Intensive Longitudinal Analysis of Human Processes This book focuses on a span of statistical topics relevant to researchers who seek to conduct person-specific analysis of human data. Our purpose is to provide one consolidated resource that includes techniques from disciplines such as engineering, physics, statistics, and quantitative psychology and that outlines their application to data often seen in human research. The book bal- ances mathematical concepts with information needed for using these statis- tical approaches in applied settings, such as interpretative caveats and issues to consider when selecting an approach. The statistical topics covered here include foundational material as well as state-of-the-art methods. These analytic approaches can be applied to a range of data types such as psychophysiological, self-report, and passively collect- ed measures such as those obtained from smartphones. We provide examples using varied data sources including functional MRI (fMRI), daily diary, and ecological momentary assessment data. Features: • Description of time series, measurement, model building, and net- work methods for person-specific analysis • Discussion of the statistical methods in the context of human research • Empirical and simulated data examples used throughout the book • R code for analyses and recorded lectures for each chapter available via a link available at www.routledge.com/9781482230598 Across various disciplines of human study, researchers are increasingly seek- ing to conduct person-specific analysis. This book provides comprehensive information, so no prior knowledge of these methods is required. We aim to reach active researchers who already have some understanding of basic sta- tistical testing. Our book provides a comprehensive resource for those who are just beginning to learn about person-specific analysis as well as those who already conduct such analysis but seek to further deepen their knowl- edge and learn new tools. Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences Series Editors: Jeff Gill, Steven Heeringa, Wim J. van der Linden, Tom Snijders Recently Published Titles Big Data and Social Science: Data Science Methods and Tools for Research and Practice, Second Edition Ian Foster, Rayid Ghani, Ron S. Jarmin, Frauke Kreuter and Julia Lane Understanding Elections through Statistics: Polling, Prediction, and Testing Ole J. Forsberg Analyzing Spatial Models of Choice and Judgment, Second Edition David A. Armstrong II, Ryan Bakker, Royce Carroll, Christopher Hare, Keith T. Poole, and Howard Rosenthal Introduction to R for Social Scientists: A Tidy Programming Approach Ryan Kennedy and Philip Waggoner Linear Regression Models: Applications in R John P. Hoffman Mixed-Mode Surveys: Design and Analysis Jan van den Brakel, Bart Buelens, Madelon Cremers, Annemieke Luiten, Vivian Meertens, Barry Schouten, and Rachel Vis-Visschers Applied Regularization Methods for the Social Sciences Holmes Finch An Introduction to the Rasch Model with Examples in R Rudolf Debelak, Carolin Stobl, and Matthew D. Zeigenfuse Regression Analysis in R: A Comprehensive View for the Social Sciences Jocelyn H. Bolin Intensive Longitudinal Analysis of Human Processes Kathleen M. Gates, Sy-Miin Chow, and Peter C. M. Molenaar For more information about this series, please visit: https://www.routledge. com/Chapman--HallCRC-Statistics-in-the-Social-and-Behavioral-Sciences/ book-series/CHSTSOBESCI Intensive Longitudinal Analysis of Human Processes Kathleen M. Gates Department of Psychology, University of North Carolina Sy-Miin Chow Pennsylvania State University Peter C. M. Molenaar Pennsylvania State University First edition published 2023 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN © 2023 Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, LLC Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all mate- rial reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, repro- duced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www. copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Names: Gates, Kathleen M., author. | Chow, Sy-Miin, author. | Molenaar, Peter C. M., author. Title: Intensive longitudinal analysis of human processes / Kathleen Gates, Sy-Miin Chow, Peter C.M. Molenaar. Description: First edition. | Boca Raton : Chapman & Hall/CRC Press, 2023. | Series: Chapman & Hall/CRC statistics in the social and behavioral sciences | Includes bibliographical references and index. Identifiers: LCCN 2022022626 (print) | LCCN 2022022627 (ebook) | ISBN 9781482230598 (hardback) | ISBN 9781032354958 (paperback) | ISBN 9780429172649 (ebook) Subjects: LCSH: Psychometrics. | Psychology--Statistical methods. | Human behavior--Mathematical models. Classification: LCC BF39 .G38 2023 (print) | LCC BF39 (ebook) | DDC 150.1/5195--dc23/eng/20220914 LC record available at https://lccn.loc.gov/2022022626 LC ebook record available at https://lccn.loc.gov/2022022627 ISBN: 9781482230598 (hbk) ISBN: 9781032354958 (pbk) ISBN: 9780429172649 (ebk) DOI: 10.1201/9780429172649 Typeset in Palatino by KnowledgeWorks Global Ltd. Access the support material: www.routledge.com/9781482230598 Contents Preface ......................................................................................................................xi Acknowledgments ..............................................................................................xiii About the Authors ................................................................................................xv Notation Used .....................................................................................................xvii List of Abbreviations ..........................................................................................xix 1 Introduction .....................................................................................................1 1.1 First Encounter with Intra-Individual Variation ..............................1 1.1.1 Cattell’s Data Box .....................................................................2 1.1.2 IAV in Psychology and Related Sciences ..............................4 1.1.3 In What Areas Have the Studies of IAV Been Useful? .............................................................................6 1.2 Statistical Analysis of IAV: An Overview of the Structure of This Book .........................................................................................10 1.2.1 Focus on Dynamic Factor Models .......................................11 1.2.2 Focus on Replicated Multivariate Time Series ..................12 1.2.3 Focus on User-Friendly Model Selection and Estimation Approaches .........................................................13 1.2.4 Special Topic: Methods for Dealing with Heterogeneous Replications .................................................14 1.2.5 Special Topic: Non-Stationary Dynamic Factor Models .........14 1.2.6 Special Topic: Control Theory ..............................................15 1.2.7 Special Topic: Intersection of Network Science and IAV ......................................................................15 1.3 Description of Exemplar Data Sets ...................................................16 1.3.1 Big Five Personality Daily Data ...........................................16 1.3.2 Fisher Data ..............................................................................16 1.3.3 The ADID Study .....................................................................17 1.3.4 fMRI Data ................................................................................17 1.4 Notation ................................................................................................18 1.5 Conclusion ............................................................................................18 References .......................................................................................................18 Appendix: Heuristic Introduction to Time Series Analysis for Psychologists ..................................................................................................22 2 Ergodic Theory: Mathematical Theorems about the Relation between Analysis of IAV and IEV ............................................................27 2.1 Introduction .........................................................................................27 2.2 Some History Regarding Generalizability of IEV and IAV Results ...................................................................................28 v vi Contents 2.3 Two Conceptualizations of Time Series ...........................................31 2.4 Some Preliminaries .............................................................................32 2.5 When Is a System Ergodic? ...............................................................36 2.6 Birkhoff’s Theorem of Ergodicity .....................................................37 2.7 Heterogeneity as Cause of Non-Ergodicity .....................................39 2.8 Example of a Non-Ergodic Process ..................................................41 2.9 Conclusion ............................................................................................44 References .......................................................................................................45 3 P-Technique ....................................................................................................49 3.1 The P-Technique Factor Model ..........................................................50 3.2 The Structural Model of the Covariance Function of y(t) in P-Technique Factor Analysis ..............................................52 3.3 Conducting P-Technique Factor Analysis .......................................54 3.3.1 Simulated Data .......................................................................54 3.3.2 Constraints for Exploratory P-Technique Factor Analysis .......................................................................55 3.3.3 Assessing Goodness of Fit ....................................................57 3.3.4 Alternative Indices of Model Fit ..........................................58 3.3.5 An Important Caveat .............................................................59 3.3.5.1 The Recoverability of P-Technique ......................60 3.3.5.2 Statistical Theory ....................................................60 3.3.5.3 Concluding Thoughts ............................................60 3.3.6 Convention ..............................................................................61 3.3.7 Determining the Number of Factors in P-Technique Factor Analysis .......................................................................61 3.3.8 Oblique Rotation to Simple Structure .................................63 3.3.9 Testing the Final Oblique P-Technique Two-Factor Model .......................................................................................64 3.3.10 Empirical Example .................................................................65 3.4 Conclusion ............................................................................................68 3.4.1 Statistical Background...........................................................68 3.4.2 Application of P-Technique to Empirical Data Sets ..................................................................................69 References .......................................................................................................69 4 Vector Autoregression (VAR) .....................................................................73 4.1 Brief Introduction to the Use of AR and VAR Analysis in the Study of Human Dynamics ...................................73 4.2 Elementary Linear Models for Univariate Stationary Time ...................................................................................74 4.3 Stability and Stationarity ...................................................................78 4.3.1 Technical Details Regarding Stability ................................80 4.3.2 Testing for Stability ................................................................81 4.3.3 Tests for Stationarity ..............................................................81 Contents vii 4.4 Detrending Data ..................................................................................85 4.5 Univariate Order Selection ................................................................88 4.6 General VAR Model ............................................................................90 4.7 Multivariate Order Selection .............................................................93 4.8 Testing of Residuals ............................................................................95 4.9 Structural Vector Autoregression .....................................................96 4.10 Granger Causality ...............................................................................98 4.11 Discussion ............................................................................................99 References .....................................................................................................100 5 Dynamic Factor Analysis ..........................................................................103 5.1 General Dynamic Factor Models ....................................................104 5.1.1 Process Factor Analysis .......................................................105 5.1.2 Shock Factor Analysis .........................................................108 5.2 Lag Order Selection ..........................................................................109 5.3 Estimation ..........................................................................................109 5.3.1 SEM Estimation with Maximum Likelihood ..................110 5.3.1.1 Application 5.1: Exploratory SFA Estimated on Simulated Data with SEM...........113 5.3.1.2 Application 5.2: PFA Estimated on Simulated Data with SEM ...................................116 5.3.2 SEM with MIIV-2SLS Estimation .......................................118 5.3.2.1 Application 5.3: PFA Estimated on Simulated Data with MIIV-2SLS ........................120 5.3.2.2 Application 5.4: PFA on fMRI Data ....................121 5.3.3 Raw Data Likelihood Approach ........................................121 5.3.3.1 Application 5.4: PFA Estimated on Simulated Data with the Kalman Filter ............127 5.4 Conclusions ........................................................................................128 References .....................................................................................................128 6 Model Specification and Selection Procedures ....................................131 6.1 Data-Driven Methods for Person-Specific Discovery of Relations among Variables ..........................................................132 6.2 Filter Methods....................................................................................133 6.3 Wrapper Methods .............................................................................134 6.3.1 Wald’s Test .............................................................................135 6.3.2 Likelihood Ratio Tests .........................................................135 6.3.3 Score Functions ....................................................................136 6.3.4 Example: Automated Relation Selection Using Wrapper Methods.....................................................137 6.3.4.1 Model Search Procedure .....................................137 6.3.4.2 Simulated Data Example .....................................139 6.3.4.3 Empirical Data Example ......................................141 6.3.5 Conclusion on Wrapper Approaches ................................142 viii Contents 6.4 Embedded Methods: Regularization .............................................142 6.4.1 Exemplar Approach: Regularization in Graphical VAR .................................................................144 6.5 Problems with Individual-Level Searches .....................................146 6.6 Data Aggregation Approaches ........................................................147 6.6.1 Exemplar Output of Aggregated Approaches ...........................................................................147 6.6.2 Issues with Traditional Forms of Aggregation ..........................................................................148 6.7 Replication Approaches: Group Iterative Multiple Model Estimation (GIMME) ...........................................................150 6.7.1 Original GIMME ..................................................................151 6.7.2 Hybrid GIMME ....................................................................154 6.8 Conclusions ........................................................................................156 References .....................................................................................................157 7 Models of Intra-Individual Variability with Time-Varying Parameters (TVPs) ......................................................................................161 7.1 The DFM(p,q,l,m,n) across N ≥ 1 Individuals .................................163 7.2 The DFM(p,q,l,m,n) with TVPs as a State-Space Model ................163 7.3 Nonlinear State-Space Model Estimation Methods .....................167 7.3.1 Estimation Procedures ........................................................168 7.3.1.1 The Extended Kalman Filter (EKF) and the Extended Kalman Smoother (EKS) .............169 7.3.1.2 Parameter Estimation ..........................................171 7.4 Observability and Controllability Conditions in TVPs ...............................................................................................173 7.5 Possible Functions for Representing Changes in the TVPs .........................................................................................174 7.6 Illustrative Examples ........................................................................177 7.6.1 DFM Model with Time-Varying Set-Point .......................177 7.6.2 DFM(p,q,0,1,0) with Time-Varying Set-Point and Cross-Regression Parameters .............................................183 7.7 Closing Remarks ...............................................................................188 References .....................................................................................................188 8 Control Theory Optimization of Dynamic Processes ........................193 8.1 Control Theory Optimization .........................................................194 8.2 Illustrative Simulation ......................................................................198 8.3 Summary ............................................................................................206 References .....................................................................................................206 9 The Intersection of Network Science and Intensive Longitudinal Analysis ...............................................................................209 9.1 Terminology .......................................................................................209 Contents ix 9.2 Network Measures ............................................................................213 9.2.1 Summarizing Edge Values: Degree, Density, Weight, and Strength .........................................................................213 9.2.2 Centrality Measures ............................................................215 9.2.3 Measures of Segregation and Integration ........................216 9.3 Community Detection Algorithms ................................................217 9.3.1 Walktrap ................................................................................219 9.4 Using Community Detection to Subgroup Individuals with Similar Dynamic Processes .............................................................221 9.4.1 Exemplar Method: Subgrouping GIMME ........................222 9.4.2 Community Detection Empirical Example: Identifying Subsets of Individuals ....................................224 9.5 Assessing Robustness of Community Detection Solutions ........225 9.5.1 Obtaining Random Networks ...........................................225 9.5.2 Approach 1: Identifying When Solution Changes ..........226 9.5.3 Approach 2: Evaluating Modularity .................................230 9.6 Community Detection and P-Technique .......................................230 9.6.1 Community Detection Example: Identifying Subsets of Variables ............................................................................232 9.7 Discussion ..........................................................................................234 References .....................................................................................................234 Index .....................................................................................................................237