AI N N T D INTELLIGENT FAULT DIAGNOSIS E AL AND ACCOMMODATION CONTROL CL CI G O Control systems include many components, such as transducers, sensors, E M N actuators and mechanical parts. These components are required to be operated under some specific conditions. However, due to prolonged MT operations or harsh operating environment, the properties of these O F devices may degrade to an unacceptable level, causing more regular fault DA U occurrences. It is therefore necessary to diagnose faults and provide the A fault-accommodation control which compensates for the fault of the TL T component by substituting a configuration of redundant elements so I O that the system continues to operate satisfactorily. D N I In Intelligent Fault Diagnosis and Accommodation Control, we present A C the results of several years of work in the area of fault diagnosis and G O fault-accommodation control. It aims at information estimate methods N N AUTOMATION AND CONTROL ENGINEERING when faults occur. The book uses the model built from the plant or O T process, to detect and isolate failures, in contrast to traditional hardware S R or statistical technologies dealing with failures. It presents model- I OS based learning and design technologies for fault detection, isolation L and identification as well as fault-tolerant control. These models are INTELLIGENT FAULT also used to analyse the fault detectability and isolability conditions and discuss the stability of the closed-loop system. It is intended to DIAGNOSIS AND report new technologies in the area of fault diagnosis, covering fault analysis and control strategies of design for various applications. The book addresses four main schemes: modelling of actuator or sensor H ACCOMMODATION u faults; fault detection and isolation; fault identification, and fault a n reconfiguration (accommodation) control. It also covers application g issues in the monitoring control of actuators, providing several • CONTROL T interesting case studies for more application-oriented readers. a n • E r • L Sunan Huang • Kok Kiong Tan e e Poi Voon Er • Tong Heng Lee COMPUTER SCIENCE & ENGINEERING ISBN 978-0-367-20879-0 9 780367 208790 CRC Press titles are available as eBook editions in a range of digital formats Intelligent Fault Diagnosis and Accommodation Control Automation and Control Engineering Series Editors - Frank L. Lewis, Shuzhi Sam Ge, and Stjepan Bogdan Synchronization and Control of Multiagent Systems Dong Sun System Modeling and Control with Resource-Oriented Petri Nets MengChu Zhou, Naiqi Wu Deterministic Learning Theory for Identification, Recognition, and Control Cong Wang and David J. Hill Optimal and Robust Scheduling for Networked Control Systems Stefano Longo, Tingli Su, Guido Herrmann, and Phil Barber Electric and Plug-in Hybrid Vehicle Networks Optimization and Control Emanuele Crisostomi, Robert Shorten, Sonja Stüdli, and Fabian Wirth Adaptive and Fault-Tolerant Control of Underactuated Nonlinear Systems Jiangshuai Huang, Yong-Duan Song Discrete-Time Recurrent Neural Control Analysis and Application Edgar N. Sánchez Control of Nonlinear Systems via PI, PD and PID Stability and Performance Yong-Duan Song Multi-Agent Systems Platoon Control and Non-Fragile Quantized Consensus Xiang-Gui Guo, Jian-Liang Wang, Fang Liao, Rodney Swee Huat Teo Classical Feedback Control with Nonlinear Multi-Loop Systems With MATLAB® and Simulink®, Third Edition Boris J. Lurie, Paul Enright Motion Control of Functionally Related Systems Tarik Uzunović and Asif Sabanović Intelligent Fault Diagnosis and Accommodation Control Sunan Huang, Kok Kiong Tan, Poi Voon Er, Tong Heng Lee For more information about this series, please visit: https://www.crcpress.com/Automation-and-Control-Engineering/book- series/CRCAUTCONENG Intelligent Fault Diagnosis and Accommodation Control Sunan Huang Kok Kiong Tan Poi Voon Er Tong Heng Lee Firsteditionpublished2020 byCRCPress 6000BrokenSoundParkwayNW,Suite300,BocaRaton,FL33487-2742 andbyCRCPress 2ParkSquare,MiltonPark,Abingdon,Oxon,OX144RN (cid:13)c 2020Taylor&FrancisGroup,LLC CRCPressisanimprintofTaylor&FrancisGroup,LLC Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyrightholdersofallmaterialreproducedinthispublicationandapologizetocopyright holders if permission to publish in this form has not been obtained. If any copyright materialhasnotbeenacknowledgedpleasewriteandletusknowsowemayrectifyinany futurereprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission fromthepublishers. For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on [email protected] Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. ISBN:978-0-367-20879-0(hbk) ISBN:978-0-429-26388-0(ebk) TypesetinCMR byNovaTechsetPrivateLimited,Bengaluru&Chennai,India Contents Preface ix Acknowledgments xi Authors xiii 1 Introduction 1 2 Fault Types and Modeling 7 2.1 Problem backgrounds . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Fault types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Fault modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Model-Based Fault Detection 19 3.1 Model-based approaches to fault detection . . . . . . . . . . 19 3.1.1 Parameter estimation approach . . . . . . . . . . . . . 20 3.1.2 Observer-based approach . . . . . . . . . . . . . . . . 22 3.1.2.1 Fault detection against actuator faults . . . . 23 3.1.2.2 Detectability issue . . . . . . . . . . . . . . . 25 3.1.2.3 Extension of fault detection to the more general MIMO case . . . . . . . . . . . . . . 28 3.1.2.4 Fault detection against both actuator and sensor faults . . . . . . . . . . . . . . . . . . 28 3.1.2.5 Detectability analysis . . . . . . . . . . . . . 31 3.1.2.6 Simulation example . . . . . . . . . . . . . . 33 3.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4 Model-Based Fault Isolation 37 4.1 Model-based approaches to fault isolation . . . . . . . . . . . 37 4.1.1 Directional residual scheme . . . . . . . . . . . . . . . 37 4.1.2 Dedicated observer scheme . . . . . . . . . . . . . . . 39 4.1.3 Generalized observer scheme . . . . . . . . . . . . . . 42 4.1.3.1 Thresholds of fault isolation . . . . . . . . . 45 4.1.3.2 Fault isolability analysis . . . . . . . . . . . 46 4.2 Relationship between fault detection and fault isolation . . . 48 4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 v vi Contents 5 Model-Based Fault Identification 51 5.1 Neural network-based fault identification . . . . . . . . . . . 51 5.1.1 Actuator fault identification with full-state measurement . . . . . . . . . . . . . . . . . . . . . . . 52 5.1.2 Actuator fault identification with partial-state measurements . . . . . . . . . . . . . . . . . . . . . . . 54 5.1.3 Sensor and actuator fault identification with partial- state measurements . . . . . . . . . . . . . . . . . . . 67 5.1.4 Simulation example . . . . . . . . . . . . . . . . . . . 72 5.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6 Model-Based Fault Accommodation Control 77 6.1 Fault accommodation problem . . . . . . . . . . . . . . . . . 78 6.2 Accommodation control of full state feedback systems . . . . 78 6.2.1 Fault detection of full state feedback systems . . . . . 79 6.2.2 Model-based accommodation control of full state feedback systems . . . . . . . . . . . . . . . . . . . . . 81 6.2.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . 90 6.3 Accommodation control of output feedback systems . . . . . 91 6.3.1 Fault detection of output feedback systems . . . . . . 94 6.3.2 Fault isolation of output feedback systems . . . . . . . 95 6.3.3 Fault identification of output feedback systems . . . . 97 6.3.4 Model-based accommodation control of output feedback systems . . . . . . . . . . . . . . . . . . . . . 98 6.3.4.1 Control design without fault occurrence . . 98 6.3.4.2 Control design after fault detection . . . . . 101 6.3.4.3 Simulation . . . . . . . . . . . . . . . . . . . 102 6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7 Model-Based Fault Accommodation Control of Robotic Systems 107 7.1 Problem statements . . . . . . . . . . . . . . . . . . . . . . . 108 7.2 Fault diagnosis scheme . . . . . . . . . . . . . . . . . . . . . 110 7.2.1 Fault detection . . . . . . . . . . . . . . . . . . . . . . 110 7.2.2 Fault isolation . . . . . . . . . . . . . . . . . . . . . . 111 7.3 Fault accommodation scheme . . . . . . . . . . . . . . . . . . 113 7.3.1 Normal controller before fault detection . . . . . . . . 114 7.3.2 Accommodation control of system failures (T >t T ) 115 1 0 ≥ 7.3.3 Accommodation control after fault isolation (t T ) . 119 1 ≥ 7.4 Simulation example . . . . . . . . . . . . . . . . . . . . . . . 122 7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 8 Fault Diagnosis and Fault Accommodation Control for Multi-Agent Systems 131 8.1 Consensus problem . . . . . . . . . . . . . . . . . . . . . . . 131 Contents vii 8.2 Graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 8.3 Model-based fault diagnosis of MASs . . . . . . . . . . . . . 133 8.4 Model-based passive fault accommodation control of MASs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8.5 Model-based active fault accommodation control of MASs . . 141 8.5.1 Control design before fault occurrence . . . . . . . . . 141 8.5.2 Control design after fault occurrence . . . . . . . . . . 141 8.6 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 8.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 9 Case Studies 149 9.1 Case Study 1: Fault simulator based on hardware-in-the-loop technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 9.1.1 Induction motor model . . . . . . . . . . . . . . . . . 152 9.1.2 Fault cases of an induction motor . . . . . . . . . . . . 153 9.1.3 Design of hardware-in-the-loop simulator . . . . . . . 155 9.1.4 Experimental results . . . . . . . . . . . . . . . . . . . 157 9.1.5 Some comments . . . . . . . . . . . . . . . . . . . . . 159 9.2 Case Study 2: GPS spoofing detection based on unmanned aerial vehicle model . . . . . . . . . . . . . . . . . . . . . . . 162 9.2.1 Related work . . . . . . . . . . . . . . . . . . . . . . . 163 9.2.2 Overview of the proposed control strategy . . . . . . . 164 9.2.3 UAV model . . . . . . . . . . . . . . . . . . . . . . . . 164 9.2.4 GPS spoofing . . . . . . . . . . . . . . . . . . . . . . . 167 9.2.5 GPS spoofing detection scheme . . . . . . . . . . . . . 175 9.2.6 Simulation study . . . . . . . . . . . . . . . . . . . . . 176 9.2.7 Some comments . . . . . . . . . . . . . . . . . . . . . 177 9.3 Case Study 3: Failure detection of an electrical machine . . . 179 9.3.1 Model of induction motor . . . . . . . . . . . . . . . . 180 9.3.2 Intelligent fault monitoring scheme . . . . . . . . . . . 182 9.3.3 Intelligent fault isolation scheme . . . . . . . . . . . . 184 9.3.4 Simulation test . . . . . . . . . . . . . . . . . . . . . . 188 9.3.5 Some comments . . . . . . . . . . . . . . . . . . . . . 190 9.4 Case Study 4: Fault-tolerance control of a linear drive . . . . 193 9.4.1 Linear drive system and control objective . . . . . . . 196 9.4.2 Softcomputing background . . . . . . . . . . . . . . . 197 9.4.3 Softcomputing based fault-tolerant control of linear drives . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 9.4.3.1 Normal controller for healthy system . . . . 198 9.4.3.2 On-line monitoring. . . . . . . . . . . . . . . 200 9.4.3.3 Fault identification. . . . . . . . . . . . . . . 201 9.4.3.4 Fault-tolerant control . . . . . . . . . . . . . 202 9.4.4 Experimental results . . . . . . . . . . . . . . . . . . . 204 9.4.5 Some comments . . . . . . . . . . . . . . . . . . . . . 209 viii Contents 9.5 Case Study 5: Approach towards sensor placement, selection and fusion for real-time condition monitoring of precision machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 9.5.1 Proposed framework for condition monitoring . . . . . 216 9.5.1.1 Problem formulation. . . . . . . . . . . . . . 217 9.5.1.2 Preparation and calibration . . . . . . . . . . 217 9.5.1.3 Framework . . . . . . . . . . . . . . . . . . . 220 9.5.1.4 Scalability . . . . . . . . . . . . . . . . . . . 224 9.5.1.5 Low frequency monitor . . . . . . . . . . . . 224 9.5.2 Case study: results and discussion . . . . . . . . . . . 224 9.5.2.1 Data collection and calibration . . . . . . . . 226 9.5.2.2 Real-time condition monitoring. . . . . . . . 236 9.5.3 Some comments . . . . . . . . . . . . . . . . . . . . . 241 Bibliography 243 Index 259 Preface Industrial systems have many components, such as electrical devices, sensors, power amplifiers, actuators, and some mechanical parts. Due to long time operation, the properties of some of these components may be degraded to a dangerous level which may lead to a fault occurrence. Therefore, increasing demands on the reliability and safety of systems require a controller that should have a fault monitoring component which always checks on-line if a faultoccurs.Afterafaultisdetected,afaultisolationschemeshouldbeusedto findthefaultlocationandtype.Furthermore,whenweknowafaulttype,this information can be incorporated into the controller to compensate the effect ofthefaultinthesystems.Thus,faultdiagnosisandfault-tolerantcontrolare importantissuesinallkindsofadvancedengineeringsystems.Duringthepast two decades, considerable research efforts have been made to find systematic approachestofaultdiagnosisandfault-tolerantcontrolindynamicalsystems. It has been shown that the use of adequate process models can allow early faultdiagnosisandaccommodationcontrolwithnormalmeasurablevariables. Thisbookisaresultofseveralyearsofresearchintherealizationofmodel- based fault diagnosis and accommodation control. The primary intent of this bookseeks toreportnew technologies inthe areaof fault diagnosisand fault- tolerant control, which will ultimately be applied in industries. It covers fault analysisandstrategiesofdesignforvariousfault-tolerantcontrolapplications. This book consists of nine chapters treating different topics. The content is suitable for graduate students and engineers in precision engineering. In what follows, the contents of the book will be briefly reviewed. Chapter 1 introduces the fault concept first. Subsequently, fault diagnosis methods are presented. Several methods are grouped briefly. After that, the fault-tolerant control methods are discussed and they are grouped as two classes: passive and active controls. Finally, several application areas of fault diagnosis and fault-tolerant control are presented. In Chapter 2, the backgrounds of fault occurrence are first discussed. Next, fault types are grouped as several classes, including fault occurrence in actuators, sensors and plant components. After that, a time-dependent fault time profile is introduced. Finally, two fault modeling approaches are presented, including mechanism modeling and black-box modeling. In Chapter 3, the basic concept of model-based fault detection is first discussed.Threefaultdetectionapproachesarepresented:theobserver-based approach,theparityspaceapproach,andtheparameterestimationapproach. ix