ebook img

Intelligent Systems II: Complete Approximation by Neural Network Operators PDF

712 Pages·2016·6.54 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Intelligent Systems II: Complete Approximation by Neural Network Operators

Studies in Computational Intelligence 608 George A. Anastassiou Intelligent Systems II: Complete Approximation by Neural Network Operators Studies in Computational Intelligence Volume 608 Series editor Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland e-mail: [email protected] About this Series The series “Studies in Computational Intelligence” (SCI) publishes new develop- mentsandadvancesinthevariousareasofcomputationalintelligence—quicklyand with a high quality. The intent is to cover the theory, applications, and design methods of computational intelligence, as embedded in the fields of engineering, computer science, physics and life sciences, as well as the methodologies behind them. The series contains monographs, lecture notes and edited volumes in com- putational intelligence spanning the areas of neural networks, connectionist sys- tems, genetic algorithms, evolutionary computation, artificial intelligence, cellular automata, self-organizing systems, soft computing, fuzzy systems, and hybrid intelligent systems. Of particular value to both the contributors and the readership are the short publication timeframe and the worldwide distribution, which enable both wide and rapid dissemination of research output. More information about this series at http://www.springer.com/series/7092 George A. Anastassiou Intelligent Systems II: Complete Approximation by Neural Network Operators 123 George A.Anastassiou Department ofMathematical Sciences University of Memphis Memphis,TN USA ISSN 1860-949X ISSN 1860-9503 (electronic) Studies in Computational Intelligence ISBN978-3-319-20504-5 ISBN978-3-319-20505-2 (eBook) DOI 10.1007/978-3-319-20505-2 LibraryofCongressControlNumber:2015942479 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia (www.springer.com) To my wife Koula and my daughters Angela and Peggy Preface This monograph is the continuation and completion of the author’s earlier 2011 monograph, “Intelligent Systems: Approximation by Artificial Neural Networks”, Springer, Intelligent Systems Reference Library, Volume 19. In this monograph we present the complete recent work of the last four years oftheauthorinapproximationbyneuralnetworks.Itisthenaturaloutgrowthofhis relatedpublications.Chaptersareself-containedandcanbereadindependentlyand several advanced courses can be taught out of this book. An extensive list of references is given per chapter. ThetopicscoveredarefromAtoZofthisresearcharea,allstudiedforthefirst time by the author. We list these topics: Rate of convergence of basic neural network operators to the unit-univariate case. Rate of convergence of basic multivariate neural network operators to the unit. Fractional neural network approximation. Fractional approximation by Cardaliaguet-Euvrard and squashing neural net- work operators. Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators. Voronovskaya type asymptotic expansions for multivariate quasi-interpolation neural network operators. Fractionalapproximationbynormalizedbellandsquashingtypeneuralnetwork operators. Fractional Voronovskaya type asymptotic expansions for bell and squashing type neural network operators. Multivariate Voronovskayatype asymptotic expansionsfor normalizedbell and squashing type neural network operators. Multivariatefuzzy-randomnormalizedneuralnetworkapproximationoperators. Fuzzy fractional approximations by fuzzy normalized bell and squashing type neural network operators. Fuzzy fractional neural network approximation by fuzzy quasi-interpolation operators. vii viii Preface Higher order multivariate fuzzy approximation by basic neural network operators. High degree multivariate fuzzy approximation by quasi-interpolation neural network operators. Multivariate fuzzy-random quasi-interpolation neural network approximation operators. Approximation by Kantorovich and quadrature type quasi-interpolation neural network operators. Univariate error function-based neural network approximation. Multivariate error function-based neural network approximations. Voronovskaya type asymptotic expansions for error function-based quasi-interpolation neural network operators. Fuzzy fractional error function-based neural network approximation. Highordermultivariatefuzzyapproximationbyneuralnetworkoperatorsbased on the error function. Multivariate fuzzy-random error function-based neural network approximation. Approximation by perturbed neural network operators. Approximation by multivariate perturbed neural network operators. Voronovskaya type asymptotic expansions for perturbed neural network operators. Approximation by fuzzy perturbed neural network operators. Multivariate fuzzy perturbed neural network operators approximation. Multivariate fuzzy-random perturbed neural network approximation. The book’s results are expected to find applications in many areas of applied mathematics,computerscienceandengineering.Assuchthismonographissuitable forresearchers,graduatestudents,andseminarsoftheabovesubjects,alsotobein all science and engineering libraries. The preparation of book took place during 2014–2015 in Memphis, Tennessee, USA. I would like to thank Prof. Alina Alb Lupas of University of Oradea, Romania, for checking and reading the manuscript. Memphis, USA George A. Anastassiou March 2015 Contents 1 Rate of Convergence of Basic Neural Network Operators to the Unit-Univariate Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Convergence with Rates of the Normalized Bell Type Neural Network Operators. . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 The “Normalized Squashing Type Operators” and Their Convergence to the Unit with Rates . . . . . . . . . . . . 8 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Rate of Convergence of Basic Multivariate Neural Network Operators to the Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Convergence with Rates of Multivariate Neural Network Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 The Multivariate “Normalized Squashing Type Operators” and Their Convergence to the Unit with Rates . . . . . . . . . . . 19 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 Fractional Neural Network Operators Approximation . . . . . . . . 23 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4 Fractional Approximation Using Cardaliaguet-Euvrard and Squashing Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 59 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 ix x Contents 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.3.1 Fractional Convergence with Rates of the Cardaliaguet-Euvrard Neural Network Operators . . . . . . . . . . . . . . . . . . . . . . . . 64 4.3.2 The “Squashing Operators” and Their Fractional Convergence to the Unit with Rates . . . . . . . . . . . . 77 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5 Fractional Voronovskaya Type Asymptotic Expansions for Quasi-interpolation Neural Networks. . . . . . . . . . . . . . . . . . 89 5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6 Voronovskaya Type Asymptotic Expansions for Multivariate Quasi-interpolation Neural Networks. . . . . . . . . . . . . . . . . . . . . 103 6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7 Fractional Approximation by Normalized Bell and Squashing Type Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.3.1 Fractional Convergence with Rates of the Normalized Bell Type Neural Network Operators . . . . . . . . . . . . . . . . . . . . . . . . 124 7.3.2 The “Normalized Squashing Type Operators” and Their Fractional Convergence to the Unit with Rates. . . . . . . . . . . . . . . . . . . . . . 134 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 8 Fractional Voronovskaya Type Asymptotic Expansions for Bell and Squashing Type Neural Networks. . . . . . . . . . . . . . 143 8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 8.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 9 Multivariate Voronovskaya Type Asymptotic Expansions for Normalized Bell and Squashing Type Neural Networks. . . . . 153 9.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 9.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Description:
This monograph is the continuation and completion of the monograph, “Intelligent Systems: Approximation by Artificial Neural Networks” written by the same author and published 2011 by Springer.The book you hold in hand presents the complete recent and original work of the author in approximation
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.