ebook img

Interacting Multi-particle Classical Szilard Engine PDF

0.28 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Interacting Multi-particle Classical Szilard Engine

InteractingMulti-particleClassicalSzilardEngine P. S. Pala,b and A. M. Jayannavara,b∗ aInstitute of Physics, Sachivalaya Marg, Bhubaneswar-751005, India bHomiBhabhaNationalInstitute,TrainingSchoolComplex,AnushaktiNagar,Mumbai400085,India Szilard engine(SZE) is one of the best example of how information can be used to extract work from a system.Initially,theworkingsubstanceofSZEwasconsideredtobeasingleparticle.Lateron,researchershas extendedthestudiesofSZEtomulti-particlesystemsandeventoquantumregime. Herewepresentadetailed study of classical SZE consisting N particles with inter- particle interactions, i.e., the working substance is alowdensitynon-idealgasandcomparetheworkextractionwithrespecttoSZEwithnon-interactingmulti particle system as working substance. We have considered two cases of interactions namely: (i) hard core interactionsand(ii)squarewellinteraction. Ourstudyrevealsthatworkextractionislesswhenmoreparticles are interacting through hard core interactions. More work is extracted when the particles are interacting via 7 squarewellinteraction. Anotherimportantresultforthesecondcaseisthatasweincreasetheparticlenumber 1 the work extraction becomes independent of the initial position of the partition, as opposed to the first case. 0 Work extraction depends crucially on the initial position of the partition. More work can be extracted with 2 largernumberofparticleswhenpartitionisinsertedatpositionsneartheboundarywalls. n a PACSnumbers:05.70.-a J Keywords:SzilardEngine,information,interactingparticles 5 2 ] h I. INTRODUCTION c e m In1929, LeoSzilardputforwardaclassicdemonstrationofMaxwell’sdemon[1,2]bydescribinganengine thatusestheinformationacquiredbymeasurementofthestateoftheworkingsubstancetoperformsomework - t [3]. Szilard considered a single particle in a box and executed the following four steps to extract work from a the system:(a) insert a partition at the middle of the box, (b) measure the whether the particle is in the right or t s left half, (c) attach the box with a bath at inverse temperature β and allow the partition to move isothermally . t andquasistaticallytilltheendoftheboxand(d)removethepartitionsothatthesystemregainsitsinitialstate. a m Nowherearisesacrucialquestionregardingthecompatibilitybetweenthiscyclicthermodynamicprocessandthe second law of thermodynamics. Apparently, at first stance one might think that work has been extracted out of - d nowhere. Butitisnotthecase. Itisnowawidelyknownfactthatthemeasurementprocessincludingerasurehas n anentropiccostwhichsavesthesecondlaw[4,5]. Employmentofinformationtoextractworkoutofasystem o hasledtosomeinsightfulphysicsintheareaofnon-equilibriumthermodynamics[6–10]. c AlthoughSzilardenginehasbeeninitiallypicturedinclassicalframeworkwithsingleparticle,recentlyithas [ beentranslatedtoquantumregimealongwithmulti-particlescenarioandasymmetriceffects[11–14].Inthiswork 1 weconsideredamulti-particleclassicalSzilardengine,buttheseparticledoesnotbehavelikeanidealgas.Instead v wetakeN particlenon-idealgasasourworkingsubstancei.e.,theparticleshaveinteractionsbetweenthem. Here 8 wehaveassumedthegastobeoflowdensitysothatwecansafelyusetheequationofstateofthegasuptosecond 8 virialco-efficient.Weworkedontwotypesofinteractions:(i)hardcoreinteractionand(ii)squarewellinteraction. 1 Ourstudyrevealsthatworkextractionislesswhenmoreparticlesareinteractingthroughhardcoreinteractions. 7 0 Moreworkisextractedwhentheparticlesareinteractingviasquarewellinteraction. Anotherimportantresultfor . thesecondcaseisthatasweincreasetheparticlenumbertheworkextractionbecomesindependentoftheinitial 1 positionofthepartition,asopposedtothefirstcase. Workextractiondependscruciallyontheinitialpositionof 0 thepartition. Moreworkcanbeextractedwithlargernumberofparticleswhenpartitionisinsertedatpositions 7 1 neartheboundarywalls. : The gas is filled in a box of length L and surface area A(total volume V = A.L). The partition is inserted v vetically at l = xL (0 < x < 1). Next the number of particle is measured on the left half, say n. The system i X undergoesanisothermalexpansionincontactwiththeheatbathandthefinalpositionofthepartitionbeln .Lastly eq r thepartitionisremoved. TheworkdonebytheSZEisgivenby[11,13] a N (cid:18) (cid:19) W =−1 (cid:88)p ln pn . (1) tot β n f n n=0 ∗[email protected],[email protected] β = (k T)−1,wherek denotestheBoltzmannconstantwhichistakentobeunityinsubsequentexpressions. B B Herep andf aregivenby n n p = Zn,N−n(xL) ;f = Zn,N−n(lenq) , (2) n (cid:80) Z (xL) n (cid:80) Z (ln ) n(cid:48) n(cid:48),N−n(cid:48) n(cid:48) n(cid:48),N−n(cid:48) eq whereZ (X) = Z (X)Z (L−X)isapartitionfunctionthatdescribesthesituationofnparticlesto n,N−n n N−n theleftofthepartitionandtheremainingN −ntotheright,inathermalequilibrium. Physically,p denotesthe n probabilitythattherearenparticlestotheleftafterpartitionandf representstheprobabilitytochoosethecase n ofnparticlesontheleftsideofthewallwhenthewallisinsertedatln inthetimebackwardprocess. Notethat eq onecanchooselfreelywhenthewallisinsertedwhileln isdeterminedfromtheforce(pressure)balanceonboth eq sidesofthewallFL+FR = 0. Thewholeproblemnowboilsdowntothecalculationofthepartitionfunction fornon-idealgasinaconfinedvolumefortwointeractionpotentials, asmentionedabove. SectionIIdealswith thepartitionfunctionfornon-idealgases. SectionsIIIAandIIIBdescribesworkextractionusingnon-idealgases with hard-core potential and square well interactions respectively. A short discussion is added in Section IV. FinallyweconcludeinSectionV.Eachsectionismadeselfconsistent. II. PARTITIONFUNCTIONOFNON-IDEALGAS Partition function of non-ideal gas consisting of N interacting particles confined in a box of length L and volumeV atinversetemperatureβ isgivenby (cid:20) N2 (cid:90) (cid:21) Z =Z 1+ {e−βU((cid:126)r)−1}d3(cid:126)r . (3) id 2V HereZ isthepartitionfunctionforidealgasandisgivenby id cLN Z = , (4) id N! wherecissomeconstant.U((cid:126)r)istheinteractionpotentialbetweentwoparticles.IfU((cid:126)r)istakentobespherically symmetriconecanintegrateouttheangulardegreesoffreedomresulting (cid:20) N2 (cid:90) (cid:21) Z =Z 1+ 4π r2{e−βU(r)−1}dr , id 2V cLN (cid:20) N2 (cid:21) = 1− B (β) , (5) N! V 2 whereB (β) = −2π(cid:82) r2{e−βU(r)−1}dr isthesecondvirialco-efficientthatarisesintheequationofstateof 2 thenon-idealgas. A. HardCoreinteraction Inthismodeltheinteractionpotentialisgivenby U(r)=∞ r <σ, =0 σ <r, (6) whereσisthehardcoreradius. 2 FIG.1. Hardcorepotential. TheexpressionforB (β)is 2 (cid:90) σ 2 B (β)=2π r2dr = πσ3, (7) 2 3 0 andthecorrepondingpartitionfunctionisgivenby cLN (cid:20) 2 (cid:21) Z = 1− πσ3N2 . (8) N! 3V Equationofstateforsuchanon-idealgaswithhardcorepotentialis N βP = , (9) V − 2 πσ3N 3V whereP isthepressureofthegas. B. Squarewellinteraction Inthiscasetheinteractionpotentialisgivenby U(r)=∞ r <σ =−ε σ <r <Rσ =0 Rσ <r. (10) 3 FIG.2. Squarewellpotential. TheexpressionforB (β)is 2 (cid:90) σ (cid:90) Rσ B (β)=−2π{− r2dr+(eβε−1) r2dr} 2 0 σ 2 = πσ3{1−(R3−1)(eβε−1)} 3 =C −C eβε, (11) 1 2 whereC = 2πσ3R3andC = 2πσ3(R3−1). Thepartitionfunctionisgivenby 1 3 2 3 cLN (cid:26) N2 (cid:27) Z = 1− (C −C eβε) . (12) N! V 1 2 Correspondingequationofstateforthenon-idealgaswithsquarewellinteractionbetweenparticlesis N (cid:18)N(cid:19)2 N (cid:18)N(cid:19)2 βP = +B (β) = +(C −C eβε) . (13) V 2 V V 1 2 V III. WORKEXTRACTION In classical systems, insertion and removal of partition does not involve work done on the system. Work extractionisonlypossibleduringtheisothermalprocessanditisgivenbyEq.1. Thepartitionisinitiallyinserted atl = xLandduringtheisothermalprocessitshiftstol = ln dependingonthenumberofparticlesontheleft/ eq rightside. Sincethepartitionfunctioncannowbecalculatedwecaneasilycomputep ,f andtheworkforthe n n abovementionedinteractions. A. Hardcoreinteraction Inthistypeofinteractionbetweenparticles,p iscalculatedusingEq.2and8 n Z (xL) p = n,N−n n (cid:80) Z (xL) n(cid:48) n(cid:48),N−n(cid:48) Z (xL)Z ((1−x)L) = n N−n (cid:80) Z (xL)Z ((1−x)L) n(cid:48) n(cid:48) N−n(cid:48) (cid:0)N(cid:1)xn(1−x)N−n(1− αn2)[1− α(N−n)2] = n x 1−x (14) (cid:80) (cid:0)N(cid:1)xn(cid:48)(1−x)N−n(cid:48)(1− αn(cid:48)2)[1− α(N−n(cid:48))2] n(cid:48) n(cid:48) x 1−x 4 Hereα = 2 πσ3. Beforethecomputationoff ,weneedtocalculatetheequilibriumlengthln uptowhichthe 3V n eq partitionmovesduetothepressuredifferenceontwosidesofthepartition. Forthiswerequirepressureexerted onthepartitionbythegasonbothsidestobesame,i.e.,PL =PR,whichcanberewrittenusingtheequationof state(Eq.9)as n N −n = , Aln − 2 πσ3n A(L−ln )− 2 πσ3(N −n) eq 3V eq 3V 2 2 An(L−ln )− πσ3(N −n)n=(N −n)Aln − πσ3n(N −n), eq 3V eq 3V n ln = L. (15) eq N Nowtheexpressionoff canbeeasilycalculatedandisgivenby n (cid:0)N(cid:1)(n)n(1− n)N−n(1−αnN)[1−α(N −n)N] f = n N N (16) n (cid:80) (cid:0)N(cid:1)(n)n(cid:48)(1− n)N−n(cid:48)(1−αn(cid:48)N)[1−α(N −n(cid:48))N] n(cid:48) n(cid:48) N N α=0.001 0.7 x=0.2 x=0.3 0.65 x=0.4 x=0.5 α=0, x=0.5 0.6 W 0.55 0.5 0.45 0.4 1 2 3 4 5 6 7 8 9 10 11 12 N FIG.3. Averageworkextractionasfunctionofnumberofparticles. Fig.3representstheaverageworkasthefunctionofnumberofparticleswithhardcoreinteractionsfordifferent initial position of the partition. Similar to the non-interacting case, work extraction decreases when number of particles increases. For comparison, we have also included in the figure, the work extraction plot with non- interactingparticles(α=0)whenthepartitionisinitiallyplacedatthemid-pointx=0.5. Ascanbeseen,work extractionlowerwhenwearedealingwithnon-idealgasesratherthanidealgases. 5 α=0.001, N=2 0.7 α=0.001, N=5 α=0, N=2 α=0, N=5 0.6 W 0.5 0.4 0.3 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x FIG.4. Averageworkextractionasfunctionofpositionofthepartition. Fig.4depictsthebehaviorofaverageworkasafunctionofthepositionwherethepartitionisinitiallyinserted. The plot clearly shows that interactions plays a major role in work extraction as the number of particles is in- creased. Inter-particle interactions decreases work extraction. Average work is symmetric about x = 0.5 for obvious reason. Another point to be noted is that work extraction is more for x (cid:54)= 0.5, as particle number is increased. B. Squarewellpotential Inthistypeofinteractionbetweenparticles,p iscalculatedusingEq.2and12 n Z (xL) p = n,N−n , n (cid:80) Z (xL) n(cid:48) n(cid:48),N−n(cid:48) Z (xL)Z ((1−x)L) = n N−n , (cid:80) Z (xL)Z ((1−x)L) n(cid:48) n(cid:48) N−n(cid:48) (cid:0)N(cid:1)xn(1−x)N−n(1− γn2)[1− γ(N−n)2] = n x 1−x , (17) (cid:80) (cid:0)N(cid:1)xn(cid:48)(1−x)N−n(cid:48)(1− γn(cid:48)2)[1− γ(N−n(cid:48))2] n(cid:48) n(cid:48) x 1−x whereγ = C(cid:48) −C(cid:48)eβε withC(cid:48) = 1C = 2πσ3R3 = αR3 andC(cid:48) = 1C = 2πσ3(R3−1) = α(R3 −1). To 1 2 1 V 1 3V 2 V 2 3V calculate the equilibrium position of the partition we need to equate the pressure (given by Eq.13) on the both sidesofthepartitionandhenceweneedtosolvethefollowingequation: n (cid:18) n (cid:19)2 N −n (cid:20) N −n (cid:21)2 +(C −C eβε) = +(C −C eβε) . (18) Aln 1 2 Aln A(L−ln ) 1 2 A(L−ln ) eq eq eq eq Thephysicalsolutionoftheaboveequationisln =(n/N)L. UsingEq.2,f canbecalculated eq n Z (ln ) f = n,N−n eq , n (cid:80) Z (ln ) n(cid:48) n(cid:48),N−n(cid:48) eq Z (ln )Z (L−ln ) = n eq N−n eq , (cid:80) Z (ln )Z (L−ln ) n(cid:48) n(cid:48) eq N−n(cid:48) eq (cid:0)N(cid:1)(n)n(1− n)N−n(1−γnN)[1−γ(N −n)N] = n N N (19) (cid:80) (cid:0)N(cid:1)(n)n(cid:48)(1− n)N−n(cid:48)(1−γn(cid:48)N)[1−γ(N −n(cid:48))N] n(cid:48) n(cid:48) N N 6 α=0.001, R=20, ε=1 2.2 x=0.5 No Interaction 2 x=0.1 x=0.2 1.8 x=0.3 x=0.4 1.6 x=0.5 1.4 W 1.2 1 0.8 0.6 0.4 0.2 1 2 3 4 5 6 7 8 9 10 11 12 N FIG.5. Averageworkextractionasfunctionofnumberofparticles. Fig.5showsthebehaviorofaverageworkextractionasweincreasethenumberofparticle. Theplotshowsthat for small number of particles work extraction is less than the non-interacting case. But with increasing particle number the more work is extracted using interacting particle system. Another important thing to notice is that workextractionisindependentoftheinitialpositionofthepartitionforhighervaluesofN. Thisfactissupported by the plot given in Fig.6, where the amount of work is plotted against x - initial position of wall- for different N values. Thisgraphdepictsthefactthatasoneincreasethenumberofparticles,themaximumworkextraction, which was initially at x = 0.5, shifts to either sides and finally for N = 12, the effect of asymmetry on work extractionbecomesverylessintherange0.1≤x≤0.9. α=0.001, R=20, ε=1 2.2 N=2, No Interaction 2 N=2 1.8 N=5 N=10 1.6 N=12 1.4 1.2 W 1 0.8 0.6 0.4 0.2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x FIG.6. Averageworkextractionasfunctionofpositionofthepartition. 7 α=0.001, R=20, ε=1 100 10 W 1 β=1 β=0.1 β=0.05 β=0.02 β=0.01 β=0.01, Hard core 0.1 1 2 3 4 5 6 7 8 9 10 11 12 N FIG.7. Averageworkextractionasfunctionofnumberofparticlesfordifferenttemperaturevalues. Fig.7showsthebehaviorofaverageworkatdifferenttemperaturesinpresenceofsquarewellinteractionbe- tween particles. Work extraction increases as the temperature is increased. At high enough temperatures the particlesdonotfeelthenegativewelloftheinteractionandtheworkingsubstanceisexpectedtoactasanon-ideal gaswithhardcoreinteraction. Intheplotacomparisonofworkextractionisshownbetweenparticleswithsquare wellinteractionsandparticleswithhardcoreinteractionforβ =0.01. α=0.001, N=5, ε=1 7 R=10 R=20 6 R=30 R=40 5 R=50 4 W 3 2 1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x FIG.8. AverageworkextractionasfunctionofinitialpositionofthepartitionfordifferentRvalues. Workextractioncanbeincreasedbyvaryingthewellwidthanddepth. Figs.8and9showthebehaviorofwork extraction when well width and depth is varied respectively. More work is extracted as one increases the width andthedepthofthewell. 8 α=0.001, N=5, R=20 ε=0.5 1.2 ε=1 ε=1.5 1 0.8 W 0.6 0.4 0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x FIG.9. Averageworkextractionasfunctionofinitialpositionofthepartitionfordifferentvaluesofwelldepth. IV. DISCUSSIONS We now discuss the role of interactions in work extraction by providing a comparative study between non- interactingandinteractingparticlesystems. Figs. 10and11comparetheworkextractionforthreecases. Work extractioninsystemswithsquarewellinteractionsbetweenparticlesismorewithrespecttonon-interactingsystem andparticleswithhardcoreinteractions.Thisisduetotheformationofboundstates.Ifprobabilityofformationof boundstatesislargeduetoincreasedwellwidthanddepth,therewillbehigherprobabilitytofindlargenumberof particlesononeside. Asaresultthedistancebetweentheinitialandthefinalequilibriumpositionofthepartition willbemore. Thiswillinturnincreasetheworkextraction. Thiseffectisnotseenincaseofparticlesinteracting viahardcoreinteractionandhenceworkextractiondecreasesinthatcase. α=0.001, R=20, ε=1, x=0.3 2.2 No Interaction 2 Hard core Square well 1.8 1.6 1.4 W 1.2 1 0.8 0.6 0.4 1 2 3 4 5 6 7 8 9 10 11 12 N FIG.10. Comparisonofaverageworkextractionasfunctionofnumberofparticles. 9 α=0.001, R=20, ε=1, N=5 2.2 No Interaction 2 Hard core 1.8 Square well 1.6 1.4 1.2 W 1 0.8 0.6 0.4 0.2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x FIG.11. Comparisonofaverageworkextractionasfunctionofpositionofthepartition. V. CONCLUSION In conclusion, we have studied the interacting multi-particle classical Szilard engine. In our article, we dealt withworkingsystemsconsistingofparticleswhichinteractwiththemselvesviahardcoreandsquarewellinter- actions. Amajorassumptioninourworkisthatweconsideredtheworkingsystemstobenon-idealgaswithlow density,sothatwecansafelyusetheequationofstateofthegasuptosecondvirialco-efficient.Onecangobeyond thisassumptiontomimicwiththerealisticpictureandconsiderhigherordervirialco-efficientsbutthereisnoend toit. Itwillobviouslygivechangesinworkextraction. Buttofirstapproximationweareabletoshowanalytically how inter-particle interactions affect work extraction. Our study reveals that work extraction is less when more particlesareinteractingthroughhardcoreinteractions. Moreworkisextractedwhentheparticlesareinteracting via square well interaction. Another important result for the second case(square well interactions) is that as we increase the particle number the work extraction becomes independent of the initial position of the partition, as opposedtothefirstcase(hardcoreinteractions). Workextractiondependscruciallyontheinitialpositionofthe partition. Moreworkcanbeextractedwithlargernumberofparticleswhenpartitionisinsertedatpositionsnear theboundarywalls. VI. ACKNOWLEDGEMENT AMJthanksDST,Indiaforfinancialsupport(throughJ.C.BoseNationalFellowship). [1] J.C.Maxwell,TheoryofHeat(Longmans,London,1871). [2] K.Maruyama,F.Nori,andV.Vedral,Rev.Mod.Phys.81,1(2009). [3] L.Szilard,Z.Phys.53,840(1929). [4] R.Landauer,IBMJ.Res.Dev.5,183(1961). [5] R.LandauerPhys.Today44(5),23(1991). [6] T.SagawaandM.Ueda,Phys.Rev.Lett.100,080403(2008). [7] D.MandalandC.Jarzynski,ProceedingsoftheNationalAcademyofSciences109,11641(2012). [8] J.M.R.Parrondo,J.M.HorowitzandT.Sagawa,NaturePhysics11,131(2015). [9] S.RanaandA.M.Jayannavar,J.Stat.Mech.103207(2016) [10] S.RanaandA.M.Jayannavar,arXiv:1611.01993 [11] S.W.Kim,T.Sagawa,S.DeLibertoandM.Ueda,Phys.Rev.Lett. 106,070401(2011). [12] YaoLuandGuiLuLong,Phys.Rev.E 85,011125(2012). [13] H.J.JeonandS.W.Kim,NewJ.Phys.18,043002(2016). [14] P.S.PalandA.M.Jayannavar,arXiv:1612.07007. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.