Intelligent Agents, AI & Interactive Entertainment (CS7032) Lecturer: S Luz School of Computer Science and Statistics Trinity College Dublin [email protected] December 11, 2014 Contents 1 Course Overview 5 2 Agents: definition and formal architectures 11 3 Practical: Creating a simple robocode agent 21 3.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Robocode: Getting started . . . . . . . . . . . . . . . . . . . . . 21 3.3 Robot creation in (some) detail . . . . . . . . . . . . . . . . . . . 22 3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4.1 The environment . . . . . . . . . . . . . . . . . . . . . . . 23 3.4.2 Create your own robot . . . . . . . . . . . . . . . . . . . . 23 3.4.3 Describe the task environment and robot . . . . . . . . . 23 3.4.4 PROLOG Robots (optional) . . . . . . . . . . . . . . . . 24 4 Utility functions and Concrete architectures: deductive agents 25 5 Reactive agents & Simulation 33 6 Practical: Multiagent Simulations in Java 45 6.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.2 Setting up the environment . . . . . . . . . . . . . . . . . . . . . 45 6.3 Running two demos . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.4 Simulating simple economic ecosystems . . . . . . . . . . . . . . 47 6.4.1 Brief description of the sscape simulation . . . . . . . . . 47 6.4.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7 Swarm intelligence: Ant Colony Optimisation 49 8 Practical: ACO simulation for TSP in Repast 59 8.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8.2 Some code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4 8.3.1 Delivering the assignment . . . . . . . . . . . . . . . . . . 60 9 Learning Agents & Games: Introduction 61 10 Practical: Survey of game AI competitions 73 10.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 10.2 What to do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 10.2.1 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . 74 11 Evaluative feedback 77 12 Practical: Evaluating Evaluative Feedback 87 12.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 12.2 Some code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 12.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 13 Learning Markov Decision Processes 89 14 Solving MDPs: basic methods 99 15 Temporal Difference Learning 109 16 Combining Dynamic programming and approximation archi- tectures 117 17 Final Project 123 17.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 17.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 17.3 Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 17.4 Delivering the assignment . . . . . . . . . . . . . . . . . . . . . . 124 17.5 Possible choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 17.5.1 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 17.6 Questions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 1 Course Overview What Artificial Intelligence, Agents & Games: • – AI (+DialogueSystemsand/orNaturalLanguageGeneration,TBD) ∗ – Distributed AI, – Machine learning, specially reinforcement learning A unifying framework: • – “Intelligent” agents An agentisacomputersystemthatis situatedinsome environment andthatiscapableof autonomousactioninitsenvironmentinorder to meet its design objectives. (Wooldridge, 2002) Why Theory: Agents provide a resonably well-defined framework for investi- • gating a number of questions in practical AI – (unlike approaches that attempt to emulate human behaviour or discover universal “laws of thought”) Practice: • – Applications in the area of computer games, – ComputergamesasadropsophilaforAI (borrowingfrom(McCarthy, 1998)) 6 CHAPTER 1. COURSE OVERVIEW Course structure • Main topics: – Agent architectures and platforms – Reasoning (action selection) – Learning • Practicals: – project-basedcourseworkinvolving,forexample,implementationofamulti- agentsystem,amachinelearningandreasoningmodule,anaturallanguage generation system, ... • Knowledge of Java (and perhaps a little Prolog) is desirable. Agent architectures and multi-agent platforms Abstract agent architecture: formal foundations • Abstract architectures instantiated: case studies • – theory, – standards, and – agent development platforms (e.g. Repast) – and libraries (e.g. masona, swarmb) ahttp://cs.gmu.edu/~eclab/projects/mason/ bhttps://savannah.nongnu.org/projects/ Agentsandsimulation: swarm • Reasoning Probabilistic Reasoning: • – theoretical background – knowledge representation and inference – Survey of alternative approaches to reasoning under uncertainty Chapter 1 7 Learning Machine learning: theoretical background • Probabilistic learning: theory and applications • Reinforcement learning • Coursework and Project • Coursework-based assessment: • Weekly labs and mini-assignments (30%) • Longer project, to be delivered in January (70%): – Entering an AI Game competition – Reinforcement Learning for Off-The-Shelf games: use of a game simula- tor/server such as “Unreal Tournament 4” (UT2004) to create an agent that learns. – A Natural Language Generation system to enter the Give Challenge – A project on communicating cooperative agents, – ... Multiagent systems course plan An overview: (Wooldridge, 2002) (Weiss, 1999, prologue): • – What are agents? – What properties characterise them? Examples and issues • Human vs. artificial agents • Agents vs. objects • Agents vs. expert systems • Agents and User Interfaces • 8 CHAPTER 1. COURSE OVERVIEW A taxonomy of agent architectures Formal definition of an agent architecture (Weiss, 1999, chapter 1) and • (Wooldridge, 2002) “Reactive” agents: • – Brooks’ subsumption architecture (Brooks, 1986) – Artificial life – Individual-based simulation “Reasoning” agents: • – Logic-based and BDI architectures – Layered architectures The term “reactive agents” is generally associated in the literature with the work of Brooks and the use of the subsumption architecture in distributed problem-solving. In this course, we will use the term to denote a larger class of agents not necessarily circumscribed to problem-solving. These include do- mainswhereoneisprimarilyinterestedinobserving,orsystematicallystudying patterns emerging from interactions among many agents. Reactive agents in detail Reactive agents in problem solving • Individual-based simulation and modelling and computational modelling • of complex phenomena: – Discussion of different approaches Simulations as multi-agent interactions • Case studies: • – Agent-based modelling of social interaction – Agent-based modelling in biology – Ant-colony optimisation Logic-based agents (Not covered this year.) • Coordination issues • Communication protocols • Reasoning • Agent Communication Languages (ACL): – KQML – FIPA-ACL • Ontology and semantics: – KIF – FIPA-SL Chapter 1 9 “Talking” agents Embodied conversational Agents • Natural Language processing and • generation by machines Some case studies • Learning Learning and agent architectures (Mitchell, 1997) • Learning and uncertainty • Reinforcement learning: • – Foundations – Problem definition: examples, evaluative feedback, formalisation, – Elementary solution methods, temporal-difference learning, – Case studies: various game-playing learners Course organisation and resources Course Web page: • http://www.cs.tcd.ie/~luzs/t/cs7032/ The page will contain: • – Slides and notes – links to suggested reading and software to be used in the course. It will also contain the latest announcements (“course news”), so please • check it regularly Software resources A game simulator (no AI methods incorporated): • – Robocode: http://robocode.sf.net/ Agent-based simulation software: • – MASON:http://http://cs.gmu.edu/~eclab/projects/mason/or – SWARM: http://www.swarm.org/ or 10 CHAPTER 1. COURSE OVERVIEW – REPAST http://repast.sourceforge.net/ TheGiveChallengewebsite: http://www.give-challenge.org/research/ • See also: • – http://www.cs.tcd.ie/~luzs/t/cs7032/sw/ Reading for next week “Partial Formalizations and the Lemmings Game” (McCarthy, 1998). • – available on-line1; – Prepare a short presentation (3 mins; work in groups of 2) for next Tuesday Texts • Useful references: – Agents, probabilistic reasoning (Russell and Norvig, 2003) – Agents, multiagent systems (Wooldridge, 2002) – Reinforcementlearning(BertsekasandTsitsiklis,1996),(SuttonandBarto, 1998) • and also: – (some) probabilistic reasoning, machine learning (Mitchell, 1997) – Artificial Intelligence for Games (Millington, 2006) – Research papers TBA... 1http://www.scss.tcd.ie/~luzs/t/cs7032/bib/McCarthyLemmings.pdf
Description: