr E1 DI20 researchfocusesinnanoscience. Whilethenumberofpublicationsdealingwith N 9, A SAober 2 nraapniodtloyxjiucmitypesdtutdoymwoarseatbhoaunt81230500iinn22000103,(tkheisyiwncorredass:edpatroti5c5le0/0toixnic2i0ty1,0I,StIhewneibt RNIOct of knowledge, 05/2013). These clearly indicate that nano toxicology has been FOb): widelyrecognizedandgainedmoreandmoreattention. Thesestudieswouldhelp F CALIate (We etonvdiertoenrmmeinnetawnhdethhuemraanndbetoinwgsh,aatnedxtgeunitdtehaepseplpicroatpieorntsieosfmnaaynopmreasteenritaalsthinredaatitloy OD V n life as well (7). Among several mechanisms proposed to explain the adverse UNIcatio effect of nanomaterials, generation of reactive oxygen species and oxidative d by Publi scthraersgsehaansdreacgegirveegdattihoenmofosntaantotemnatitoenria(l8s).arDeirmeleantesdiotno,tshuerifranceancohteomxiicsittryy,(5su).rfIatcies e d a difficulttoidentifythehealthriskofeachnewnanomaterialsbecauseallmaterial o wnl propertiesneedtobetakenintoaccountduringthetoxicitystudy. o D Despite safety concerns that nanomaterials could present adverse effect on humanbeings,ithasbeenreportedthatnanomaterialsservingaseffectivevaccine/ drug carriers could improve and/or facilitate the extended release of antigens, and hence enhance the immune response level and quality of antigens (9, 10). Thishasdrawnmoreandmoreresearchfocusesworldwideinnanomedicinefield, especially in vaccine immunology, and nanomaterial has been referred as nano adjuvanttoenhancetheimmunogenicityofspecificvaccineorantigen. FromISI webofknowledge(keywords: particle/adjuvant, 05/2013), therewereonly380 publicationsonnano-adjuvantresearchin2000anditincreasedtomorethan1350 in2010,andthenrapidlyjumpedtomorethan1800publicationsin2013. 4 In Interactions of Nanomaterials with Emerging Environmental Contaminants; Doong, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013.