ebook img

Intensional First-Order Logic. From AI to New SQL Big Data PDF

542 Pages·2022·7.574 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Intensional First-Order Logic. From AI to New SQL Big Data

ZoranMajkić IntensionalFirst-OrderLogic Also of Interest KnowledgeEngineeringforModernInformationSystems Methods,ModelsandTools Sharma,Kautish,Agrawal,Madaan,Gupta,Nanda(Eds.),2022 ISBN978-3-11-071316-9,e-ISBN978-3-11-071363-3 NoiseFilteringforBigDataAnalytics Bhattacharyya,Ghosh(Eds.),2022 ISBN978-3-11-069709-4,e-ISBN978-3-11-069721-6 BigDataAnalyticsMethods AnalyticsTechniquesinDataMining,DeepLearningandNatural LanguageProcessing Ghavami,2019 ISBN978-1-5474-1795-7,e-ISBN978-1-5474-0156-7 BigDataManagement DataGovernancePrinciplesforBigDataAnalytics Ghavami,2020 ISBN978-3-11-066291-7,e-ISBN978-3-11-066406-5 AdvancedDataManagement ForSQL,NoSQL,CloudandDistributedDatabases Wiese,2015 ISBN978-3-11-044140-6,e-ISBN978-3-11-044141-3 Zoran Majkić Intensional First-Order Logic | From AI to New SQL Big Data Author ZoranMajkić ViaPalestro13 00185Rome Italy [email protected] ISBN978-3-11-099494-0 e-ISBN(PDF)978-3-11-098143-8 e-ISBN(EPUB)978-3-11-098146-9 LibraryofCongressControlNumber:2022940161 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2022WalterdeGruyterGmbH,Berlin/Boston Coverimage:dem10/E+/GettyImages Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com | Dedicatedtomydaughters VivianaandSofia Calypso,thebeautifulgoddess,wasthefirsttospeak,andsaid:“SonofLaertes,sprungfrom Zeus,Odysseusofmanydevices,would’stthouthenfarenowforthwithhometothydearnative land!Yet,evensofaretheewell.Howbeitifinthyheartthouknewestallthemeasureofwoeit isthyfatetofulfilbeforethoucomesttothynativelandthouwouldestabidehereandkeepthis housewithme,andwouldestbeimmortal,forallthydesiretoseethywifeforwhomthoulongest daybyday.SurelynotinferiortoherdoIdeclaremyselftobeeitherinformorstature,forinno wiseisitseemlythatmortalwomenshouldviewithimmortalsinformorcomeliness.” ThenOdysseusofmanywilesansweredher,andsaid:“Mightygoddess,benotwrothwithmefor this.IknowfullwellofmyselfthatwisePenelopeismeanertolookuponthanthouincomeliness andinstature,forsheisamortal,whilethouartimmortalandageless.ButevensoIwishandlong daybydaytoreachmyhome,andtoseethedayofmyreturn.Andifagainsomegodshallsmite meonthewine-darksea,Iwillendureit,havinginmybreastaheartthatenduresaffliction.For erethisIhavesufferedmuchandtoiledmuchamidthewavesandinwar;letthisalsobeadded untothat.” Sohespoke,andthesunsetanddarknesscameon. TheOdyssey,book5,byHomer. Preface In“ÜberSinnundBedeutung,”Fregeconcentratedmostlyonthesensesofnames, holding that all names have a sense (meaning). It is natural to hold that the same considerationsapplytoanyexpressionthathasanextension.Buttwogeneralterms canhavethesameextensionanddifferentcognitivesignificance.So,generalterms, predicates,andsentencesallhavesensesaswellasextensions.Thesamegoesforany expressionthathasanextension,orisacandidateforextension. Thesignificantaspectofanexpression’smeaningisitsextension.Wecanstip- ulatethattheextensionofasentenceisitstruth-value,andthattheextensionofa singulartermisitsreferent.Theextensionofotherexpressionscanbeseenasasso- ciated entities that contribute to the truth-value of a sentence in a manner broadly analogoustothewayinwhichthereferentofasingulartermcontributestothetruth- valueofasentence.Inmanycases,theextensionofanexpressionwillbewhatwe intuitivelythinkofasitsreferent,althoughthisneednotholdinallcases.WhileFrege himselfisofteninterpretedasholdingthatasentence’sreferentisitstruth-value,this claimiscounterintuitiveandwidelydisputed.Wecanavoidthatissueinthepresent frameworkbyusingthetechnicalterm“extension.”Inthiscontext,theclaimthatthe extensionofasentenceisitstruth-valueisastipulation. “Extensional”ismostdefinitelyatechnicalterm.Saythattheextensionofaname isitsdenotation,theextensionofapredicateisthesetofthingsitappliesto,andthe extensionofasentenceisitstruthvalue.Alogicisextensionalifcoextensionalexpres- sionscanbesubstitutedoneforanotherinanysentenceofthelogic“salvaveritate,” thatis,withoutachangeintruthvalue.Theintuitiveideabehindthisprincipleisthat inanextensionallogictheonlylogicallysignificantnotionofmeaningthatattaches toanexpressionisitsextension.Anintensionallogicsisexactlyoneinwhichsubsti- tutivitysalvaveritatefailsforsomeofthesentencesofthelogic. Thefirstconceptionofintensionalentities(orconcepts)isbuiltintothepossible- worlds treatment of Properties, Relations and Propositions (PRP)s. This conception iscommonlyattributedtoLeibniz,andunderliesAlonzoChurch’salternativeformu- lationofFrege’stheoryofsenses(“AformulationoftheLogicofSenseandDenota- tion”inHenle,KallenandLanger,3–24,and“OutlineofaRevisedFormulationofthe LogicofSenseandDenotation”intwoparts,Nous,VII(1973),24–33,andVIII,(1974), 135–156).ThisconceptionofPRPsisideallysuitedfortreatingthemodalities(neces- sity,possibility,etc.)andtoMontague’sdefinitionofintensionofagivenvirtualpred- icateϕ(x1,...,xk)(aFOLopensentencewiththetupleoffreevariables(x1,...xk)),as amappingfrompossibleworldsintoextensionsofthisvirtualpredicate.Amongthe possible worlds, we distinguish the actual possible world. For example, if we con- siderasetofpredicates,ofagivendatabase,andtheirextensionsindifferenttime- instances,thentheactualpossibleworldisidentifiedbythecurrentinstanceofthe time. https://doi.org/10.1515/9783110981438-201 VIII | Preface ThesecondconceptionofintensionalentitiesistobefoundinRussell’sdoctrine oflogicalatomism.Inthisdoctrine,itisrequiredthatallcompletedefinitionsofin- tensional entities be finite as well as unique and noncircular: it offers an algebraic wayfordefinitionofcomplexintensionalentitiesfromsimple(atomic)entities(i.e., algebraofconcepts),conceptionalsoevidentinLeibniz’sremarks.Inapredicatelog- ics,predicatesandopen-sentences(withfreevariables)expressesclasses(properties andrelations),andsentencesexpresspropositions.Notethatclasses(intensionalen- tities)arereified,i.e.,theybelongtothesamedomainasindividualobjects(partic- ulars).Thisendowstheintensionallogicswithagreatdealofuniformity,makingit possibletomanipulateclassesandindividualobjectsinthesamelanguage.Inpar- ticular, when viewed as an individual object, a class can be a member of another class. The distinction between intensions and extensions is important (as in lexicog- raphy [1]), considering that extensions can be notoriously difficult to handle in an efficientmanner.Theextensionalequalitytheoryofpredicatesandfunctionsunder higher-ordersemantics(e.g.,fortwopredicateswiththesamesetofattributesp=qis trueiffthesesymbolsareinterpretedbythesamerelation),i.e.,thestrongequational theoryofintensions,isnotdecidable,ingeneral.Forexample,thesecond-orderpred- icatecalculusandChurch’ssimpletheoryoftypes,bothunderthestandardseman- tics,arenotevensemidecidable.Thus,separatingintensionsfromextensionsmakesit possibletohaveanequationaltheoryoverpredicateandfunctionnames(intensions) thatisseparatefromtheextensionalequalityofrelationsandfunctions. Relevantrecentworkabouttheintension,anditsrelationshipwithFOL,hasbeen presentedin[2]intheconsiderationofrigidandnonrigidobjects,w.r.t.thepossible worlds,wheretherigidobjects,like“GeorgeWashington,”andarethesamethings frompossibleworldtopossibleworld.Nonrigidobjects,like“theSecretary-Generalof UnitedNations,”arevaryingfromcircumstancetocircumstanceandcanbemodeled semantically by functions from possible worlds to the domain of rigid objects, like intensionalentities. Anotherapproachusedinintensionallogicprogrammingisanewformoflogic programmingbasedonintensionallogicandpossibleworldssemantics,andisawell- definedpracticeinusingtheintensionalsemantics[3].Intensionallogicallowsusto uselogicprogrammingtospecifynonterminatingcomputationsandtocapturethe dynamic aspects of certain problems in a natural and problem-oriented style. The meanings of formulas of an intensional first-order language are given according to intensionalinterpretationsandtoelementsofasetofpossibleworlds.Neighborhood semanticsisemployedasanabstractformulationofthedenotationsofintensionalop- erators.Themodel-theoreticandfixed-pointsemanticsofintensionallogicprograms aredevelopedintermsofleast(minimum)intensionalHerbrandmodels.Intensional logicprogramswithintensionaloperatordefinitionsareregardedasmetatheories. Some of the important questions about intensional First-order Logic (FOL) was enouncedbyMelvinFittinginhis2003preprint[2]: Preface | IX “Whatisfirst-ordermodallogicfor?Sincethisisobviouslynotasimplequestion;perhapsweshould beginbyasking,whatispropositionalmodallogicfor?Hereweareonwell-exploredground.With propositionalmodallogic,anditsrelationalsemantics,wewanttoexplicatevariousconstructs fromnaturallanguage,andexplorenuancesofcertainconceptsarisinginphilosophicalinvestiga- tions.Wewanttomodelknowledge,atleastinanidealsense.Wewanttoreasonaboutaction.And thereisanotherpurposeaswell,onethathasbecomeclearerovertheyears.Instudyingproposi- tionalmodallogics,–primarilythosecharacterizedbyclassesofframes,–wearealsostudying fragmentsofclassicalfirst-order(andhigher-order)logic.Thisisknownascorrespondencetheory. Forthispurposeaxiomatizability(ornot)isacentralissue.Inaddition,axiomsystemsallowthe constructionofcanonicalmodels,whichprovidesametamathematicalmethodologythatisuniform acrossmanylogics.Detailsmatteragreatdeal,ofcourse,butthebroadoutlinesofpropositional modallogicshavebeenstandardizedforsometime. Buttheoriginalquestionabovewas,whatisfirst-ordermodallogicfor?Whatdoquantifiersaddto themix?” Butinhisapproach,differentlyfromthisone,Fittingchangesalsothesyntaxofthe FOL,byintroducingan“extensionof”theoperator,↓,inordertodistinguishtheinten- sionalentity“grossdomesticproductofDenmark,”anditsusein“thegrossdomestic productofDenmarkiscurrentlygreaterthangrossdomesticproductofFinland.”Inhis approach,ifxisanintensionalvariable,↓ xisextensional,while↓isnotapplicable toextensionalvariables,differentfromours,whereeachvariable(concept)hasboth intensionalandextension.Moreover,inhisapproachtheproblemarisesbecausethe actionoflettingxdesignate,i.e.,evaluating↓x,andtheactionofpassingtoanalter- nativepossibleworld,thatisofinterpretingtheexistentialmodaloperator⬦,arenot actionsthatcommute.Todisambiguatethis,onemorepieceofmachineryisneeded aswell,whichsubstantiallyandadhocchangesthesyntaxandsemanticsofFOL,in- troducesthehigher-ordermodallogics,andisnotaconservativeextensionofTarski’s semantics.Inthemostrecentworkin[4,5]isgivenanintensionalversionoffirst-order hybridlogic,whichisalsoahybridizedversionofFitting’sintensionalFOL,byakind ofgeneralizedmodels;thus,isdifferentfromourapproachtoaconservativeextension ofTarski’ssemanticstointensionalFOL. AnotherrecentrelevantworkispresentedbyI-logicin[6],whichcombinesboth approachestosemanticsofintensionalobjectsofMontagueandFitting. Inhisapproach,FittingfollowedtheMontaguetradition,differentfrommywider approach provided in this book that uses both Montague tradition and algebraic Bealer’s approach, and enriched them by a more detailed investigation of modal logicsofFOL,andbythewayintroducednaturallytheintensionalsemanticsintotra- ditionalextensionalFOLwithTarski’ssemanticsand,moreover,howtointroducein suchminimalintensionalFOLandthe“higherlevel”modaloperators.Mostrelevant formypersonalresearchhasbeentwosignificantapproachestointensionalFOL: 1. Montague’sapproachbasedonpossibleworldrepresentation[7,8,9,10,11],the intensionofapropositionisafunctionfrompossibleworlds𝒲totruth-values,and propertiesandfunctionsfrom𝒲tosetsofpossible(usuallynotactual)objects. X | Preface 2. Bealer’sapproachin[12]totheintensionallogicthefundamentalentitiesarein- tensionalabstractsorso-called,“that-clauses”andhisintroductionofintensional algebras. Thesetwoapproachesareunifiedinmyapproach,withprovidingaconservativeex- tensionofTarski’ssemanticstointensionalFOLaswell. Quovadislogic-basedAI? Why this title? I will try to explain it by my relevant research history from 2003 to 2020. At “La Sapienza,” Roma, Italy, we had a number of good professors and re- searchesinlogic-basedAI,andespeciallyintheresearchgroupofmyPhDadvisor, ProfessorM.Lenzerini(from94to98),whointhatperiodwaschiefofthePhDpro- gramsandresearchinknowledgebasisandAI.Inthatperiod,thebook[13]ofthelogic basedapproachtoAIwasareferenceformyintroductiontothisfield,andmybook insomewayisacontinuationofthatapproach.Ireturnedagaintohisdepartmentin 2002,4yearsafterIfinishedmyPhDthesis,toworkfortheEuropeaninteruniversity projectofSemanticWeb,calledSEWASIEprojectIST-2001-34825.Ihavewritten,with initialhelpofLenzerini,threeorfourresearchpapersforthisEuropeanresearchpro- gram.Inthatperiod,Lenzeriniwasthechiefresearchleaderindataintegrationand itwasalsotheverybeginningoftheP2Pdataintegrationsystems,basedonthefirst- orderlogicanditssecond-orderextensionsfortheinterdatabasemappings.Thus,the wholeframeworkwasjustinstandardextensionallogics,whichdemonstratedalotof theoreticalproblemsaboutmutuallyinconsistentinformationcomingfromdifferent sources. Ofcourse,allmyworkinthisprojectwasjustinthisworkinglogicframework,but Itriedtoconsidermany-valuedlogicstoovercometheseproblemsabouttheinconsis- tencesandtofindamorerobustdataintegrationP2Psystem,tryingtoovercomethe strong(extensional)mappingbetweendatabases.WhenIorganizedafirstshortpaper withthesenewideas,Lenzeriniacceptedtojoinwithmetowritethefinalversion,but fromthefactthathepublishedpaperswithhisworkinggroupofotherprofessorsand researches,heaskedmetowaitonthedecisionofthisgroupiftheywouldacceptme asnewmemberofthisgroup,andhenceauthorizedtopublishtheresearchpapersfor journalsorconferencestogether. Unfortunatelyforme,somebodyinhisgroupdidnotlikemyparticipationand Lenzerini was sorry, but promised that if my papers were accepted for the confer- encesorjournals,thatdepartmentwouldsupportallexpenses(traveling,participa- tioncosts,etc.)forpresentations.Theirdecisionexplainswhy,duringthe3yearswork- ingwithhisresearchgroupforthisEuropeanproject,Ihavenoanypublicationwith theminjournalsorconferences,andwhyallsuchworkwasdonebymeonly.With economicalsupportbythedepartmentofLenzerini,Ipublishedadozenpapersby

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.