ebook img

Intelligent Agents, AI & Interactive Entertainment (CS7032) PDF

130 Pages·2014·2.67 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Intelligent Agents, AI & Interactive Entertainment (CS7032)

Intelligent Agents, AI & Interactive Entertainment (CS7032) Lecturer: S Luz School of Computer Science and Statistics Trinity College Dublin [email protected] December 11, 2014 Contents 1 Course Overview 5 2 Agents: definition and formal architectures 11 3 Practical: Creating a simple robocode agent 21 3.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Robocode: Getting started . . . . . . . . . . . . . . . . . . . . . 21 3.3 Robot creation in (some) detail . . . . . . . . . . . . . . . . . . . 22 3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4.1 The environment . . . . . . . . . . . . . . . . . . . . . . . 23 3.4.2 Create your own robot . . . . . . . . . . . . . . . . . . . . 23 3.4.3 Describe the task environment and robot . . . . . . . . . 23 3.4.4 PROLOG Robots (optional) . . . . . . . . . . . . . . . . 24 4 Utility functions and Concrete architectures: deductive agents 25 5 Reactive agents & Simulation 33 6 Practical: Multiagent Simulations in Java 45 6.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.2 Setting up the environment . . . . . . . . . . . . . . . . . . . . . 45 6.3 Running two demos . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.4 Simulating simple economic ecosystems . . . . . . . . . . . . . . 47 6.4.1 Brief description of the sscape simulation . . . . . . . . . 47 6.4.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7 Swarm intelligence: Ant Colony Optimisation 49 8 Practical: ACO simulation for TSP in Repast 59 8.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8.2 Some code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4 8.3.1 Delivering the assignment . . . . . . . . . . . . . . . . . . 60 9 Learning Agents & Games: Introduction 61 10 Practical: Survey of game AI competitions 73 10.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 10.2 What to do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 10.2.1 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . 74 11 Evaluative feedback 77 12 Practical: Evaluating Evaluative Feedback 87 12.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 12.2 Some code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 12.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 13 Learning Markov Decision Processes 89 14 Solving MDPs: basic methods 99 15 Temporal Difference Learning 109 16 Combining Dynamic programming and approximation archi- tectures 117 17 Final Project 123 17.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 17.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 17.3 Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 17.4 Delivering the assignment . . . . . . . . . . . . . . . . . . . . . . 124 17.5 Possible choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 17.5.1 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 17.6 Questions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 1 Course Overview What Artificial Intelligence, Agents & Games: • – AI (+DialogueSystemsand/orNaturalLanguageGeneration,TBD) ∗ – Distributed AI, – Machine learning, specially reinforcement learning A unifying framework: • – “Intelligent” agents An agentisacomputersystemthatis situatedinsome environment andthatiscapableof autonomousactioninitsenvironmentinorder to meet its design objectives. (Wooldridge, 2002) Why Theory: Agents provide a resonably well-defined framework for investi- • gating a number of questions in practical AI – (unlike approaches that attempt to emulate human behaviour or discover universal “laws of thought”) Practice: • – Applications in the area of computer games, – ComputergamesasadropsophilaforAI (borrowingfrom(McCarthy, 1998)) 6 CHAPTER 1. COURSE OVERVIEW Course structure • Main topics: – Agent architectures and platforms – Reasoning (action selection) – Learning • Practicals: – project-basedcourseworkinvolving,forexample,implementationofamulti- agentsystem,amachinelearningandreasoningmodule,anaturallanguage generation system, ... • Knowledge of Java (and perhaps a little Prolog) is desirable. Agent architectures and multi-agent platforms Abstract agent architecture: formal foundations • Abstract architectures instantiated: case studies • – theory, – standards, and – agent development platforms (e.g. Repast) – and libraries (e.g. masona, swarmb) ahttp://cs.gmu.edu/~eclab/projects/mason/ bhttps://savannah.nongnu.org/projects/ Agentsandsimulation: swarm • Reasoning Probabilistic Reasoning: • – theoretical background – knowledge representation and inference – Survey of alternative approaches to reasoning under uncertainty Chapter 1 7 Learning Machine learning: theoretical background • Probabilistic learning: theory and applications • Reinforcement learning • Coursework and Project • Coursework-based assessment: • Weekly labs and mini-assignments (30%) • Longer project, to be delivered in January (70%): – Entering an AI Game competition – Reinforcement Learning for Off-The-Shelf games: use of a game simula- tor/server such as “Unreal Tournament 4” (UT2004) to create an agent that learns. – A Natural Language Generation system to enter the Give Challenge – A project on communicating cooperative agents, – ... Multiagent systems course plan An overview: (Wooldridge, 2002) (Weiss, 1999, prologue): • – What are agents? – What properties characterise them? Examples and issues • Human vs. artificial agents • Agents vs. objects • Agents vs. expert systems • Agents and User Interfaces • 8 CHAPTER 1. COURSE OVERVIEW A taxonomy of agent architectures Formal definition of an agent architecture (Weiss, 1999, chapter 1) and • (Wooldridge, 2002) “Reactive” agents: • – Brooks’ subsumption architecture (Brooks, 1986) – Artificial life – Individual-based simulation “Reasoning” agents: • – Logic-based and BDI architectures – Layered architectures The term “reactive agents” is generally associated in the literature with the work of Brooks and the use of the subsumption architecture in distributed problem-solving. In this course, we will use the term to denote a larger class of agents not necessarily circumscribed to problem-solving. These include do- mainswhereoneisprimarilyinterestedinobserving,orsystematicallystudying patterns emerging from interactions among many agents. Reactive agents in detail Reactive agents in problem solving • Individual-based simulation and modelling and computational modelling • of complex phenomena: – Discussion of different approaches Simulations as multi-agent interactions • Case studies: • – Agent-based modelling of social interaction – Agent-based modelling in biology – Ant-colony optimisation Logic-based agents (Not covered this year.) • Coordination issues • Communication protocols • Reasoning • Agent Communication Languages (ACL): – KQML – FIPA-ACL • Ontology and semantics: – KIF – FIPA-SL Chapter 1 9 “Talking” agents Embodied conversational Agents • Natural Language processing and • generation by machines Some case studies • Learning Learning and agent architectures (Mitchell, 1997) • Learning and uncertainty • Reinforcement learning: • – Foundations – Problem definition: examples, evaluative feedback, formalisation, – Elementary solution methods, temporal-difference learning, – Case studies: various game-playing learners Course organisation and resources Course Web page: • http://www.cs.tcd.ie/~luzs/t/cs7032/ The page will contain: • – Slides and notes – links to suggested reading and software to be used in the course. It will also contain the latest announcements (“course news”), so please • check it regularly Software resources A game simulator (no AI methods incorporated): • – Robocode: http://robocode.sf.net/ Agent-based simulation software: • – MASON:http://http://cs.gmu.edu/~eclab/projects/mason/or – SWARM: http://www.swarm.org/ or 10 CHAPTER 1. COURSE OVERVIEW – REPAST http://repast.sourceforge.net/ TheGiveChallengewebsite: http://www.give-challenge.org/research/ • See also: • – http://www.cs.tcd.ie/~luzs/t/cs7032/sw/ Reading for next week “Partial Formalizations and the Lemmings Game” (McCarthy, 1998). • – available on-line1; – Prepare a short presentation (3 mins; work in groups of 2) for next Tuesday Texts • Useful references: – Agents, probabilistic reasoning (Russell and Norvig, 2003) – Agents, multiagent systems (Wooldridge, 2002) – Reinforcementlearning(BertsekasandTsitsiklis,1996),(SuttonandBarto, 1998) • and also: – (some) probabilistic reasoning, machine learning (Mitchell, 1997) – Artificial Intelligence for Games (Millington, 2006) – Research papers TBA... 1http://www.scss.tcd.ie/~luzs/t/cs7032/bib/McCarthyLemmings.pdf

Description:
Nov 19, 2013 16.7 Implement an AI controller (or controllers) for the Ms Pac-Man vs Ghosts League . Computer games as a dropsophila for AI (borrowing from John Mc-. Carthy ) at http://aima.cs.berkeley.edu/newchap07.pdf.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.