ebook img

Inter-specific associations involving spiders: kleptoparasitism, mimicry and mutualism PDF

20 Pages·1993·2.8 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Inter-specific associations involving spiders: kleptoparasitism, mimicry and mutualism

INTER-SPECIFICASSOCIATIONS INVOLVING SPIDERS; KLEPTOPARASITISM, MIMICRY .ANDMUTUALISM MARK A ELGAR Elgar, M.A. 1993 11 11: Inter-specific associations involving spiders: klcptoparasiusin, mimicry and mutualism. Memoirs ofthe Queensland Museum 35i2): 41 1-430. Brisbane. ISSN 0079-SS35 Manyspidershavelife-styles thatinvolve arelativelycloseandprolongedassociation with anotherspecies;forexample,betweenaspecialistpredatoranditspreyspecies, oraspecies mayrelyonanotherforeitherprotectionfrompredatorsorprovidingasuitableplacetolive. Inasymmetric relationships, where individuals ofone speciesbenefitat the expenseofthe other,eachspeciesmayactasaselectionpressureontheotherspecies.Thiscanresultinthe evolution ofspecific adaptations and counter-adaptations thaiare evident in at least three kinds of inter-specific associations between spiders. These associations, namely klep- toparasitism,mimicryandmutualismare reviewedhere.Ourunderstandingoftheevolution ofthesefascinatingsystemsremainslimited,despitenumerousanecdotalaccounts, because onlyafew studiesareexperimental. Thepurpose ofthis review istwo-fold: U3 Illustratethe useofcomparativeandexperimentalstudiesforunderstandinglheevolutionarysignificance oftheseinter-specificrelationships,andtohighlightthuscgaps inourknowledge that might benefitfrom\h\happtvacU.C\Inter-spedftcassociations,spiders,kleptoparasithm,mimicry, mutualism. MwkA. Lii>ar, DepartmentqfZoology, UniversityofMelbourne, Parkvilie, Vtcxeri Australia; 18January, 199X Individuals of one species can affect in- (e.g. Endlcr, 1986; Daviessai, 1989;TofttiaU dividuals of another as a result of competition, 1991),butthereisalsosomeevidence forsimilar predation, parasitism or mutualism. The evolu- processes in predalor-prev systems (eg Brodie tionary implications ofany association between and Brodie, 1991; Endlerf 1991). two or more species depends critically on the frequency and nature ofthe interaction* For ex- INTER SPECIFICASSOCIATIONS IN ample,aspeciesmaybetheprey ofmanyspecies SPIDERS of generalist predators. While these predators may represent an important selective pressure Research on the behaviour and ecology of favouring anti-predator responses in the prey spiders has, with a few notable exceptions, species, the adaptations of the prey may have focussedon issues involving single species (e.g little impact on the reproductive success of the Humphreys, 19S8).includingforagingbehaviour predators. In contrast, a predator that preys on (Reichert*and Luczak, 1982; VollrauY 1987a; only one species can be an important selective Uetz, 1992), habitat choice (e.g. Reichert and force favouring anti-predator adaptations in that Giltespie, 1986), intraspecific competition (e.g. species. In turn, the prey species anti-predator Reichert, 1982), courtship and mating (e.g. adaptations can exert a selective pressure on the Robinson and Robinson. 1982; Elgar, 1992) and predator, favouring improvedpredatoryabilities social behaviour (Buskirk, 1981; Elgar and Thus, each species acts asa selectionpressure on Godfrey, 1987; Uett, 1988). Nevertheless, some the other, favouring adaptations and counter- spiders have relatively specific and prolonged adaptations, perhaps leading to characteristics relationships with other species. These relation- that are increasingly specific to the relationship. ships often involve predation or avoiding preda- However, these improvements need not neces- tion, and perhaps a reason why inter-specific sarily change the relative position of each interactions involving spiders have been protagonist (Dawkins and Krebs, 1979). The neglected is thatspiders arefrequentlyperceived evolution of these specific adaptations and as generalist predators; cursorial or wandering counter-adaptationsdependsonboththefrequen- spiders attack any vulnerable prey that they can cy of the interactions and the effects of each find, while web-building spiders simply capture protagonist. Host-parasite systemsprovide arich anypreythatiscaughtintheirweb. However,(he seamofexamplesofsuchevolutionaryprocesses view that spiders are generalist predators is mis- MEMOTRSOFTHEQUEENSLAND MUSEUM 113 leading. Many spiderspreyononlyafewspecks Mysmenidae, Symphytognaihidae and using foraging techniques that include building Theridiidae (Table I).Ofthesespiders,thegenus specialised webs; producing chemical com- Argyroses (Theridiidae) is the best documented pounds that attract prey; utilising the webs or (see Vollrath. 1984T 1987b). capturing capabilities ofother spiders; mimick- ingpreybehaviour;andcooperativeforaging{see EVttJGNCe OP KLEPTOPARASmSM reviewsinStowe. 19S6:Nenrwig, 1987).Clearly, Argyrodes were originally described as com- the survival and reproductive success of both mensals: Argyrodes benefit by feeding on the predaior and prey will depend on theirpredatory prey items that are caught in the host's web. but and defensive behaviours, and the degree to lil tohfe fporoedd.atNorotdeapllenadsssoocinattihoensprbeeytwaesena tiHhtoeewmhesovsdetor,insosntuobftsoderiqmsupaeadnrvttabonefthaiatgvseiddoiuehrtea(clea.aug.snedBeetlchtoe.lsoe1g8pi7r4ce)a.yl spidersand otherinvertebrates are predator-prey studies revealed that individual Argyrodes relationships, some species depend on other remove prey that might otherwise be consumed speciesforprotection from p&daiOtti 01 provid- by thepredator. These observations suggest that ing suitableplaces10 live. Thisreview will focus the relationship between Argyrodes and their ospnidtehrrese: mktleicpstpoepciafriacsirteilastmi.onsmhiipmsicinrvyolvainndg hosts is more accurately described as klep toparasiiic rather than commensal (see Vollrath, mutualism. 1984,1987b). Adetailed understanding ofthe nature ofthese In fact, klcptoparasitism may also be an inap- inier-specific associations will benefit fromboth A propriate description. kleptoparasiiic relation- experimental and companiiive studies The ship implies that one partner in the symbiosis former can provide insight into both 1h<? fitness benefits at the expense ofthe other, and Uiat the effects ofthe association on individuals ofeach klcptopurasite hascertain characteristics that are species,andtheimportanceofparticularspecies' adaptations to this lifestyle. Studies of several traits for maintaining the association. Compara- nd species associations leave liule doubt that the studies can provide further insight into the IanercontentioDiscorrectForexample,dicsym- lion pressures responsible for theevolution phytognathid Curimagua inhabits the • iftheassociation;revealtheimplicationsofthese Webs of a large mygalomorph Diplura, i-iihet i.tiiuns foi other aspects ofthe species life- climbing about the funnel web or remaining on history characteristics; and help formulate ideas the host (Vollrath. 3978). After a Dipiunt has thatcanbesubsequentlyexaminedexperimental- caught, masticatedand enveloped a prey item in ly IseeHarveyandPagel, 1992 forreviewi.While digestive fluids, the kleptoparasite descends to emphasising the evolutionary dynamic nature of the prey item and imbibes the liquidized prey inter-specificassociations,acentralthemeofthis Interestingly, the anatomy of the mouth of C. review is to illustrate the use ofcomparative and experimentalstudiesforunderstandingthesesys- bayanoapparently prevents it from being able to knowl, eadngdeaolfsaoratcohnhiidghilnitgerh-tsptehcoisfeicagsasposciiantions cianpgttuhraet,ihtoilsdanorobmlaisgtaitceatkeleipttsoopwarnaspirteey,(Vsoulglgreastth-, 1978), ght benefit from this evolutionary ap- Several behaviours ofArgyrodes appear to be proach. adaptations that arc specifically related to KLEPTOPARASmCASSOCIATIONS kleptoparasiticlifestyle.These spiderscanmove throughouttheweb,apparentlyundetectedbythe host and the attempts of the kleptoparasites to The webs of spiders arc host to numerous in- obtain prey items mav vary according to the sects, including flies, damselfies and wasps (see behaviour of the host (Vollrath, 1984. 1987b). reviews in Vollratfi, 1984. 1987b; Nentwig and There are several mechanisms by which klep- Heimer, 1987).Most descriptionsoftheseguests toparasiticArgyrodes avoid detection or capture areanecdotal, andconsequently thenatureofthe by the host: many species drop from the web relationship is poorly understood. The webs of when challenged by the host, A. antipodfanuA many spiders are also host to numerous other swings away from the web when the host is spidersthai obtain food from prey caught in the agitated (Whitehouse, 1986). andA. ultdanscnl& host's web. These spider guests commonly holes in the tangle web of its social spider bosfl referred to as kleptoparasites, arc represented in Anelosinms eximius, forming a tunnel that ap- at least four families, including the Dictynidae, parently facilitates escape (Cangialosi, 1991). . INTER-SPECIFICASSOCIATIONS 413 Surprisingly, the evidence that thepresence of number of kleptoparasites per web is greater in Argyrodeshasa negative effectonthe reproduc- larger colonies. For example, Nephila edulis tive success of the host has not been directly builds webs in aggregations, and webs in ag- sed. Forexample, therearenoexperimental gregations have higher kleptoparasite loads and t -knee that the growth rate or fecundity ofthe infestation rates than those found alone fElgar. hostis reduced by the presence ofArgyrodc 1989).Re-locating a tyefc away froman aggi any other generaofklep(oparasiles). Instead, the tion may reduce kleptoparasite load, butthehost negativeimpactofArgyrosesonitshosthasbeen Subsequently does no( bench! from the foraging inferred primarily from either the behaviour of and predatordefense advantagesoflivingwithin the host ie.g. Larcher and Wise, 1985), or from anaggregation(e.g.seeUfctK, 1988) Movingweb estimates ofthe energetic costs derived from the In reduce kleptoparasite load may not be loss of prey items obtained by Argyrades. For possible frit some stX ul •• example, the numberofprey itemsconsumedby Aneiositnus thai build substantial, permanent Neplrilaclavipesisreducedwithincreasingnum- Webs, Indeed, high klcpttt; re ap- bers of Argyrcxlcs on the web (Rypstra, 1981). parently responsible for tftc demise of some and A. uMattsremoves around 26% ofthe prey Anelosiniuscolonics (Cangialosi, 1990b) but not items that are caught in the web of its hosi others(Vollrath, 1982). Anelosimuy exitnhts (Cangialosi, 199' Liketheirho^K individual klcptoparasites Vollrath (1981> examined the potential costs of also react 10 variation in prey capture rates. |The Argyroses by estimating the energetic require- feeding rates of klcptoparasites ^rc Likely w* be mentsofasinglekleptoparasite Thedailyen influenced by both Ihe prey capture rate or the requirements ofthe 3-4 mgA. elevaius is 0.82J, host and the number ofotherkierxoparasites on abouti>.5%ofthedailyrequirementsofits975mg theweb.Hostwebcaptureralesmayvary at (ftephih clavipes] post This proportion in- ing toboth the location and the size of the: web. creases with larger numbers of kleptoparasites Thenumberofkleptoparasitesincreases withthe per web; over 40 individuals have been counted websueofseveralhost species leg. Elgar, 1989; on asingle Nephila web (although the average is Cangliosi. 1990a), possibly because larger 2.2 klcptoparasites perweb),suggesting apoten- have higher web capture rates that can support tially high energetic cost of this relationship morekleptoparasites.Web-buildingspidersrelo- (Vollrath, 1981). cate their webs Btf to prc> capture pates IfKJeptoparasitesexactacostonhostreproduc- (e.g. Gillespie andCaraco. 1987),dndArgyrodes tive success, then selection should favour any may behave similarly by moving to differ* r,i trait that enables the hosts to reduce ihat cost. webs(hut see lurcherandWise, 1985). Itwould There are several mechanisms by which be interesting to establish experimentally I might reduce the cost of kleptoparasilism: whether the emigration rate of individual Ar- recovering the prey from the kleptoparasite; ^TOi#s»ncreasesasaresultonowerwebcapture reducingthekleptoparasitesaccesstotheprey;or rates orincreased numbers ot conspecifics. Ifthe Mmplyabandoning the webandbuilding another latter, it is possible that the distribution or Ar elsewhere. Interestingly, hosts appear td be inef- gyroJeswithinapopulationofhosts, particularly ficient at recovering prey (Vollrath, 1979a, b; those hosts that aggregate, could be predictedby Rypstra, 1981) although several host species the ideal tree distribution (see Milinski and reduce access to their prey by chasing the klep- Parker, 1991 j. toparasites (Cangialosi, 1990b)orconcealingthe A possible option for klcptoparasites thar e* prey in retreats [see Cangialosi. 1990b). Larcher perience a low feeding rate is b capture and .m.l Wise (1985) demonstrated experimentally consume the host before moving tn tbe web of that hostsare more likely to abandon webs when another host (e.g. Tanaka. 1984). Some species Argyroses are present ihun absent. Nephila of Argyti either obligate or facultative lcalragveipneusmrbeelrocsaotfesklitcsptwoepbarwashietnesit(Risypisntfreas,te1d9w8i1t)h, pArregdyatwodrestocfatnheciarpthuorsetsth(eseheoTstabtlhero1u1ghPrmeidratory arnleutsmhpbooeunrgssheottfhoekllbeoepwtheoarpvMiifaoesueirdtito-nfsg,/Vr.atcelsa,virpaetshermatyhabnetao aindgvaanpcrienygittoewma(red.g.thWehhiotsetboaunsdea.tt19ac8k6i)ngo it. Such aspecialisedform ofprcdation i&not uncomni*m Social or communal spiders appear to have in spiders, and has been recorded in several fewer defensive options against high klep- families leg. Jackson, 1987; Jacksonand b roparashe loads,andthiscostmaybe higherifthe 1982. Jackson and Bras-sington, |9g7 414 MEMOIRS OFTHEQUEENSLANDMUSEUM TABLE 1: Spiders thai are presumed to be kleptoparasites ofweb-building spiders. Families; Ag, Agelenidae; Am, Amaurobiidae; Ap, Aphantochilidae; Ar, Araneidae; CI, Clubionidac; Co, Corinnidac; De, Deinopidae; DPir,odDiidpolmuirdiadcae;^SaE,r,SaElrleisciiddaaee;; TGdn,,ThGenraipdhioisdiacd;aeT;mLTiTn,hoLmiinsyipdhaiei;daUel;,LUiloo,boLriiodcarea;niZdoa,e;ZoPdharTiiPdhaoel.ciAdageg;, PArgo-, gregates; Soc, Social; Sol, Solitary Web types: O, orb; T, tangle; S, sheet; F, funnel; Sp, spacc.Body sizes in mm. Kleptopar*si(iclaxa BiodysNize Family Species Host Size Web Social pGeureswtesb AssoclSource Dicrynidae GnsNsuld&Metkle- Archaeodicrynantova Er Siegodyphus T Soc K Gnswold(1987) Heteropodida* Oliosd'tana Urn BadumnaCandida Soc 20 K Jackson(1987) 'O{.'.s(n«a.rnianndeti.i !lA;rm BStaedguomdnvpahCuasnsdairdaasinorum TT 'SSoocc 1100 KK JJaacckkssoonn((11998S77)) O. obesulus B. Steeodvphussarasinorum It Soc :: K Jackson(19871 M vsmenidoe Iselaokuncaiui Di AUotheleterreth F Sol K Ciriswold(19S5i KtUfuitntpiitiiui Di Thelerfwriskanclii F K Coylcetal.(1991) Mysmenopsisarcheri Ph T K Baptisa(l988) M.copue Ar Cvrfophora O K Baert(1990) M citlrelicotu Di K Coylee-la/.(1991) M.cienga Ar Cyrtophora (.) K Baert(1990) M-dipluroamiga Di Diplura s K Vollnllh(1978) M.furfiva L5 J_Di Jschnothelexera T Sol 14 K Coylcetal.(1991) M.gamboa Di Dipiun S K Vollralh(1978) ! M.hauscar Di K Co\\celat(1991,1 - M- isthnamigo Di Diplura S K VolIrath(I97H) M.monticata Di IsclmoiheUsp. T Sol 4 K C(1o9y8J9)e&Meigs M-pachacutec Di K Coy]cetal.(1991> M palpatis Di K Coylcc(at l 1991i M tibialis Di K Coylecfa/.II99D M.<p- indet. Di hchnothelereggae K Coyte«a/.(l99l) Qndapidac Ootwpspukher >2.0 | 1.5 |Am Amanrobinsfenestralis 8 |T |k Briitowe(I95S3 SaUicidAe Sinmeihapaetuta 7 7,0 Am BadtunnaCandida Soc KP Jackson(1985) Symphvlognathidae Ofrirttapuabaxano ] 3 1.3 1Di Diplurasp. 140 |S Sol K VoHraihi 1978) Theridiidae Ag Cambridgeasp. F Sal KP Whiiehuuse(1988a) antipodianus A.antipodianus Ag Stipiudion !" Sol KP Wmiehouscl1988a) A.antipodianus Am Badumnatonginquus Sp Sol KP Wh)ieboiiscll9KKai A.antipodianus I Ar Araneuscrassa Sul KP Whnehou5e(19SSa) A.antipodianus fi Ar Lriopharanustulosi. 13 Sol KP Whiiehou^ei l9SKa) A.unfipudiatms Ar Cvclosatrilobata 8 o Sol KP V.Iiiiehousei >9S8aj A. antipodianus Ar hcucaugcdromedoria o Sol KF Whitehousel1988a) A.(uUipodiantts Ph Phafcusphalangioides SP Sol KP Wbi(ehouse(T988a,l A.antipodianus Td Achaearanea T Sol KIJ Whitehousc(1988a) A.antipodianus 3 : s ... Cyrtophorafurta !: O Sol K mgzierat(1983) -Vantipodianus 3,0 2-5 \r Septulaeduhs 21 O Agg K Elear(19B»j INTER-SPECIFICASSOCIATIONS 415 Bodysize Host Guests Assoc* Kleptoparasitictaxa 6 v Family Species Size Web Social perweb Source A.argyrodes Ar ' Cyrtophoracitricola O K Vollrath(1984) A.atopus 2.4 3.4 Ar Nephilaclavipes 25 O Agg 5 K Vo!!rath(1987) A.attenuatus 17.0 9.3 none Eberhard(1979a) A.baboquinari 3.7 3.5 Td Latrodectus T Sol K Exline&Levi (1962) A.baboquivari 3.7 3.5 Ul Philoponellaoweni 6 O Agg KP SmithTrail(1980) A.cancellatus 3.2 3.8 Ag Agelenopsis F K Exline&Levi (1962) A.cancellatus 3.2 3.8 Ar Argiopeaurantia 22 O K Exline&Levi (1962) A,cancellatus 3.2 3.8 Ar Araneusstrix O K Exline&Levi (1962) A.cancellatus 3.2 3.8 Ar Mecynogealernniscata O K Exline&Levi (1962) A.cancellatus 3.2 3.8 Ar Metepeiralabyrinthea O Sol K Exline&Levi (1962) A.cancellatus 3.2 3.8 Ar Nephilaclavipes 25 O Agg K Exline&Levi (1962) A.cancellatus 3.2 3.8 Ar Verrucosaarenta 9 O K Exline&Levi (1962) A.cancellatus 3.2 3.8 Li Frontinellapyramitela 4 S K Exline&Levi (1962) A.cancellatus 3.2 3.8 Ph Pholcus space Sol K Exline&Levi (1962) A.cancellatus 3.2 3.8 Td Theridiontepidariorum 7 T K Exline&Levi (1962) A.caudalus 3.1 3.9 Ar Argiopeargentata 16 O Sol K SmithTrail(1980) A.cochleaforma 2.7 3.7 Ar Argiope O K Exline&Levi (1962) A.cochleaforma 2.7 3.7 Ar Gasteracantha O K Exline&Levi (1962) A.colubrinus 25.0 none Eberhard(1986) A.cordillera 3.6 3.1 Ar Gasteracantha O K Exline&Levi (1962) A.cxlindratus Ar Araneusventricosus O Sol K Shinkai(1988) A.dracus 2.3 2.6 Ar Nephilaclavipes 25 O Agg 5 K Vollrath(1987) A.elevatus 3.4 4.0 Ar Argiopeargentata id 4 K Vollrath(1979) A.elevatus 3.4 4.0 Ar Gasteracantha o K Exline&Levi (1962) A.elevatus 3.4 4.0 Ar Nephilaclavipes 25 o Agg 5 K Vollrath(1979 A.fictilium 10.0 5.0 Ar Araneus o KP Exline&Levi (1962) A.fictilium 10.0 5.0 Li Frontinellacommunis 4 s Agg KP Wise(1982) A.fictilium 10.0 5.0 Ul Philoponellaoweni 6 Agg KP SmithTrail(1980) Exline&Levi A.fictilium 10.0 5.0 none (1962) A.fissifrons 7.0 Ag Agelenalimbata 16 F Agg 2 KP Tanaka(1984) A.fissifrons 7.0 Lin Linyphia s KP Tanaka(1984) A.fissifrons 7.0 Td Theridionjaponicum T KP Tanaka(1984) A.fissifrons 7.0 Ul Philoponellasp. 3 O Agg 3 KP Elgar(persobs) A.fissifrons 7.0 Ul Uloborusvarians KP Tanaka(1984) A.flagellum none Eberhard(1986) A.globosus 2.3 2.3 Ar Nephilaclavipes 25 o Agg K Exline&Levi (1962) A.incisifrons Ar Cyrtophorahirta 14 Sol K Elgarera/.(1983) Table continued 1. C 416 MEMOIRS OFTHEQUEENSLAND MUSEUM Table 1. continued Kleptoparasitictaxa B6odysiz9e Family Species Host Size Web Social Gpeureswtesb Assoc4 Source A.incursus 3.8 2.2 Td Achaearaneamundula 6 T Sol 5 KP G(1r9a8y9)&Anderson Exline&Levi A.longissimus 24.0 19.0 none (1962) A.miniaceus Ar Nephilamaculata 43 O K RRoobbiinnssoonn(&1973) A.nephilae 1.7 2.2 Ar Argiope O K (Ex1l9i6n2e)&Levi A.nephilae 1.7 2.2 Ar Cyrtophoramotuccensis 19 O Agg K Berry(1987) A.nephilae 1.7 2.2 Ar Gasteracantha O K (Ex1l9i6n2e)&Levi A.nephilae 1.7 2.2 Ar Neoscona O K (Ex1l9i6n2e)&Levi A.nephilae 1.7 2.2 Ar Nephila O K (Ex1l9i6n2e)&Levi A.nephilae 1.7 2.2 Ar Nephilamaculata 43 O K RRoobbiinnssoonn&(1973) A.pluto 3.9 3.7 Ar Argiopeaurantia 22 O K E(x1l9i6n2e)&Levi A.pluto 3.9 3.7 Ar Metepeiralabyrinthea O Sol K Exline&Levi (1962) A.pluto 3.9 3.7 Td Latrodectus T Sol K (Ex1l9i6n2e)&Levi A.proboscifo 2.6 2.9 Ar Gasteracantha O K (Ex1l9i6n2e)&Levi A.projiciens 4.0 3.2 Ar Metazygiasp. O Sol KP Eberhard(1986) A. sp.A Ar Nephilaclavipes 25 O Agg 2 K Rypstra(1981) A. sp.B Ar Cyrtophoramoluccensis 19 O Agg KP Lubin(1974) A. sp. Ar Gasteracantha O 23 Vollrath(1981) A.subdolus 2.6 2.8 Ul Philoponeilaoweni 6 O Agg K SmithTrail(1980) A.trigonum 4.2 2.5 Ag Agelenalimbata 16 F Agg KP Suleretal.(1989) A. trigonum 4.2 2.5 Ag Agelenopsis F E(x1l9i6n2e)&Levi A. trigonum 4.2 2.5 Ar Mecynogealemniscata O KP Wise(1982) A. trigonum 4.2 2.5 Ar Metepeiralabyrinthea O Sol KP (L1a9r8c5h)er&Wise A.trigonum 4.2 2.5 Lin Linyphiamarginala 5 S KP E(x1l9i6n2e)&Levi A.trigonum 4.2 2.5 Lin Nerieneradiata 5 S Sol KP L(1a9r8c5h)er&Wise A,trigonum 4.2 2.5 Td Latrodectus T Sol E(x1l9i6n2e)&Levi A.trigonum 4.2 2.5 Td Theridionzelotypum 4 T KP Exline&Levi (1962) A.trigonum 4.2 2.5 Lin Frontinellapyramitela 4 S KP Suterera*.(1989) A.ululans 4.0 3.7 Ar Nephilaclavipes 25 o Agg K Exline&Levi (1962) A. ululans 4.0 3.7 Td Anelosimuseximius T Soc K Cangialosi(1990a) Exline&Levi A.weyrauchi 4.3 3.8 none (1962) Twocategoriesofrelationship('Assoc')aredefined: 'K' isKleptoparasiteonly,and 'KP' means thattheguest may alsocapturethehost. Some speciesofArgyrodesmay be incorrectly categorised as 'Kleptoparasite only becausetheirpredatory behaviourhas notyetbeenobserved. Taxonomy ofArgyrodesfollows Levi and Exline (1962) and thusArgyrodes,Ariamnesand Rhomphaeaare notdistinguished. . INTERSPECIFICASSOCIATIONS *11 Bodylength! thatalso prey on theirhosts ITable 2). How kJcptoparasilc Uepiupjrasite tstatistic males of these two groups of species are not only 3ndpredaior significantly different in body size (Tabic 2). ¥ Argyrfhies 1,M±I»-2(14) 5.0±1.1(6) 9.41** Argyrodesthat-prvyon theirhosts also specialise A Argyroses 3.2+0.2TM) 3.7+0.4(5) 1.21 on smaller hosts, compared with the size of the Dimorphismi.d/v) J M+fiOSfH) |u.82±0.I4<5) 2.5H* hosts ofthose species ofArgyrodesthat are only ti<81 21.5±2.6 6.7+0.S(5i 3.47*• kleptoparasites {Table 2). These compar. datashow that,aspredicted,ihedifferenceinsin- TABLE2: Differencesinkleptopaiasiteandhostbody between Argyrodes and its host is greater for length according to whetherihe kleptuparasite does those species that are primarily kleptoparv; lvoarlduoeessaxneotmaeNaonplernegythosn t±heSirEh(ossta-mplesizes), Values compared wiih those that are also predatory. comparedusingl-test withpooledvariance. Average Thesecomparativedatasuggestthatselectionhas hostbodysizemeasureswereobtainedfor,4rgyrodes either favoured larger body size for species ihai thathavemultiplehosts. *p<0,05; ** p<(Mm are bothkJeptoparasitic and prey on their hosts, ofithasfavouredafurtherreduction inbody size andJackson, 1986:Jacksonand Hallas, 1990) A inthose speciesthatarcprimarilyklcptopara potential cost ofthis foraging strategy isthat the The laHer argument is consistent with the Meptoparasitc may become prey to the host At that kVcploparasitrsm is a specialised foraging one host specie*:- has a relatively effective strategy that evolved from a more general klep defensive behaviour: when the predatory Ar- toparasitie and predatory lifestyle (VollratL >!i:\ is detected- the host simply cuts the web 1984). thereby collapsing it and ensuring that the Theevolutionarysequenceleadingtothedi predator cannot proceed further (eg, Eberhard. genee of these two foraging strategies within 1979bm)i,teSiuatcearnetdiasicr(i1mi9n8a9t)erbeepotrwteetnhaetofnespmeacliefihc Argyrodes is not known; oi>e may have evolved males, prey items and predatory A. trigonum, a cotmhemootnher,woerbb-obtuhimldaiynhgavaendcievsetrgoerd ' apparently using chemical cues, and respond jc- | cordingjy. Whitehouse, 1986). Thus, it is not possible, without an accurate phylogeny. to establish whether selection has favoured an increase in COMPARATIVEPATTERNS WiltllNAftGr/t.OOiS body size with the predatory- lifestyle, or a What evolutionary sequences arc responsible decrease in body size is associated wiih a klcp tor the diversity of predator)' specialisations hi toparasitie lifestyle. Indeed, the species placed Argyrodesl Smith Trail 11080) stresses the im- within the single genus Argyrodeshy Exlineand portanceofthekleptoparasites' ability toidentify Le\ 1 1 1962)havebeenplacedbyothersintothree the vibratory signals generated by the host, thus genera; the Annnmes, the Rhomphaca. and the allowingthemtostalkandsafelycapturethehost Argyrodes. In this classification, the Ariamncs However, kleptoparasites that also attempt to and Rhampluu-a groups arc primarily fl capture their hosts nsk being captured the? ' predators and the Argyrodes group are klcp- ves. Consequently they may be more likely to topar (Whitehouse, 1987) Thus, the attempttocapturevulnerable hosts,suchasthose differencesdescribed above may be confounded that are smaller (e.g. Smith Trail, 1980; Larcher by taxonomic associations (sec below) Resolv- and Wise, 1985). moulting (e.g. Vollrath, 1984). ing some ofthese issues is most likely achieved ven the spiderHnp.s of the host by experimental manipulation of individuals Whiterrouse, 1986. within a species that shows both kleplopar and predatory behaviour. Ifrelativebodysizeisimportantindetermining theoutcomeofattackingthe host, then predatory An additional pattern revealed by comparative speciesofArgyttufesiiiaybelargerthanprim analysis also deserves experimental ioveslign kleptoparasitic species,orthe fi aytend to Hon. Thedegreeofsexual size dimorphism(male specialiseon smallerhosts. Thesepredictionsare lenguVfemak length)eovaries significantly with supported by comparative data of body length ihe foraging strategics ofArgyrodes, Males are measures for20 species o\ Argyrodes (see Tabic smallerthanfemalesinthose speciesthatprey on I). Species ofArgyrodes were divided into two theirhost, consistent with patternsofsize dmuu gioups.accordingiowhethertheypreyedontheir phisminalmostallotherspidersIe.ij. Elearetat.. hosts: females elArgyroses that are only klep- 199CV; Elgar, 1991, 3992; Vollrath and Parker. toparasitic are significantly smaller than those 1992). However, males of those species of Ar- ' 418 MEMOIRS OFTHEQUEENSLANDMUSEUM Hosttaxa |Kleploparasite* Biology Hostrange Ageienidae Kleptoparasite Kleptoparasite tstatistic ACgatenlberniadg(2e)a,,ASgteilpehniodpisotns, Argyrodes(4) KP No.species* only 18 andpredat6or Amaurobiidae Family 1.6±0.3 2.8±0.7 ] 89 Badumna(2) ASrimgayertohdae,s KK Species 2.7±0.7 3.5±1.3 0.57 Amaurobius Oonops K Araneidae TABLE 4: Mean host-ranges of Argyrodes that are eitheronlyprimarilykleptoparasiticortheyalsoprey ACryartnoepuhso(r5a),(A2)r,giGaosptee(r4a)c,aCnytchlao,sa, on theirhost.* referstoArgyrodes. Leucauge,Mecynogea,Metazygia, Argyrodes(18) KP Metepeira,Neoscona,Nephila(3), ofArgyrodes. Itis likelythatbothhost-rangeand Verrucosa parasite-range will expand as more records be- Cyrtophora Mvsrnenopsis(2) KK comeavailable. Incontrast, many species appear Dipluridae to be host specific, with one species of klep- Allothele Isela K toparasite recorded from the web of only one Diplura,Ischnothele Mvsrnenopsis KK speciesofhost. Forexample, incertainPeruvian (U) habitats,Argyrodes ululans is found only on the Diptura Cuhmagua K webs of the social spider Anelosimus eximius, Thelechons Kilifia K despite considerable effort searching for this Linyphiidae kleptoparasite on other potential hosts (Can- Frontinella(2),Linyphia,Neriene Argyrodes(4) KP gialosi, 1990a). Phulcidae Vollrath (1984) argued that Argyrodes can be Photcus Argyrodes(2) KK placed in two general categories; specialists that Pholcus Mysmenopsis K arehost specific butbehaviourally versatile, and Theridiidae generaliststhatinvadethewebsofmanydifferent AAncehlaoesairmaunse,a,LaTthreordiedcitouns(3), Argyrodes(7) KP species but use relatively few techniques to ob- tain food. Thus, Whitehouse (1988a) considers Uloboridae Argyrodes antipodianus a specialist, primarily Uloborus,Philoponella Argyrodes(4) KP because its behaviour is versatile, and adults are found primarily on the webs of Eriophorapus- TABLE 3: Summary of taxonomic distribution of tulosa. Dichotomies likethesecanbemisleading spiders that arc host ofkleptoparasites (see Table 1 because both host-specificity and behavioural for further details). KP= Kleptoparasites and versatility are most likely continuous ratherthan predators; K=kleptoparasites. * No. species in each genusinparentheses. discretevariables;A.antipodianusisfoundonthe webs of several other hosts (Table 1). Further- gyrodes that are primarily kleptoparasitic are more, host-specificity may also vary between generally larger than their conspecific females populations, depending on the diversity and (see Table 2). What factors are responsible for abundanceofpotential hosts in differentpopula- this reversal of size dimorphism patterns within tions. For example, A. antipodianus in this group of spiders? One explanation is that Whitehouse's (1988a) study may be found competitionbetweenmalesforaccess tofemales primarily onEriophorapustulosabecausethatis may be more intense for kleptoparasitic spiders, the most common host in her New Zealand and consequently sexual selection has favoured population. large male size in these species (see also The hostrange ofArgyrodesmay vary accord- Whitehouse, 1988b). ingto whetherthe species isbothkleptoparasitic Thereisconsiderablevariationinboththenum- and predatory or whether it is only klep- ber of species that are host to each species of toparasitic. Purely kleptoparasitic Argyrodes kleptoparasite and the number of kleptoparasite may escape host-detection through specialised species found oneach web-buildinghost species behaviours, but these behaviours may be effec- (see also Vollrath, 1984, 1987b). For example, tiveforrelativelyfew hostspecies. Ifso, thehost Argyrodes cancellatus are found on the webs of ranges of primarily kleptoparasitic Argyrodes at least ten different host species from five maybelessthanforspeciesofArgyrodesthatare families (see Table 3), while the orb-weaver also predatory. The comparative data provide Nephila clavipes is host to at least seven species little support for this prediction (Table 4); al- INTERSPECIFICASSOCIATIONS 419 though the host-range of primarily klep- described aJlopatricIschnothelemorphsthatalso tnpaiasitic species is less than the range of appeartobe sisterspecies. Third, diplurids may predatoryspecies,thedifferenceisnotstatistical- be more sensitive to web invaders than thehosts ly significant. of Argyrodes* and thus the kleptoparasitk be- Theresults ofthese inter-specific comparative haviours required to avoiddetection by one host analyses within the genus Argyrodes should be species are not appropriate for another. In this interpreted cautiously. These patterns may be regard, it is noteworthy that Argyrodes are not confounded by an association between foraging known to invadedipluridwebs,despitethetH strategy andtaxonomicaffinity, and thus thedif- taxonomic range oftheirhosts. ferencesinbodysizeorhost rangemay be dueto The relatively permanent nature of the host's Other,unknownfeaturesthatdifferbetweenthese web isacommoncharacteristicofthehostsofall twogroups.Thispossibility isespecially relevant klepioparasites (Table I) Kleptoparasites that given the ambiguity of the taxonomic arrange- liveonpermanent webs maybenefitbyspending mentofthis genus. Furthermore, somespeciesof less lime searchingfornew webscompared with Argyrodes may be incorrectly assigned to thosethatareassociatedwithhoststhatfrequent- primarily kleptoparasite status simply through ly move their webs However, it may not be the lack of observations. Thus, the patterns may permanent structureoftheweb thatisimportant, change when more data and/or a more accurate but rather the tenacity of the web site. For ex- phylogeny become available. Nevertheless, the ample, the large, nocturnal, Australian orb mssuggestseveral interestingquestionsthat weaverEriophoratransmarinabuildsanewweb could be resolved by an experimental approach every evening and then destroys itthe following dawn. Despite the temporary nature of its web, TSPBCJRCm OFK1EPTOPARASITH5 this spider is alsu hosi to many individual Ar- Both Argyrodes and Mystnenopsis belong to gyrodes,(prMobably because it has a high web-site tenacity Hcrbcrstcin. unpublisheddata) web-building families and thus are relatively e phylogenetically (Coddington and Levi, MIMICRY BY SPIDERS 1991). However, the range and taxonomic af- finities of their hosts are substantially different 1 hie i).Argyrodeshave been recorded on the Many species of animals, including spiders, webs of 29 host genera from eight families resemble other, unrelated species. These (Ageienidae, Amaurobiidae, Araneidae, resemblances may be visual, chemical, be Linyphiidae,.Pholcidae.PsechridacTheridiidae. havioural oracousticand are usuallyreferred to UJoboridac), and some species have many hosts as mimicry. There are many different types H • sre above), in contrast, !! ofthe 14 species of mimicry,whwrhhasprccipitaiedsomecontra Mystnenopsis are found on diplurid hosts, with syover itsdefinition (e.g. Endler, 1981; Pasteur. the remaining species found on Cyrtopltora 1982). Two general forms ofmimicry axe di (Araneidae) and Pholcus (Pholcidae). A com- guished in this review: defensive mimicry and parativeanalysisrevealsa significant difference; aggressive mimicry. In the former, the mboetfc every species ofMysmerwpsis has only one host form is presumed to have evolved because the species, while thehostrange forArgyrodesis2.7 risk ofpredation (or parasitism) on the mimic bfi <±0.7. n*l*) species, or 1.6 (±0.3) host reduced as a resuJt of IIS resemblance to the families. model. The lower mortality occurs because the Why is Mystnenopsis more host-specific than receiver (the predator) does not usually prey on Argyrodes? There are several possible explana- the model,andfails to distinguishbetween it and tions. First, kleptoparasitism may have evolved the mimic. Aggressive mimics resemble some morerecentlyinMysmenopsisthan inArgyrodes, feature o{ (heir prey species thereby increasing and therefore the former klcptoparasitc has had the chance of capturing the prey model. Both Ie3$ time to expand its host tangc. Second, the forms of mimicry occur in several families of present associations between Mysmenopsis and spid: dipllifids may have evolved from a common an- The relationship between mimic, model and cestor and subsequently spcciatcd as host/klcp- receiver is asymmetric; only the mimic benefits toparasitepairs. Consistent will)this isCoyieand and any improvement in the mimic will be Meigs(1989)descriptionoftwosisterspeci favoured rapidly by natural selection. Both the kleptcparasttes (Mysmcrt</f»i.y ntomicola and M. model and the receiver may lose, in defensive furtiva) that live on the webs of a pair of tin- mimicry, through increased attack rate and lost i j 420 MEMOIRS OFTHEQUEENSLANDMUSEUM Spider(axon Afit Taxa i V.UTll Fain Subfamily Species Caxtianeiradubium CI Ponerinae Pachxcnndvhobscuricornis Reiskind(t977) Mazaxpax Co Ponerinae Ectatommaruidum Reiskind(l970) Mvrmeciumbifaxciatum Co Formieinac Ctunponntusfemoratus OHveOT([988) Myrmeciumbifusciatum. <„ Mvmucinae Megalomyrmexmodesfa OhvcirafWS81 Myrrnt'OU-i Cn Ponerinae Pachxcoodvlaunideniata OftveirH<l988] Mvrmeciumvelulutum Co Ponerinae Ectatommalugens Dimmil i'-'"';- Myrtnecorypaxcubanas Co Formieinac Camponotusplanatus MyersandSail(1926) — M\rmeiot\pusfuligmosux Co Forrnicinae Camponotusplanatus Jackson&Dnininumd1.1974) Myrmecotypairettenmeyert Cn Fonnieinae CamponotussericeWeturis Reiskind(l977) Sphecoivpusrtiger Co Ponerinae Pacfrvcotidvlavilloxa Olivcira(!988) Micariapulicariu Gn Myrmicmac AcurUhomyrme.xniger Bristowfl(l958j Micaria:.p. Un Myrmiemae Aphaencgasterbeccarii HingMon(l927) Micariascintillans Gn Rormicinje Formicafusca Hristowe(19411 Phrurolithusfestivus Lio Formieinac Lasias*N>'r Bnslowt i 1941 i Phrurelithusminimus Lin Forrnicinae FormicaJttxia Hri\Mwc(l94I) Mariettafurva Sa Forrnicinae Camponotusbrevis Rcisiund(1977) ANT MIMICRY Mariettafurva Sa Formieinac Campanulasfastigams Reisttjnd(1977) ONLY Mvrmarachnee}vn$ota Sa Pseudomvrmecinae Tftruponeraanthracina Edmunds1.1978) Mxrmaruchnvfoetuses Sa htnnicinae Qecophvllalongwoda Fdmundsi 1978) Myrmarachneforrmraha Sa Formieinac Formicarufa Bris1owe(194l) Mxrmaruchntlegpn Sa Forrnicinae Camponolusacvapimensh Edmund*(1978) Mvrmarachn?lupala v. Forrnicinae Polyrhachis Jackson(1986'i M'vftnurachneparalUta Sa Ponerinae Pachxiondylacaritmlata Reiskind(1977j Mvmuirachn%'paraileio Sa r'vwrmac j'utvlttstriatinodis Rciskmd(1977) Mymmrachneplataleotdes Sa Fonnicmae Ocropbyilasmaragdina Maihcw(I954l Myrmarachnesp. ij Forrnicinae Foivrharhissimplei Hingslon(I927) Myrmarachnesp. Sj Fonnieinne Prrnolepislongicornis Minpsion0927) Mvrmarachnes^ Sa Myrmlcinae ioteindica UfngstOn(192-7) '., -.',.. Sa Forrnicinae Cft'npt'KOiUipUivanv; .lavkson._ Dnimmond i 1974 S\naj,'eh's:otxidenuilis Sa Fonivianae Myrmicaemetiauui Cullcr(l99M SvnagelestwiJentidts Sa Forrnicinae LasiusaUenus Cmlcr(199J) Syiuinelftvettdior Sa Forrnicinae LashlSniger l:iigelhaidniJ970) Svnemosvna>;p Sa PseudontyntiActnae PsetuU'tnvrmexme.xicaiui'j ReiskJnd»1977) S\aemosynaamericana Sa Psendomynnevmac Pseudomvrmesboapis R.;i;l-in-m97;i Synemosynaauratitiacti Sa Pseudomvrmetinae Fseudnntyrmes OIiveira(]988) Synemoxynasmithi Sa Pscudumymieeinae f'yruihjmyrrtuivlo'i^ma MyersandSail(1926) Sytiemoxvnasmithi Sa Psciidoinvrmccinae PseMdomymuiJlaiiitu MyeisandSail(1926) Zunieataeta Sa Formicinac Camponotusfemoratus 01ivdra(l988) Zunigamagna Sa Ponerinae Pachvcotutylaviltosa 0]ivcira(J9S3,) Altuteafbffmcaria n\ Mvnnicinac Cheianercroccenentre RcisltindandLevi(1967) Dipoenu |Td MyrnVicinac Pheidoleindica Hinpston(1927) TABLE5(part).Taxonomicdistributionofspidersthatmimicants,includingthosethatalsopreyon themodel, * spiders observedwithdeadants.Family abbreviationsgiveninTable 1. foodrespectively (see Endler. 1991), and natural ves will depend upon the benefits to the mimic selection will favour models that have less and the costs ofmimicry to the model. The costs resemblance to the mimic (although the strength to the model in aggressive mimicry are more of this selection will depend on the frequency complicated,anddependuponwhetherthemodel with which the model is attacked) Thedegreeof and the receiver (in this case, the potential prey) resemblancebetweenmodel andmimicthatcvol- isthe same individual.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.