HumanMovementScience32(2013)214–227 ContentslistsavailableatSciVerseScienceDirect Human Movement Science journal homepage: www.elsevier.com/locate/humov Interaction of support surface stability and Achilles tendon vibration during a postural adaptation task ⇑ Marius Dettmer , Amir Pourmoghaddam, Daniel P. O’Connor, Charles S. Layne DepartmentofHealthandHumanPerformance,UniversityofHouston,104CGAR,3855HolmanSt.,Houston,TX77204,USA CenterforNeuromotorandBiomechanicsResearch,JohnP.McGovernCampus,2450HolcombeBoulevard,Houston,TX 77021-2040,USA a r t i c l e i n f o a b s t r a c t Articlehistory: Orchestration of sensory-motor information and adaptation to Availableonline5March2013 internalorexternal,acuteorchronicchangesisoneofthefunda- mental features of human postural control. The postural control PsycINFOclassification: systemischallengedonadailybasis,anddisplays aremarkable 2221 abilitytoadapttobothlongandshorttermchallenges.Toexplore theinteractionbetweensupportsurfacestabilityandAchillesten- Keywords: Learning donvibrationduringaperiodofadaptationweusedbothalinear Sensoryadaptation measureandanon-linearmeasurederivedfromcenter-of-pressure Proprioception (COP)data.Anequilibriumscore(ES),baseduponpeakamplitude of anterior-posterior sway towards theoretical limits of stability wasthelinearmeasureusedtoassessposturalperformance.We observedearlyeffectsofvibrationonposturalstability,depending onsupportcharacteristics.Participantswereabletodecreasesway withextendedpracticeoverdays,independentofsupportsurface stability.ApproximateentropyanalysisofCOPdataprovidedaddi- tionalinformationaboutcontroladaptationprocesses. (cid:2)2013ElsevierB.V.Allrightsreserved. 1.Introduction Maintainingposturalstabilitywhetherforstanding,locomotionorothertasks,requirescomplex interactionsbetweenneuromotorprocesses,biomechanicalconstraintsandthegoalsoftheindividual. ⇑ Correspondingauthor.Address:3855HolmanSt.,104CGAR,Houston,TX77204,USA.Tel.:+1(713)7439840;fax:+1(713) 7439860. E-mailaddress:[email protected](M.Dettmer). 0167-9457/$-seefrontmatter(cid:2)2013ElsevierB.V.Allrightsreserved. http://dx.doi.org/10.1016/j.humov.2012.12.002 M.Dettmeretal./HumanMovementScience32(2013)214–227 215 The central nervous system (CNS) constantly processes information regarding position and torques providedbythreeprimarysensorysystems,thevestibular,visualandsomatosensory(Horak,Nashner, &Diener,1990;Lackner&DiZio,2005).Informationfromthesesystemsresultsinthedetectionofpo- sitionandmovementandtheinitiationofadequatemuscularresponsestomaintainbipedalpostural control. Ithasbeendemonstratedthatwithpractice,theCNSexhibitstheabilitytoadapttoexternalper- turbations and thereby to decrease postural sway (Fransson et al., 2003). This adaptive process is potentiallyduetoseveral,distinctshort-andlongertermmechanismsofadaptation:oneproposed mechanismisdynamic,sensoryreweightingofavailablesensoryinformationsuchthattheCNSuti- lizes a weighted sum of available sensory information to maintain postural control. If one sensory channelprovidesunreliableinformation,itisdownweightedinfavorofmorereliablechannels(Car- ver,Kiemel,&Jeka,2006;Haran&Keshner,2008).Neurophysiologicalmechanismsunderlyingthis theory are not yet fully understood, but several theories and models for sensory integration and reweightinghavebeenpresented(Maurer,Mergner,&Peterka,2006,2002,2003;Peterka&Loughlin, 2004).Asecondelementofadaptationinvolvesthemodificationofposturalstrategies.Thiscanin- cludeshiftstowardsahiporanklestrategy,‘‘leaning’’andassociatedchangesofbiomechanicalcon- straints, or general stiffening of lower leg joints and increased ankle musculature co-contraction (Almeida,Carvalho,&Talis,2006;Benjuya,Melzer,&Kaplanski,2004;Brumagne,Janssens,Knapen, Claeys,&Suuden-Johanson,2008;Termozetal.,2008).Additionaladaptationhasbeenproposedto beencompassedbyaprocesslabeledlong-termconsolidation,emergingfromnumerousrepetitions of the task, representing an enduringmotor learning effect that integratesthe aforementioned fea- tures of adaptation for more efficientperformance (Fransson, Johansson,Tjernström, & Magnusson, 2003;Tjernström,Bagher,Fransson,&Magnusson,2010;Tjernström,Fransson,&Magnusson,2005). Given the important role of sensory contributions to action, researchers are often interested in challengingtheposturalcontrolsystembymodifyingspecificinputofvarioussensorychannels.Mus- cletendonvibration(mostcommonattheAchillestendon),isatechniquethatallowsresearchersto effectively challenge the postural control system by modifying sensory inputs primarily emerging from ankle muscle spindles in healthy or pathologic populations (Fransson, Johansson,Hafström, & Magnusson,2000;Gurfinkel’,Kireeva,&Lebik,1996;Rolletal.,1993;Thompson,Bélanger,&Fung, 2007, 2011). During vibration, Ia-afferents of the muscle spindles are preferentially stimulated (Ri- bot-Ciscar,Rossi-Durand,&Roll,1998).Thismusclespindlestimulationcreatesproprioceptivemisin- formation about the current muscle length and stretch (Matthews, 1986; Polónyová & Hlavacka, 2001), thereby generating sensations of muscle lengthening (Goodwin, McCloskey, & Matthews, 1972).Acommonlydescribedeffectisabackwardsleaningforcompensationoftheperceived(false) musclelengtheningandassociatedposturalsway.Thisimmediateeffectonbodyorientationincreases bodyswayandCOPfluctuations(Barbierietal.,2008;Ceyteetal.,2007;Lackner,1988;Polónyová& Hlavacka,2001;Roll,Vedel,&Roll,1989;Thompsonetal.,2007)especiallywhencombinedwithoc- cludedvision.Achillestendonvibrationcreatesadiscrepancybetweenperceivedafferentinformation fromstretchreceptorsofthelowerlimbmusculature,andothermorereliablesources(vestibularsys- tem,jointorskinreceptors,etc.),whichultimatelyaffectsposturalstability. Themagnitudeofinfluenceofvibrationonposturalstabilityishighlycontext-dependent.Forin- stance,posturalswayinresponsetomuscletendonvibrationwhilestandinguprightonanunstable supportsurface isreducedwhencomparedtothevibration-induced swaywhile standingona sta- blesupportsurface(Ivanenko,Solopova,&Levik,2000;Ivanenko,Talis,&Kazennikov,1999).Ithas been suggested that if vibration is introduced while standing on an unstable support surface, the CNS is able to partially suppress or downweight proprioceptive sensory input that is of no or little informational value or is detrimental to postural stability (Hatzitaki, Pavlou, & Bronstein, 2004). However, the possible interaction between vibration and support stability could affect the time course of postural adaptation. Numerous investigations have combined different support surface characteristics, manipulatingsensory conditionsand investigatingrepetitionof tasks to assesspos- tural adaptation. Linearanalysishastraditionallydominatedresearchandclinicalassessments.However,analyses basedonnon-lineartechniquesarenowmorefrequentlybeingusedtoinvestigateposturalcontrol dynamics. Among the non-linear tools applied to postural control research is approximate entropy 216 M.Dettmeretal./HumanMovementScience32(2013)214–227 (ApEn), a regularity statistic determining the predictability/regularity of variation in a time-series (Pincus,1991;Pincus&Goldberger,1994).ApEnhasbeenshowntodetectchangesinmotorcontrol thatmightnotberevealedbylinearanalysis,andresultshavebeeninterpretedaspotentialmodifi- cationsofmotorcontrolorbiomechanicalconstraints(Cavanaughetal.,2006).Recentdatahashigh- lighted the role of ApEn as a potentially useful supplementary analysis technique to traditional outcomemeasuresofposturalstability(Cavanaugh,Guskiewicz,&Stergiou,2005;Cavanaugh,Mercer, & Stergiou, 2007; Dusing, Kyvelidou, Mercer, & Stergiou, 2009; Hong, Manor, & Li, 2007; Stergiou, 2004;Turnock&Layne,2010). Thecurrentstudywasdesignedtoevaluateshort-orlongertermadaptationinresponsetodiffer- ent support surface characteristics and Achilles tendon vibration using both linear and non-linear measurements.ItwashypothesizedthatinitialapplicationofvibrationwouldincreaseCOPmotion, withmoresevereeffectsinthefixed-supportcondition;repeatedpracticewithvibrationwouldde- creaseCOPmotioninbothsupportsurfaceconditions,bothintheshort-termandinthelongerterm. InitialvibrationwouldaffectApEn,butthiseffectwouldbeinfluencedbysupportsurfacecondition. Repeatedpracticewithvibrationwould affectApEnin bothsupportsurfaceconditions,both inthe short-termandinthelongerterm. 2.Methodsandmaterials 2.1.Subjects TheprotocolwasapprovedbytheCommitteefortheProtectionofHumanSubjects(CPHS)atthe UniversityofHouston.ParticipantsforthestudywererecruitedfromtheUniversityofHoustoncam- pus.NeuromuscularhealthwasexaminedbyhavingprospectiveparticipantsfilloutaPhysicalActiv- ityReadinessQuestionnaireandperformapartialSensoryOrganizationTest(SOT),intherespective conditiontheyhadbeenrandomlyassignedto(either2or5).Exclusioncriteriawerereportedpoten- tialneuromotordeficitsorwhentheSOTshowedanabnormalscore.Thecutoffscoreforexclusion was determined by normative data provided with the NeuroCom system (NeuroCom International, Clackamas,OR).Foranagegroupof20–59years,thecutoffscoreswere85(SOT2)and52(SOT5). Allrecruitedparticipantswereincludedinthestudy.Eighteen(n=18)young,healthyindividualsbe- tween ages 18 to 35 (10 females; 8 males, mean age 24.1±4.2yrs; mean height 168.3±10.8cm; M±SD)participatedinthestudy. 2.2.Design AllexperimentalsessionswereconductedontheNeuroComBalanceManager(NeuroComInterna- tional,Clackamas,OR)intheCenterforNeuromotorandBiomechanicsResearch(CNBR).Allpartici- pants were randomly assigned to one of two experimental conditions (condition 2 and 5) of the Sensory-Organization-Test(SOT).SOT2requiresofparticipantstoclosetheireyesandmaintainup- right stance on a fixed-support surface (FS). SOT 5 requires of participants to close their eyes and maintainuprightstancewhilethesupportsurfaceisunstable,andsway-referenced(SRS).InSOT5, thesurfacerotatesinanteriorandposteriordirectionaccordingtoforcesappliedtotheplatformby thesubjectwhiletryingtomaintainquietstance.Thisconditionisdesignedtodampenproprioceptive signals,whereasmusclespindleinformationnolongerprovidesreliableinformationaboutbodyver- ticality. This is combined with removal of visual reference,creating a challenging postural task. All testingwascompletedinstockingfeetwitharmscrossedinfrontofthechest.Duringalltestsessions, COPdatawerecollectedat100Hz. VibrationwasappliedbilaterallyontheAchillestendons(seeFig.1)atafrequencyof70Hz(VB 115,Techno-Concept,Cereste,France).70Hziswithinarangeoffrequenciesshowntobeeffective instimulatingmusclespindlesaroundtheankles(Polónyová&Hlavacka,2001)andevokepostural responses. Priortothefirstsession,informedconsentandanthropometricdata(age,genderandheight)were obtainedfromeachparticipant.Participantswerefamiliarizedwiththesensationofmuscletendon M.Dettmeretal./HumanMovementScience32(2013)214–227 217 Fig.1. Experimentalsetupforthecurrentstudy.Forceplatform(NeuroComBalanceManager)andIa-afferentstimulation appliedvialocalmuscletendonvibration(TechnoConceptVB115). vibration(whilesittinginachair)andperformedthreeacclimatizationtrialsoftheirassignedsupport condition.Duringtheseinitialtests,themusclevibratorswereattachedattheparticipants’anklesbut werenotactivated.Inthenextsession(followingday),threetrialsofbaselinedatawerecollected(no vibration).Immediatelyafterbaselinetesting,thefirstvibrationtestsessionwasconducted.Eachtest sessionconsistedofninetrialsof20secondseach,withfive-secondbreaksinbetweeneachsingletrial andaoneminuterestperiodaftereverythreetrials.Participantsweretestedintheirrespectivegroup supportsurfacecondition.Anauditorystimulussignalledthestartofthetest.Vibrationwasalways activatedsimultaneouslywiththestartofatrialandwasturnedoffbetweentrials.Testsessionsof ninetrialsperdaywereconductedforthreeconsecutivedaysforallparticipants. 2.3.Datareduction Anequilibriumscore(ES)foreverysingletrialwasobtainedusingEquiTest8.0software(Neuro- ComInternational),whichisbasedonestimatedcenter-of-gravityvariationobtainedfromanterior- posteriorCOPvalues.Thecenter-of-gravityisestimatedbyusingasecond-orderButterworthdigital filter (cut-off frequency of 0.85Hz) on COP data in each time-series (Leitner et al., 2009). ES is ex- pressedbytheratioofthepeak-to-peakcenter-of-gravity(anterior-posteriordirection,COGy)angular displacement to the theoretical maximum angular displacement limits of stability (approximately 12.5(cid:3)inanterior-posteriordirection).ESrangesbetween0–100,whereasascoreof0denotesafall and 100 denotes perfect stability (NeuroCom, 1991). This method is the basis of computerized dy- namicposturography(CDP)andhasbeenusedinavarietyofclinicalandscientificenvironmentsin ordertomakeconclusionsaboutposturalstabilityofhealthysubjectsandpatients(Roberts-Warrior 218 M.Dettmeretal./HumanMovementScience32(2013)214–227 etal.,2000;Yardley,Burgneay,Nazareth,&Luxon,1998).Sincethisinvestigationaimedatassessing earlyeffects,short-orlongertermadaptation,weuseddifferentapproachesfordatareduction. Toanswerthequestionofwhethersupportsurfaceconditionaffectedresponseduringtheinitial exposuretovibration,whichwaslabelledasearlyeffects,wecomparedtheESandApEnbaselinedata withESandApEndatafromtherespectiveinitialvibrationtrial.Themethodologyemployed(i.e.,data collectionbeginningsimultaneouslywithvibrationinitiation)resultedinthewelldocumentedimme- diatebackwardsswayinresponsetovibrationandsubsequentdriftbacktowardsbaselinebeingin- cludedinthecalculationofboththeESand ApEnvalues.Wewerealsointerested inexploringthe effectsofsupportsurfaceonthevibrationresponseoverasomewhatlongertimeperiod.Totestfor short and long term adaptation, the ES and ApEn data for each trial were centered relative to the respective baseline value for each subject, creating deviation scores to normalize for differences in thebaselinemeans and variabilitybetweenthe fixed-support and sway-references support groups. Fordeterminationofshort-termadaptation,weanalyzedthecentereddatafortrials1–9withineach day.Toassesslongertermadaptation,weaveragedthecentereddatafromallninetrialsineachday (day1throughday3)tocomparebetweentestdays.Averagingoftrialswithindayswasjustifiedby thefactthattrial-to-trialtrendsinbothconditionsdidnotdifferbetweentestingdays(i.e.,nosignif- icantday-by-trialinteraction.Sinceoneofthegoalsoftheexperimentwastodeterminewhetherpar- ticipantsintheirrespectivetestconditionwouldbeabletofullyadapttothevibrationperturbation, wedeterminedthetaskas‘‘learned’’(vibrationeffectsfullycompensated)whenparticipantshadES withinonestandarddeviationoftheirinitialbaselinetestingmean. ApEnmeasureswerecalculatedusingacustomizedMatLabR2008a(Mathworks,Natick,MA)code andanterior-posteriorCOP-displacementdataforeach20-strialoftheexperiment(2000datapoints pertrial).Accordingtodataprocessingprotocolsestablishedinformerstudies,thefollowingsettings wereappliedforMatLabanalysis:Aserieslengthof2(m=2datapoints),anerrortolerancewindow of0.2timesthestandarddeviationoftherespectivetimeseries(r=0.2);andalagvalueof10,reduc- ingtheeffectivesamplingrateto10Hz(Cavanaughetal.,2006).UsingtheMatLabcode,weobtaineda singleApEnvalueforeachtrial,wetheneitherusedsinglevaluesoraveragedthedataaccordingto themethodpresentedforESabove. Asavalidationfortheapplicationofapproximateentropyasanon-linearanalysistool,itneedsto beidentifiediftheCOPtimeseriesdataaredeterministic.Thisisdonebyshufflingthedatapoints using a transformation algorithm (Theiler, Eubank, Longtin, Galdrikian, & Farmer, 1992) in MatLab 2008r(Mathworks,Natick,MA).Usingthistransformation,asurrogatesetofdatawascreated.Surro- gateandoriginaldata(ApEn)werethencomparedviat-tests(a=.05).Thereweresignificantdiffer- ences betweenthe setsof data pointsfor each pair ofCOP time-series,demonstratingnon-random characteristicsoftheoriginaltime-seriesdata. StatisticalanalysiswasperformedusingIBMSPSSStatistics20.0.Mixedeffectslinearmodelanal- yseswithpolynomialcontrastsoftherepeatedmeasureswereusedtotestbothdependentvariables (ES, ApEn) for analysis of between-groups, within-groups, and interaction effects when comparing eitherbaselinevs.firstvibrationtrial(earlyeffects),theninevibrationtrialswithindays(short-term adaptation),orthreetestingdays(long-termadaptation).Randomeffectsforsubjectswereincluded inthemodelstoaccountfordependencyoftherepeatedmeasures.Themodelfortestingearlyeffects (firsttrialofvibration)onESincludedheterogenousvariancesbecausethevariancesestimatedfrom theobserveddataweresubstantiallydifferent;allotheranalyseswereunadjustedsincetheobserved datawereconsistentwithhomogeneousvariance.TheHuynh–Feldtepsilonwasusedasappropriate toadjustthedegreesoffreedomfordeviationfromsphericityofrepeatedmeasures. 3.Results Eighteenparticipantscompletedthefamiliarizationtrials,baselinetestingandthreeconsecutive daysofvibrationtests.Allparticipantsassignedtothesway-referencedsupportconditionwereable toreturntobaseline(novibration)performancewithinthevibrationtestingperiod,whereasnopar- ticipantinfixedsupportwasabletoachieveascorewithinonestandarddeviationfrombaselineper- formancewithinthecourseofthetestingperiod. M.Dettmeretal./HumanMovementScience32(2013)214–227 219 3.1.Earlyeffects–equilibriumscore Data from the first trial of vibration exposure revealed an early effect on postural performance regardless of surface support condition (see Fig. 2) as measured by equilibrium score, F(1,19.98)=30.479,p<.001.Theequilibriumscoreinthefixed-supportgroupdecreasedfromabase- line value of 93.2±2.3 to 67.4±14.5, F(1,8)=26.044, p=.001, and decreased from 74.0±7.0 to 61.6±12.9inthesway-referencedsupportgroup,F(1,8)=10.010,p=.013.Therewasnosignificant group-by-trials interaction effect, F(1,19.98)=3.742, p=.067. There was a significant group effect, F(1,19.98)=13.221,p=.002;scoresinthefixed-supportgroupweregenerallyhigherduringbaseline andinitialvibration. 3.2.Short-termadaptation–equilibriumscore Analysisofshort-termadaptationfortheninetrialswithineachdayundervibrationshowednosta- tisticallysignificantchangesofcenteredequilibriumscoreforDay1,F(6.85,109.64)=1.076,p=.383, Day 2 F(7.02,112.31)=1.327, p=.224, and Day 3, F(6.01,96.19)=2.146, p=.055. There was no group-by-trials interaction for Day 1, F(6.85,109.64)=1.503, p=.175, Day 2, F(7.02,112.31)=0.286, p=.959,andDay3,F(6.01,96.19)=0.485,p=.818.Fig.3illustratesthatposturalstabilityshowsnoevi- denceofadaptationwithinatestingday.Thefixed-supportgroupalsodisplayedhigheroverallpostural performance(i.e.,higherequilibriumscores)comparedtothesway-referencedsupportgroup. 3.3.Longer-termadaptation–equilibriumscore Longer-term adaptation over the three days increased the centered equilibrium score in both groups, F(2,32)=14.674, p<.001 (see Fig. 3). There was a significant difference in centered ES be- tween Days 1 and 2, F(1,32)=14.155, p=.001 and between Days 2 and 3, F(1,32)=16.005, p<.0001.Nosignificantgroup-by-daysinteractioneffectwasfound,F(2,32)=.749,p=.481;repeated administration of the test under vibration lead to similar improvements of balance performance in bothsurfaceconditiongroups.Overthecourseofthethreetestingdays,bothgroupsimprovedtheir posturalcontrolduringvibrationatthesamerate.Centeredequilibriumscoredifferedsignificantly betweengroups,F(1,16)=1.149,p=.006.Posturalperformance,unadjustedequilibriumscores,over thethreetestingdayswasoverallhigherinthefixed-supportgroup(Fig.3).However,Fig.4illustrates thatthefixed-supportgroupdisplayedsignificantlygreaterdecrements(centeredequilibriumscores) inresponsetovibrationrelativetotheirbaselinemeasureswhencomparedtothesway-referenced group. 100 90 e or 80 c S m u 70 bri quili 60 E 50 40 no vibration vibration Fig.2. EquilibriumScore(asameasureofposturalstability,rangingfrom0–100)meansandstandarddeviationoffixed support condition (dashed line) and sway-referenced support condition (solid line) during both baseline testing and first vibrationtrial. 220 M.Dettmeretal./HumanMovementScience32(2013)214–227 85 75 e or c S m briu 65 uili q FS E SRS 55 Day 1 Day 2 Day 3 45 Fig.3. ComparisonofEquilibriumScoresinfixed-supportcondition(dashedline)andsway-referencedsupportcondition(solid line)duringninevibrationtrialsperday(27trialstotal).Openstarsrepresentthemeanvalue(plusorminusonestandard deviation)forthetrialsofaparticulartestingday. 3.4.Earlyeffects–approximateentropy Therewasasignificantmaineffectofvibration,F(1,16)=5.386,p=.034.Changesofapproximate entropywerefoundonlyinthesway-referencedgroup(seeFig.5)overthecourseofthefirstvibration trial. Approximate entropy values in the fixed-support group were 0.736±0.149 without vibration and0.794±0.161duringinitialvibrationtrial,F(1,8)=1.002,p=.346.Inthesway-referencedgroup, approximate entropy increased significantly from 0.740±0.134 to 0.853±0.206, F(1,8)=6.167, p=.038. Therewas nogroup effect,F(1,16)=0.223,p=.643 or time-by-group effect,F(1,8)=0.556, p=.467. 10 0 es cor -10 S e c n e er Diff -20 S E FS SRS -30 Day 1 Day 2 Day 3 -40 Fig.4. ComparisonofthedifferencescoresbetweenthebaselineESandtheESinfixed-supportcondition(dashedline)and sway-referencedsupportcondition(solidline)duringninevibrationtrialsperday(27trialstotal).Openstarsrepresentthe meanvalue(plusorminusonestandarddeviation)forthetrialsofaparticulartestingday. M.Dettmeretal./HumanMovementScience32(2013)214–227 221 3.5.Short-termadaptation–approximateentropy Analysisofshort-termadaptationforninetrialswithinadayundervibrationshowedstatistically significant changes of approximate entropy values for Day 1, F(7.08,128)=6.953, p<.001, Day 2 F(8,128)=5.744,p<.001,andDay3,F(8,128)=2.434,p=.018(seeFig.6).Therewasnogroup-by-tri- als interaction for Day 1, F(6.85,128)=1.612, p=.138, Day 2, F(8,128)=0.865, p=.548, and Day 3, F(8,128)=0.655,p=.730;approximateentropyaveragesbetweengroupswerenotdevelopingdiffer- ently between groups over the trials. Fig. 6 also illustrates that there was a general trend in both groups toward increasing regularity within a testing day and this trend was more pronounced in thefixed-supportsurfaceconditiongroup.Thefixed-supportgroupalsodisplayedmoreoverallregu- larity(i.e.,lowerApEnscores)comparedtothesway-referencedsupportgroup. 3.6.Longer-termadaptation–approximateentropy Repeatedtestingoverdayshadnostatisticallysignificanteffectoncenteredapproximateentropy, F(1.65,32)=1.365,p=.269(seeFig.6).Therewasnostatisticallysignificantgroup-by-daysinteraction effect,F(2,32)=2.915,p=.081,indicatingthatneithergroupdisplayedlong-termadaptationinthis measure. Approximate entropy values were overall higher in the sway-referenced group, F(1,16)=9.306,p=.008. 4.Discussion Inthepresentstudy,theinfluenceofpracticeduringabipedalposturalcontroltaskwasinvesti- gatedwithdifferentcombinationsofsupportsurfacestabilityandproprioceptiveperturbation(Achil- lestendonvibration).Wesoughttocharacterizebothshortandlonger-termadaptationoutcomesthat would suggest compensation to the proprioceptive perturbation. Further, we used both linear and non-linearmeasuresofforceplate-derivedCOPdatatoexplorefeaturesofposturalcontrolandadap- tationthatarenotcapturedbytraditionallinearmeasuresofposturalperformance. 4.1.Balanceperformanceduringbaselineandfirstvibrationtrial Theobservedbaselinevaluesexhibitedtheexpectedcharacteristicsofposturalstabilityundersta- ble(FS)orunstablesupport(SRS)conditions:ESweresignificantlybetterinFSthaninSRS.Standing 1.2 1.1 1 0.9 n pE 0.8 A 0.7 0.6 0.5 0.4 no vibration vibration Fig.5. ApEn(asameasureofswayregularity)meansandstandarddeviationoffixedsupportcondition(dashedline)andsway- referencedsupportcondition(solidline)duringbothbaselinetestingandfirstvibrationtrial. 222 M.Dettmeretal./HumanMovementScience32(2013)214–227 1 0.8 n E 0.6 p A 0.4 FS SRS Day 1 Day 2 Day3 0.2 Fig.6. ComparisonofApEnscoresinfixed-supportcondition(dashedline)andsway-referencedsupportcondition(solidline) duringninevibrationtrialsperday(27trialstotal).Openstarsrepresentthemeanvalue(plusorminusonestandarddeviation) forthetrialsofaparticulartestingday. quietlyonastablesurfaceprovidesmoreopportunityforretrievalofsensoryinformationusedinthe controlofbipedalposture.IntheFS-conditionwithoutvibration,musclespindlesandmechanorecep- torsofthesolesofthefeetareabletoprovidetheCNSwithreliableinformationrelatedtopostural swaythatisusedtoregulateCOPmotion(Maureretal.,2006).SRSreducesopportunitiesforobtaining reliableinformationtomanageposturalcontrol,sincereliableproprioceptiveinformationisgreatly minimizedduetoswayreferencing.Theearlyeffectsofanklevibrationonlinearmeasuresofpostural controlwasconsiderablylessinSRS(ESdecreasedbyapproximately9%)comparedtoFS(ESdecreased byapproximately28%).Althoughthegroup-by-trialsinteractioneffectapproachedbutfailedtoreach statisticalsignificance(p=.067),themagnitudeofthedifferencesobservedinbothFig.2andthedif- ferencebetweengroupsoftheday1trial1deviation-from-baselinevaluesplottedinFig.4suggest thatthesupportsurfaceinfluencestheresponsetovibration(seefurtherdiscussionbelow). 4.2.Short-andlongertermdevelopmentofbalanceperformance Franssonandcolleaguesinvestigatedadaptationeffectsinaseriesofposturaltasktrialsinvolving sensory perturbation in the form of musculo-tendon vibration (Fransson, Johansson, et al., 2003; Tjernströmetal.,2005).Theypresentedanexplanationforthedevelopmentofposturalperformance curvesovertime,basedonseveralmajorfactors:1)apotentialsuppressionof,oradaptationtovibra- tionstimulibasedonsensoryreweightingandassociatedshifttowardsunperturbedafferentssources, 2)posturalstrategychangesincludingthepotentialmodificationofkinematicdegrees-of-freedomby alteringposturalorientation,associatedwithchangesinmuscleco-contractionandanklestiffnessand 3)consolidation,representinglonger-termchangesofposturalcontrolbasedonmotormemoryand experience,thatfunctiontoimproveresponsestoappliedconstraintsandperturbations.Thisexpla- nationprovidesaframeworkinwhichtointerpretthecurrentdata. Theequilibriumscoredatarevealednosignificantshorttermadaptationacrosstheninetrialsona givenday,regardlessofcondition.Thisfindingsuggeststhatduringthisshorttimeperiod,potential postural control changes did not assist in reducing postural sway significantly. However, repeated administration of vibration over consecutive days led to improvements in ES in both support conditions and the rate of this improvement was similar. This finding suggests that with repeated exposuretovibration,adaptationdidoccurwiththeassociatedassumptionthattheposturalcontrol systemwassuppressingunreliableinputsandplacinggreaterweightonmorereliablesensoryinfor- mation.Repeatedadministrationofposturaltaskshaveshowntoevokereductionofbodymovements due to adaptation (Fransson, Johansson, et al., 2003; Nashner, Black, & Wall, 1982; Wrisley et al., 2007). M.Dettmeretal./HumanMovementScience32(2013)214–227 223 Thecurrentdataareconsistentwithearlierworkconcerningtheattenuationoftheeffectsofmus- cletendonvibrationwhenadynamicproprioceptivestimulusintheformofanunstableplatformis added(Ivanenkoetal.,1999).Ithasbeenproposedthatthisdampenedresponsetovibrationinthe face of postural instability is the result of sensory down-weighting of ankle proprioceptive input. Accordingtothishypothesis,unreliableinputsourcesarelessinfluentialwhileintegrationofreliable sensoryinformationisweightedmoreheavilyforuseinthemaintenanceofposturalstability(Isableu etal.,2010;Oie,Kiemel,&Jeka,2002;Vuillerme&Pinsault,2007).Fig.4illustratesthattheSRSgroup waslessnegativelyimpactedbytheadditionofvibrationrelativetotheFSgroup,therebysuggesting theywerepotentiallymoreeffectiveindown-weightingthedisruptedproprioceptionresultingfrom the application of vibration to the ankle musculature. Conversely, the FS group continued to be stronglyimpactedbyvibrationacrossallthreetestingdays.Thiscouldbetheresultofthesubjects continuingtoattempttorelyonproprioceptiveinformationthatisnormallyreliableduringfixedsur- facesupportconditions.Thedatadorevealthatdespiteexperiencinglargeperformancedecrements withvibration,theFSgroupdidimproveoverthecourseofthethreetestingdays,suggestingthatcon- solidationwasoccurring. The potential underlying mechanisms associated with reweighing of sensory input are not fully understood,butcouldbebasedoninhibitoryspinalpathwaysoraprocessthatsuppressestheeffect of increased firing of proprioceptive afferents under vibration when the muscle is being stretched (Bove, Nardone, & Schieppati, 2003; Radhakrishnan, Hatzitaki, Patikas, & Amiridis, 2011). This pro- posedreweightingprocessreflectsanappropriateresponsetothedecreasedreliabilityofpropriocep- tiveinputassociatedwithanunstablesupportsurfacethatpreventsonefromoptimallydetermining posturalorientation.InthecaseofSRS,increasedswayresultingfromvibrationwouldbeattenuated relativetoFS,duetodecreasedintegrationofunreliableanklemusclespindleinformationforpostural control.Additionally,duetothenatureofthetaskinSRS,thereismoreposturalswayandcorrespond- ingmultiplemuscleactivationinthelowerlimbs.Theincreasedextra-fusalactivationmighthavean additionalimpactonattenuatingvibrationaleffects,byunloadingthespindlereceptorsandthereby affectingtheirfiringrate(Radhakrishnanetal.,2011). TheobservedeffectwouldrepresentanexampleoftheCNS’sabilitytodown-weightorsuppress singlesensoryinformationchannelsdependingontheirpositiveornegativeinfluenceonposturalsta- bilityunderspecificconditions(Hatzitakietal.,2004).Therehavebeenmultipleapproachestodeter- mine the nature of sensory reweighting in postural control, but it remains unclear, to what extent presynaptic mechanisms, spinocerebellar- or higher motor processing contribute to the changes in weightingandintegrationofafferentinformation.Thedatapresentedinthisstudyareconsistentwith thesensoryreweightinghypothesis. OurfindingsareinaccordancewiththeoriesregardingthecapabilityoftheCNStoutilizedifferent afferent information sources depending upon specific task demands and constraints. Over time, a refiningofneuromotorprocessingimprovesfunctionalposturalcontrol.Inaddition,mechanismsof consolidation (longer-term learning) are being utilized in order to improve postural balance (Tjernström,Fransson,Hafström,&Magnusson,2002).Asourcriteriaforlearningthetaskwasare- turnofESwithinonestandarddeviationofinitialbaselinetesting,onlygroupSRSparticipantswere abletofullyadapttotheconditionsandreturntobaseline.Thissuggeststhattheprocessoflonger- termadaptationwasmoreadvancedintheSRSconditionrelativetoFS.Althoughimprovementswere observedinFSaswell,potentialmechanismsofsensoryreweighting,leadingtoposturalcontrolstrat- egiesshiftsormotorlearningwerenotsufficienttofullyadapttotheperturbedsensoryinputemerg- ingfromanklemusclespindles,atleastnotwithinthetrainingperiodofthreedays.SinceESinFSstill showedanupwardtrendatthecompletionofthethree-daytestingperiod,itwouldbeinterestingto investigatewhetherhealthyparticipantscouldcompletelyovercomemusclespindleperturbationon thestablesupportwithadditionalpractice. 4.3.Reflectionofvibrationeffectsandadaptationinswayregularity Thefoundationofapproximateentropyrepresentsthepredictabilityorrepeatabilityofdatapoints inatimeseries.AnextensivesummaryofApEncomputationandpotentialapplicationsisprovided
Description: