ebook img

Intensification and deepening of the Arabian Sea Oxygen Minimum Zone in response to increase ... PDF

34 Pages·2017·5.67 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Intensification and deepening of the Arabian Sea Oxygen Minimum Zone in response to increase ...

BiogeosciencesDiscuss.,doi:10.5194/bg-2017-146,2017 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:2May2017 (cid:13)c Author(s)2017.CC-BY3.0License. Intensification and deepening of the Arabian Sea Oxygen Minimum Zone in response to increase in Indian monsoon wind intensity ZouhairLachkar1,MarinaLevy2,andShaferSmith1,3 1TheCenterforPrototypeClimateModeling,NewYorkUniversityinAbuDhabi,AbuDhabi,UAE. 2SorbonneUniversité(UPMC,Paris6/CNRS/IRD/MNHN),LOCEAN-IPSL,Paris,France. 3CourantInstituteofMathematicalSciences,NewYorkUniversity,NewYork,USA. Correspondenceto:Z.Lachkar([email protected]) Abstract.Thedeclineinoxygensupplytotheoceanassociatedwithglobalwarmingisexpectedtoexpandoxygenminimum zones(OMZs).Thisglobaltrendcanbeattenuatedoramplifiedbyregionalprocesses.IntheArabianSea,theWorld’sthickest OMZishighlyvulnerabletochangesintheIndianmonsoonwind.Evidencefrompaleorecordsandfutureclimateprojections indicate strong variations of the Indian monsoon wind intensity over climatic timescales. Yet, the response of the OMZ to 5 thesewindchangesremainspoorlyunderstoodanditsamplitudeandtimescaleunexplored.Here,weinvestigatetheimpacts ofperturbationsinIndianmonsoonwindintensity(from-50%to+50%)onthesizeandintensityoftheArabianSeaOMZ,and examinethebiogeochemicalandecologicalimplicationsofthesechanges.Tothisend,weconductedaseriesofeddy-resolving simulationsoftheArabianSeausingtheRegionalOceanicModelingSystem(ROMS)coupledtoanitrogenbasedNutrient- Phytoplankton-Zooplankton-Detritus(NPZD)ecosystemmodelthatincludesarepresentationoftheO cycle.Weshowthat 2 10 theArabianSeaproductivityincreasesanditsOMZexpandsanddeepensinresponsetomonsoonwindintensification.These responsesaredominatedbytheperturbationofthesummermonsoonwind,whereasthechangesinthewintermonsoonwind play a secondary role. While the productivity responds quickly and nearly linearly to wind increase (i.e., on a timescale of years),theOMZresponseismuchslower(i.e.,atimescaleofdecades).OuranalysisrevealsthattheOMZexpansionatdepth isdrivenbyincreasedoxygenbiologicalconsumption,whereasitssurfaceweakeningisinducedbyincreasedventilation.The 15 enhanced ventilation favors episodic intrusions of oxic waters in the lower epipelagic zone (100-200m) of the western and centralArabianSea,leadingtointermittentexpansionsofmarinehabitatsandamorefrequentalternationofhypoxicandoxic conditionsthere.TheincreasedproductivityanddeepeningoftheOMZalsoleadtoastrongintensificationofdenitrificationat depth,resultinginasubstantialamplificationoffixednitrogendepletionintheArabianSea.Weconcludethatchangesinthe Indianmonsooncanaffect,onlongertimescales,thelarge-scalebiogeochemicalcyclesofnitrogenandcarbon,withapositive 20 feedbackonclimatechangeinthecaseofstrongerwinds. 1 Introduction ThecombinationofstrongorganicmatterdecompositionandpoorventilationexplainsthepresenceoflargeOxygenMinimum Zones(OMZs)intheintermediateoceanoftheeasterntropicalPacificandAtlanticOceansaswellasinthenorthernIndian Ocean.Atlowoxygenconcentrations,hypoxia-sensitivemarinespeciesaresubjecttovaryingenvironmentalstressesthatcan 1 BiogeosciencesDiscuss.,doi:10.5194/bg-2017-146,2017 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:2May2017 (cid:13)c Author(s)2017.CC-BY3.0License. affecttheirgrowthandreproductivesuccessandultimatelycausetheirdeath(Vaquer-SunyerandDuarte,2008).Nearcomplete oxygendepletion,suboxicconditionsfavoranaerobicremineralizationoforganicmatterviadenitrification:aprocessthrough which nitrate is used as an alternate oxidant. This not only depletes the oceanic inventory of bioavailable nitrogen that is essentialforphytoplanktongrowth,butalsoreleasesN O,amajorgreenhousegasthatalsocontributestostratosphericozone 2 5 depletion (Codispoti et al., 2001). Thus, the OMZs not only shape marine ecosystem habitats, but also impact and regulate climate. Dissolved O is predicted to decline in the future in response to upper ocean warming and increased stratification, which 2 mayresult intheexpansion ofOMZs(Bopp etal.,2002; Keelingetal., 2010).Thesechanges willhavedeleterious impacts onmarinehabitatsandmayleadtodisruptionofkeybiogeochemicalcycles(Keelingetal.,2010;Gruber,2011;Doneyetal., 10 2012).Observationalevidencesuggeststhattheoceanicoxygeninventoryhasalreadybeendecliningovertherecentdecades (Helmetal.,2011;Schmidtkoetal.,2017)andthatOMZshaveexpandedinseverallocations(Strammaetal.,2008,2012). Globalmodelprojectionsshowconsistentlydecliningoxygeninventoriesthatarecommensuratewiththewarminganomaly, butdisagreeonthefutureevolutionofOMZs(e.g.Coccoetal.,2013).Thismayresultinpartfromthemisrepresentationof thedynamicsofOMZsinglobalmodels(Boppetal.,2013;Coccoetal.,2013;Cabréetal.,2015;Longetal.,2016)andthe 15 sensitivityofOMZstoregionalclimateperturbationsthatarepoorlyrepresentedinglobalsimulations. An example of such perturbations is regional wind changes (e.g. Deutsch et al., 2014). Located nearby major coastal up- wellingsystems,theOMZsareindeedhighlyvulnerabletochangesinalongshorewinds.InmostEasternBoundaryUpwelling SystemsaswellasinthewesternArabianSea,upwelling-favorablewindintensificationhasbeenshowntooccurunderwarm- ingscenarios(Wangetal.,2015;deCastroetal.,2016).Bakun(1990)haslinkedthistoincreasedland-seathermalgradient 20 underwarmerclimates,strengtheningtheland-seapressuregradient,andhencealongshorewinds.Yet,previousobservational andmodel-basedstudiesshowthattheamplitudeofsuchupwellingintensificationstronglyvariesfromonesystemtoanother (McGregor et al., 2007; Narayan et al., 2010; García-Reyes and Largier, 2010; Gutiérrez et al., 2011; Barton et al., 2013; Sydemanetal.,2014;Varelaetal.,2015). IntheArabianSea,thesummermonsoonsouthwesterlywindsdrivestrongupwellingoffthecoastsofOmanandSomalia, 25 giving rise to one of most productive coastal upwelling ecosystems in the world (Ryther and Menzel, 1965). This high pro- ductivity in conjunction with a sluggish circulation sustains the World’s thickest OMZ, responsible for up to 40% of global pelagicdenitrificationdespiteoccupyinglessthan2%oftheWorldOceanarea(Bangeetal.,2005).Futureclimateprojections suggestthatIndiansummermonsoonmayintensifyinthefutureunderawarmerclimate(e.g.Wangetal.,2013;Sandeepand Ajayamohan, 2015; Praveen et al., 2016; deCastro et al., 2016). Praveen et al. (2016) found that the future upwelling inten- 30 sificationwillaffectessentiallythecoastofOman.Usinganensembleofglobalandregionalmodelsimulationsforthe21st century,deCastroetal.(2016)showastrengtheningoftheSomalicoastalupwellingthatincreaseswithlatitude.Furthermore, theseauthorsshowthattheintensificationofupwellinginthewesternArabianSeaisevenhigherthanwhatispredictedforthe EasternBoundaryUpwellingSystems.Thisstudyalsofindsanintensificationofland-seathermalandpressuregradientsthat is consistent with the Bakun (1990) hypothesis. Other studies reveal that summer monsoon wind intensification has already 35 beenobservedrecently(Goesetal.,2005;Wangetal.,2013).Goesetal.(2005)reportedanincreaseinupwellingfavorable 2 BiogeosciencesDiscuss.,doi:10.5194/bg-2017-146,2017 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:2May2017 (cid:13)c Author(s)2017.CC-BY3.0License. windsoffSomaliaovertheperiodbetween1997and2005andhaveshownanassociatedincreaseinproductivityoverthesame period. Wang et al. (2013) found a global intensification of the Northern Hemisphere summer monsoon since the late 1970s andattributedthesetrendstotheinteractionofmega-ElNiño/SouthernOscillationandtheAtlanticMultidecadalOscillation, inadditiontohemisphericalasymmetricglobalwarming. 5 WhilethereisstillnoconsensusonthemagnitudeandthedriversoftherecentandfutureIndianmonsoonwindchanges, evidencefrompaleoclimaterecordsoverwhelminglysuggestsastronglinkbetweennorthernhemispheretemperaturesandthe Indianmonsoonwindintensityontimescalesrangingfromdecadestothousandsofyears(e.g.Altabetetal.,2002;Schulzetal., 1998;Guptaetal.,2003;Ivanochkoetal.,2005).Generally,enhancedIndiansummermonsoonintensitywasrecordedduring northernhighlatitudeswarmperiods(e.g.,Dansgaard-Oeschgerevents)whilereducedsummermonsoonintensitywasfound 10 tocorrespondtocoldperiods(e.g.,Heinrichevents)(Schulzetal.,1998).Ivanochkoetal.(2005)hasestablishedarelationship between millennial-scale oscillations in summer monsoon intensity and the position of the Intertropical Convergence Zone (ITCZ), where the ITCZ moves northward during warm periods (interstadials) and southward during cold periods (stadials). Thisrelationshipbetweenthenorthernhigh-latitudeclimateandtheIndianmonsoonseenfromamultitudeofproxiesduring the last glacial period was also found valid during the Holocene (Gupta et al., 2003). This includes the most recent climate 15 changes from the Medieval Warm Period and the Little Ice Age. The analysis of paleo proxy records also suggests a strong couplingbetweennorthernclimateexcursionsandchangesinproductivityanddenitrificationintheArabianSeaatdifferent timescales(e.g.Altabetetal.,1995,1999,2002;Guptaetal.,2003;Singhetal.,2011).Forinstance,Altabetetal.(1999)found thatdenitrificationwasgreatestduringinterglacialperiodsandwasprobablynotactiveduringmostglacialphases.Altabetetal. (2002)foundastrongcorrespondencebetweenchangesintheproductivityanddenitrificationoftheArabianSeaandcentury- 20 scaleDansgaard-Oeschgereventsduringthelastglacialperiod.Thesestudiesshowthatdenitrificationincreasesduringwarm periodsconcurrentwiththesummermonsoonandproductivityintensificationanddecreasesduringcoldphases.Otherstudies havehighlightedthatthefluctuationsindenitrificationandtheintensityoftheOMZcanalsobedrivenbychangesinwinter monsoonwindintensity(Reichartetal.,2004;KlöckerandHenrich,2006). Despitethese previousstudies, theamplitude ofthe OMZsensitivity topotential windchanges remainslargely uncertain. 25 Indeed,whetherinthecontextofpastclimatefluctuationsorunderfutureclimatechange,theresponseofOMZtoupwelling- favorablewindintensificationisdifficulttopredictassuchaperturbationmayincreasebothoxygensupplythroughenhanced ventilation and oxygen demand via increased biological productivity, thus leading to an uncertain net effect. In the Arabian Sea,thepictureismadeevenmorecomplicatedbytheseasonalreversalofwindsandthepotentialimportanceofchangesin wintermonsoonmixing.Additionally,thelargedenitrificationfluxesintheArabianSeacombinedwiththepotentialfeedback 30 of denitrification on biological productivity, and hence on oxygen consumption, further add to the intricacy of the problem. Finally, the question of the OMZ response timescales is essential but remains unanswered. Here we address these questions andexplorethemechanismsbywhichtheArabianSeaecosystemrespondstomonsoonwindchangesusingaregionaleddy- resolving model. We examine how idealized changes in summer and winter monsoon wind intensity affect the productivity andthevolumesofhypoxicandsuboxicwaterintheArabianSeaandexplorethebiogeochemicalandecologicalimplications 35 of these changes. We show that the productivity increases on a timescale of years while the OMZ expands and deepens on 3 BiogeosciencesDiscuss.,doi:10.5194/bg-2017-146,2017 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:2May2017 (cid:13)c Author(s)2017.CC-BY3.0License. a timescale of decades. This response is essentially driven by summer monsoon wind intensification and results from an enhanced biological consumption of oxygen opposed by increased ventilation near the surface. The enhanced upper ocean ventilationleadstointermittentexpansionsofhabitatsintheepipelagiczonewiletheOMZintensificationatdepthincreases denitrification, thus amplifying the depletion of bioavailable nitrogen in the Arabian Sea. We conclude that changes in the 5 Indianmonsooncanaffectthelarge-scalenitrogenmarinebudgetondecadaltocentennialtimescales,withapositivefeedback onwarminginthecaseofstrongerwinds. 2 Methods 2.1 Models We use the Regional Oceanic Modeling System (ROMS)-Agrif (documented at http://www.romsagrif.org/) configured for 10 theArabianSearegion.ROMSsolvestheprimitiveequationsandhasfreesurfaceandgeneralizedterrain-followingvertical coordinates(ShchepetkinandMcWilliams,2005).Advectionisrepresentedusingarotated-splitthird-orderupstreambiased operatordesignedtolimitdispersiveerrorsandpreservelowdiffusion(Marchesielloetal.,2009).Thesubgridverticalmixingis representedusingthenonlocalK-ProfileParameterization(KPP)scheme(Largeetal.,1994).Numericaldiffusivityallowsthe dissipationofsmall-scalenoiseasnoadditionalbackgroundlateraldiffusivityisused.Theecological-biogeochemicalmodel 15 isanitrogen-basednutrient-phytoplankton-zooplankton-detritus(NPZD)model(Gruberetal.,2006;Lachkaretal.,2016).It isbasedonasystemofordinarydifferentialequationsdescribingthetimeevolutionofthefollowingtracers:nitrate(NO−3), ammonium(NH+),oneclassofphytoplankton,oneclassofzooplankton,twoclassesofdetritusandadynamicchlorophyll- 4 to-carbon ratio. The two pools of detritus represent respectively large organic matter particles that sink fast (10md 1) and − smallparticlesthatsinkatslowerspeed(1md 1).Thesmallparticlescancoagulatewithphytoplanktontoformfastsinking − 20 large detritus. The sinking of the particles is represented explicitly in the model, thus allowing all tracers to be advected laterallyincludingintheeuphoticzone.Whensinkingparticlesreachtheseafloor,theyareremineralizedbackintoammonium at a much slower rate (0.003 d 1) than in the water column (0.03 d 1 for small detritus and 0.01 d 1 for large detritus). − − − Finally,themodeliscoupledtoamodulethatdescribesthebiologicalsourcesandsinksofoxygenfollowingLachkaretal. (2016).Furthermore,atverylowoxygenconcentrations(O <4mmol/m3),nitrificationandaerobicremineralizationareshut 2 25 downanddenitrificationissettoconsumenitrateinsteadofoxygen.Finally,benthicdenitrificationisparameterizedfollowing Middelburgetal.(1996)(seefurtherdetailsofthemodelinLachkaretal.(2016)). 2.2 Experimentaldesign Themodeldomainextendsinlatitudefrom5 Sto30 Nandinlongitudefrom34 Eto78 E,thusencompassingthewhole ◦ ◦ ◦ ◦ ArabianSeaOMZaswellasthekeydynamicalfeaturesofthecirculationoftheregionsuchastheSomaliandOmaniupwelling 30 systemsandtheGreatWhirl.Themodelhorizontalgridhasaresolutionof1/12◦ withanaveragegridspacingthatisabout 5to20timessmallerthanthelocalfirstbaroclinicRossbydeformationradius(Cheltonetal.,1998).Thispermitsanexplicit 4 BiogeosciencesDiscuss.,doi:10.5194/bg-2017-146,2017 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:2May2017 (cid:13)c Author(s)2017.CC-BY3.0License. representationofalargefractionoftheregioneddies.Theverticalgridconsistsof32sigmalayerswithanimprovedresolution near the surface. The seafloor topography is derived from the ETOPO2 dataset supplied by the National Geophysical Data Center(SmithandSandwell,1997). Themodelisforcedwithamonthlyclimatology.Theabsenceofinterannualvariabilityintheatmosphericforcingenables 5 us to quantify the role of internal variability associated with mesoscale eddies. The temperature, salinity and currents are initializedandlaterallyforcedusingtheSimpleOceanDataAssimilation(SODA)oceanreanalysis.Oxygenandnitrateinitial and boundary conditions are derived from the World Ocean Atlas (2009) dataset. The atmospheric boundary conditions for heatandfreshwaterfluxesarebasedontheComprehensiveOcean-AtmosphereDataSet(COADS)(daSilvaetal.,1994).We appliedasurfacerestoringtoCOADSobservedsurfacetemperaturesandsalinitiesusingkinematicfluxcorrectionsdescribed 10 inBarnieretal.(1995).ThemodelisforcedwithwindstressdatafromtheQuikSCAT-derivedScatterometerClimatologyof OceanWinds(SCOW)(RisienandChelton,2008). The model is first spun up for 12 years and then is run for an additional 50 years using 9 different wind stress scenarios. Inthecontrolrunthewindstressisleftunperturbed.Inafirstsetoffourperturbedmonsoonsimulationsthewindstresswas uniformlyincreasedordecreasedby20%and50%,respectively.Thisamountstowindspeedperturbationsofaround10and 15 20%,respectively.Twoadditionalrunswereconductedwheretheperturbationsofthesummerandwintermonsoonwindsare settobeantagonistic,i.e.,a50%increase(resp.decrease)ofthesummermonsoonwindstressthatisconcomitantwitha50% decrease(resp.increase)inthewintermonsoonwindstress.Finally,twosimulationswithgradualincrease(resp.decrease)of windstressatarate+1%peryearareperformed. Althoughtheserunsexploredifferentwindperturbationscenarios,theyarehighlyidealizedbynatureandarenotintended 20 tomimicfutureprojectionsorrealisticfuturetrajectories,butratheraimatexploringthesensitivityoftheArabianSeaOMZ tomonsoonwindintensitychangesandimprovingourunderstandingofthekeymechanismsthatcontroltheOMZresponse anditstimescales.Formodelevaluationweusethelast10yearsofthecontrolrun. 2.3 Modelevaluation Weuseavailablesatelliteandin-situobservationstoassessthemodelabilitytoreproduceobservedphysicalandbiogeochem- 25 ical properties in the Arabian Sea domain. To this end, we evaluate the model in terms of surface currents and eddy kinetic energy (EKE), sea surface height (SSH) anomalies, sea surface temperature (SST) and surface chlorophyll-a concentrations. Furthermore,weexaminethedistributionsoftemperature,salinity,oxygenandnitrateintheupperoceaninthemodelandin theWorldOceanAtlas(2013)dataset. The model simulates successfully the surface eddy kinetic energy (EKE) as it reproduces quite accurately the spatial dis- 30 tributionoftheobservedsurfaceeddyfield(Fig.1).Inparticular,theobservedeast-westgradientinEKEiscapturedbythe model.However,themodeltendstoslightlyunderestimatethemagnitudeoftheeddyactivityintheeasternandnortheastern Arabian Sea. This might be due to the resolution of the model that does not permit yet the representation of the full eddy spectruminthisregion(Cheltonetal.,1998;Lachkaretal.,2016).Themodelalsocapturesthemainpatternsoftheobserved surfacecirculationbothinsummerandwinterseasons(AppendixA:Supplementaryfigures,Fig.A1).Inparticular,themodel 5 BiogeosciencesDiscuss.,doi:10.5194/bg-2017-146,2017 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:2May2017 (cid:13)c Author(s)2017.CC-BY3.0License. Model Data (Aviso) Data (drifter) Figure1.Surfaceeddykineticenergy.Surfaceeddykineticenergy(incm2s−2)assimulatedinthemodel(top)andfromdatabasedon Avisosatellitealtimeter(middle)andsurfacedrifterclimatologyofLumpkinandJohnson(2013)(bottom). 6 BiogeosciencesDiscuss.,doi:10.5194/bg-2017-146,2017 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:2May2017 (cid:13)c Author(s)2017.CC-BY3.0License. Winter Model Winter Data (JFM) (JFM) Summer Model Summer Data (JFM) (JFM) Figure2.Surfacedistributionofchlorophyll-a.Surfacechlorophyll-aconcentrations(inmgm−3)assimulatedinROMS(left)andfrom SeaWiFS(right)duringwinter(top)andsummer(bottom)months.TheSeaWiFSclimatologyiscomputedovertheperiodfrom1997to 2009. reproducestheNortheastMonsoonCurrentandtheSouthEquatorialCountercurrentinwinterandtheenergeticGreatWhirl andSouthernGyreinsummer(SchottandMcCreary,2001).Furthermore,thestrengthandtheseasonalreversaloftheSomali Current are also correctly reproduced in the model. Finally, the model reproduces the observed seasonal sea surface height (SSH) anomalies in both winter and summer seasons (Appendix A: Supplementary figures, Fig. A2). In particular, both the 5 spatialdistributionandthemagnitudeofcoastalSSHgradientsareaccuratelycaptured. Themodelcapturesthemainpatternsoftheobservedseasurfacetemperature(SST)fromAVHRRsatellitedatainwinterand summerseasons(AppendixA:Supplementaryfigures,Fig.A3).Inparticular,themodelreproducestheeast-westandnorth- southtemperaturegradientsacrossthemodeldomain,aswellasthestrongsurfacegradientsbetweentheArabianSeaandits marginal seas (i.e., the Gulf and the Red Sea). Furthermore, the model also captures the cold SST tongue that characterizes 10 summerupwellingoffthecoastsofOmanandSomalia. However,anexaminationofthenorth-southverticaldistributionoftemperaturerevealsthatthemodel:(i)tendstounderes- timatethesubsurfacewatertemperatureinthenorthernArabianSeaparticularlyinwinterand(ii)slightlyoverestimatesthe mixedlayerdepthinbothseasons(AppendixA:Supplementaryfigures,Fig.A4).Similarmismatchwithobservationschar- 7 BiogeosciencesDiscuss.,doi:10.5194/bg-2017-146,2017 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:2May2017 (cid:13)c Author(s)2017.CC-BY3.0License. Model Data z=200m z=200m Model Data m) h (m) pth ( ept De D o o longitude=62 E longitude=62 E Figure3.Horizontalandverticaldistributionsofoxygen.Distributionofannualmeanoxygen(inmmolm−3)(top)at200mand(bottom) intheupper1000malong62◦EassimulatedinROMS(left)andfromWorldOceanAtlas(2009)dataset. acterizes the simulated salinity fields (Fig. A3 and Fig. A4). Although the model generally reproduces the observed surface distributionofsalinity,itunderestimatesthedeeppenetrationofsaltysurfacewatersinthenorthernregionoftheArabianSea. Thishigh-salinitywaterischaracteristicoftheGulfwateranditsunderestimationinourmodelindicatesthatthemodelmay underestimatethesubductionoftheGulfwaterintotheArabianSea.Thismightbeduetomodellimitationssuchasthelack 5 ofadequateverticalandhorizontalresolutionsaswellasduetopotentialinconsistenciesinatmosphericforcingdataoverthe Gulfregion. ThemodelsuccessfullysimulatesthehighchlorophyllconcentrationsinthenorthernandwesternArabianassociatedwith thewinterandsummerblooms,respectively(Fig.2).Themodelalsoreproducesthehighchlorophyllconcentrationsthatare observedofftheIndianwestcoastinbothseasons.However,themodelsubstantiallyoverestimatestheobservedchlorophyll 10 concentrations off the Somali coast south of 4◦N in both seasons. This is likely due to our nitrogen based NPZD model 8 BiogeosciencesDiscuss.,doi:10.5194/bg-2017-146,2017 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:2May2017 (cid:13)c Author(s)2017.CC-BY3.0License. that does not account for potential limitation of productivity by silicic acid and iron in this region as documented by Koné etal.(2009).Besidesthismodeldeficiency,thelarge-scaledistributionofchlorophyllisfairlywellrepresentedinmostofthe ArabianSeadespiteatendencytounderestimatechlorophyllintheopenocean.Thismighthavetodowiththemodel’slackof smallphytoplanktonfunctionalgroupsthataremoreadaptedtooligotrophicconditions.Thesimulatedsurfacedistributionof 5 nitrateisconsistentwithobservationsfromtheWorldOceanAtlasdatasetinbothseasons(AppendixA:Supplementaryfigures, Fig.A5).Inparticular,thehighsurfaceconcentrationsassociatedwiththesummerupwellinginthewesternArabianSeaandthe winterconvectioninthenorthernArabianSeaarecapturedbythemodel.Finally,thesimulatedoxygendistributionsatdepth comparegenerallywellwithobservations(Fig.3).Inparticular,thelocation,thesizeandthedepthoftheArabianSeaoxygen minimum zone (OMZ) (defined here by O < 60 mmolm 3) are correctly reproduced. However, the model overestimates 2 − 10 the intensity of the OMZ in the northern Arabian Sea and off the Indian west coast. This might be driven by the model underestimatededdyactivitythatmayleadtounderestimatedOMZventilationasshownbyLachkaretal.(2016).Thismight also partly result from the misrepresentation and likely underestimation of the injection of the Gulf waters into the northern ArabianSeaatintermediatedepths. A more quantitative evaluation of model skill is performed using in-situ observations from the World Ocean Database 15 (2013)thatwebinnedintoa0.5◦ monthlyclimatology.Nospatialinterpolationismadeandthemodelandobservationsare comparedattheobservationpoints.TheresultsofthisevaluationaresummarizedgraphicallyusingTaylordiagrams(Taylor, 2001) quantifying the similarity between the observations and model in terms of their correlation, the amplitude of their standard deviations and their centered root-mean-square (RMS) difference (Fig. 4). Our statistical analysis shows that the simulated and observed SSH anomalies have similar standard deviations and correlate strongly with correlation coefficients 20 of 0.77 and 0.83 in winter and summer, respectively (Fig. 4a). Similarly, the quantitative comparison of the simulated and observedSSTclimatologiesshowssimilarstandarddeviationsandsmallRMSerrorsaswellasveryhighcorrelations(r>0.92) in both seasons, confirming the visual comparison conclusions (Fig. 4a). Likewise, the simulated and observed chlorophyll distributionsshowrelativelylowRMSerrorsinbothseasonswithdecentcorrelationsrangingfrom0.69insummerto0.74in winter(Fig.4a).DespitetheunderestimationofthepenetrationofthewarmandsaltysurfacewatersinthenorthernArabian 25 Seaatdepth,thelargescaledistributionsoftemperatureandsalinityintheupperoceanarecapturedbythemodelasindicated bylowRMSerrorsandveryhighcorrelationswithin-situobservations(r>0.91)forbothtemperatureandsalinity(Fig.4b). Additionally, the model shows an overall high skill in reproducing the observed large-scale distributions of both nitrate and oxygen,withcorrelationswiththeWorldOceanDatabaserangingintheupper200mfrom0.88fornitrateinsummermonths toaround0.93foroxygeninbothseasons(Fig.4b). 30 Insummary,despitesomelocalbiases,themodelgenerallyshowsreasonableskillinreproducingthelarge-scalefeaturesof thecirculationintheArabianSeaaswellastheseasonaldynamicsofphytoplanktonbloomsintheregion.Moreimportantly, itreproducesfairlywellthelocationandstructureoftheArabianSeaoxygenminimumzone.Thediscussionofthepotential impactofthemodellimitationsonourresultswillbeaddressedindetailinthediscussionsection. 9 BiogeosciencesDiscuss.,doi:10.5194/bg-2017-146,2017 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:2May2017 (cid:13)c Author(s)2017.CC-BY3.0License. Taylor Diagrams (a) sea surface (b) upper ocean Winter (JFM) Summer (JJAS) Figure4.Taylordiagramdisplayingstatisticalcomparisonofmodeledandobservedfields.Taylor(2001)diagramofsimulated(a)sea surfacetemperature(datapointslabeled“1”),seasurfaceheightanomalies(datapointslabeled“2”)andsurfacechlorophyll-a(datapoints labeled “3”) in winter (blue) and summer (red) months and (b) temperature (data points labeled “1”), salinity (data points labeled “2”), oxygen(datapointslabeled“3”)andnitrate(datapointslabeled“4”)intheupper1000mandinthetop200minwinter(blue)andsummer (red)months.ThereferencepointoftheTaylordiagramcorrespondsto(a)SeaWiFSobservationsforchlorophyll,AVHRRdataforsurface temperatureandAVISOclimatologyforseasurfaceheightanomaliesand(b)WorldOceanDatabase2013forallfourvariables.Theradius (distance to the origin point) represents the modeled standard deviation relative to the standard deviation of the observations. The angle betweenthemodelpointandtheX-axisindicatesthecorrelationcoefficientbetweenthemodelandtheobservations.Finally,thedistance fromthereferencepointtoagivenmodeledfieldrepresentsthatfield’scenteredrootmeansquare(RMS)withrespecttoobservations. 3 Results To explore the sensitivity of the Arabian Sea ecosystem to changes in the intensity of monsoon winds, we consider various scenarios of idealized wind perturbations. A first set of scenarios consists in increasing (resp. decreasing) the wind stress over the whole domain and throughout the year by 20% and 50%, respectively. In a second set of experiments, we increase 5 the wind stress by 50% in summer (resp. winter) and decrease it by 50% in winter (resp. summer). This is to account for perturbationscenarioswheresummerandwintermonsoonwindsevolveinoppositedirectionsassuggestedbymultiplepaleo records(e.g.KlöckerandHenrich,2006)showingintensificationofsummermonsoontobeconcomitantwiththeweakeningof wintermonsoonandviceversa.Thiswillalsoallowustodisentangletheimpactsofthechangesineachmonsoonseasonand determinetheirrespectivecontributionstotheoverallresponse.Thewindperturbationsareappliedinstantlyandmaintained 10 over 50 years for each scenario (abrupt perturbation). The impact of perturbations entailing gradual changes in the wind intensitywillbeaddressedlaterinsection4. 10

Description:
Zone in response to increase in Indian monsoon wind intensity. Zouhair is driven by increased oxygen biological consumption, whereas its surface
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.