ebook img

Integrative Genomics-Based Discovery of Novel Regulators of the Innate Antiviral Response PDF

35 Pages·2015·1.05 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Integrative Genomics-Based Discovery of Novel Regulators of the Innate Antiviral Response

RESEARCHARTICLE Integrative Genomics-Based Discovery of Novel Regulators of the Innate Antiviral Response RobinvanderLee1*,QianFeng2☯¤a,MartijnA.Langereis2☯,RobterHorst1, RadekSzklarczyk1¤b,MihaiG.Netea3,ArnoC.Andeweg4,FrankJ.M.vanKuppeveld2, MartijnA.Huynen1* 1 CentreforMolecularandBiomolecularInformatics,RadboudInstituteforMolecularLifeSciences, Radbouduniversitymedicalcenter,Nijmegen,TheNetherlands,2 VirologyDivision,Departmentof InfectiousDiseasesandImmunology,FacultyofVeterinaryMedicine,UniversityofUtrecht,Utrecht,The Netherlands,3 DepartmentofInternalMedicineandRadboudCenterforInfectiousDiseases,Radboud universitymedicalcenter,Nijmegen,TheNetherlands,4 DepartmentofViroscience,ErasmusMedical Center,Rotterdam,TheNetherlands ☯Theseauthorscontributedequallytothiswork. ¤a Currentaddress:InstituteofBiochemistry,ETHZurich,Zurich,Switzerland ¤b Currentaddress:DepartmentofClinicalGenetics,UnitClinicalGenomics,MaastrichtUniversityMedical OPENACCESS Centre,Maastricht,TheNetherlands *[email protected](RvdL);[email protected](MAH) Citation:vanderLeeR,FengQ,LangereisMA,ter HorstR,SzklarczykR,NeteaMG,etal.(2015) IntegrativeGenomics-BasedDiscoveryofNovel Abstract RegulatorsoftheInnateAntiviralResponse.PLoS ComputBiol11(10):e1004553.doi:10.1371/journal. pcbi.1004553 TheRIG-I-likereceptor(RLR)pathwayisessentialfordetectingcytosolicviralRNAtotrig- Editor:BjoernPeters,LaJollaInstituteforAllergy gertheproductionoftypeIinterferons(IFNα/β)thatinitiateaninnateantiviralresponse. andImmunology,UNITEDSTATES Throughsystematicassessmentofawidevarietyofgenomicsdata,wediscovered10 Received:September3,2015 molecularsignaturesofknownRLRpathwaycomponentsthatcollectivelypredictnovel members.WedemonstratethatRLRpathwaygenes,amongothers,tendtoevolverapidly, Accepted:September12,2015 interactwithviralproteins,containalimitedsetofproteindomains,areregulatedbyspecific Published:October20,2015 transcriptionfactors,andformatightlyconnectedinteractionnetwork.UsingaBayesian Copyright:©2015vanderLeeetal.Thisisanopen approachtointegratethesesignatures,weproposelikelynovelRLRregulators.RNAi accessarticledistributedunderthetermsofthe knockdownexperimentsrevealedahighpredictionaccuracy,identifying94genesamong CreativeCommonsAttributionLicense,whichpermits unrestricteduse,distribution,andreproductioninany 187candidatestested(~50%)thataffectedviralRNA-inducedproductionofIFNβ.Thedis- medium,providedtheoriginalauthorandsourceare coveredantiviralregulatorsmayparticipateinawiderangeofprocessesthathighlightthe credited. complexityofantiviraldefense(e.g.MAP3K11,CDK11B,PSMA3,TRIM14,HSPA9B, DataAvailabilityStatement:Allrelevantdata CDC37,NUP98,G3BP1),andincludeuncharacterizedfactors(DDX17,C6orf58,C16orf57, supportingtheresultsofthispaperareavailablein PKN2,SNW1).OurvalidatedRLRpathwaylist(http://rlr.cmbi.umcn.nl/),obtainedusinga theSupplementalTablesandathttp://rlr.cmbi.umcn. combinationofintegrativegenomicsandexperiments,isanewresourceforinnateantiviral nl/. immunityresearch. Funding:RvdL,QF,ACAandMAHweresupported bytheVirgoconsortium,fundedbytheDutch government(FES0908),andbytheNetherlands GenomicsInitiative(050-060-452).QFandMALwere fundedbypersonalgrantsfromtheNetherlands OrganizationforScientificResearch(NWO- 017.006.043andNWO-863.13.008,respectively).RS issupportedbytheMetakidsFoundation.MGNwas PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004553 October20,2015 1/35 IntegrativeGenomicsoftheRLRPathway supportedbyanERCConsolidatorGrant(#310372). FJMvKwassupportedbyaECHOgrantfromthe AuthorSummary NetherlandsOrganizationforScientificResearch Virusesposeacontinuousthreattohumanhealth,eventhoughourimmunesystemshave (NWO-CW-700.59.007).Thefundershadnorolein studydesign,datacollectionandanalysis,decisionto evolvedtoneutralizeinvadingviruses.Aspartoftheinnateimmunesystem,theRIG-I- publish,orpreparationofthemanuscript. likereceptors(RLRs)areessentialfordetectingvirusesduringinfection.Recognitionof viralRNAbytheRLRstriggersanantiviralresponsethatinhibitsviralreplication,protects CompetingInterests:Theauthorshavedeclared thatnocompetinginterestsexist. uninfectedcells,andattractsspecializedimmunecells.Betterunderstandingoftheinnate antiviralresponsemayrevealnoveltargetsforantiviraltherapeuticsandvaccinedevelop- ment.However,thatrequiresknowledgeaboutwhichgenesandproteinsareinvolved.In thepresentstudy,wesystematicallyinvestigatedthewealthofavailablegenomicsdata (includinggeneexpression,proteininteractions,transcriptionregulationandgenome sequences)anddiscoverednolessthan10distinctivepropertiesofgenesknowntobepart oftheantiviralRLRpathway.Bycombiningthesepropertiesinastatisticalframework,we predicted187novelRLRpathwaycomponents.Ourvalidationexperimentsshowedthat ~50%ofthepredictedcandidategeneshaveasignificanteffectonantiviralsignaling. Theseresults,togetherwithindependentcomputationalandliterature-basedconfirma- tion,demonstratedthevalidityofourcombinedbioinformaticsandexperimental approach.Ourstudyexpandsthecollectionofknownantiviralgenes,openingupnewave- nuesforresearchintoinnateantiviralimmunity. Introduction Virusesareamajorcauseofhumandisease,ashighlightedbythepandemicsofinfluenza viruses,HIV–1,andthecurrentoutbreakoftheEbolavirus.Patternrecognitionreceptors (PRR)areamongthefirstmoleculesthatdetectvirusesduringinfection.TheRIG-I-likerecep- tors(RLRs,oneclassofPRRs)arepartoftheRLRpathway,whichformsacrucialinnateanti- viraldefensesystem[1,2].TwoRLRs,RIG-IandMDA5,resideinthecytosolwherethey recognizenon-self5’-triphosphateRNAmoleculeswithshortdouble-strandedregionsand longdouble-strandedRNAs(dsRNA),respectively[3].Activationofthereceptorstriggersa complexsignalingnetwork,keystepsofwhicharetheactivationofthemitochondrialadapter MAVS,subsequentrecruitmentoftheTBK1andIKKcomplexes,phosphorylation/activation ofIRF3andNFκB,andtranslocationofthesetranscriptionfactorstothenucleus.Thesesteps ultimatelyleadtotheproductionoftypeIinterferons(IFNα/β)andproinflammatorycyto- kines,whicharecrucialforestablishinganantiviralstateininfectedaswellasneighboring cells,andalsomodulatetheadaptiveimmuneresponse[4] TheimportanceoftheRLRsystemisfurtherdemonstratedbytheobservationthatviruses ofalltypesemploystrategiestointerferewithitsactivation,oftenatmultiplesteps[5,6].Better understandingofviralinteractionwiththepathwayhasresultedinnoveltargetsforthedevel- opmentofantiviraltherapeuticsandattenuatedlivevaccines,forexampleviruseslackingfunc- tionalRLRantagonists[7].Furthermore,mutationsinRIG-I,MDA5,MAVSandotherRLR pathwaycomponentsareassociatednotonlywithstrongsusceptibilitytoinfections,butalso IFN-associatedautoimmunedisorders[8–10]. Previousstudiesintovirus-hostinteractionsandtheinnateantiviralpathwayshaveused genomicsapproaches,oftengeneratinglargedatasetsdescribingphysicalorgeneticinterac- tions[11–14].Otherpublicationshavetakenacomparativeapproachbasedonmodelorgan- isms[15]orusedover-expressionscreeningsystems[16,17].Together,thesestudieshave identifiednumerousgeneswithantiviralactivity,includingmembersoftheRLRpathway. However,itremainsimportanttosystematicallyassessthequalityofindividualdatasetsas PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004553 October20,2015 2/35 IntegrativeGenomicsoftheRLRPathway suchscreensreportdistinctsetsofgenes,oftenwithlimitedoverlapbetweenthem.Combining themanyavailablegenomicsdatasetsinastatisticalframeworkpotentiallyallowsforamore systematicdiscoveryandcategorizationofgenesinvolvedintheRLRpathway.Indeed,Bayes- ianintegrationoflarge-scaledatathatincludesweighingindividualdatasetsfortheirpredictive potentialhasbeensuccessfulinothercellularsystems,forexampleidentifyingnovelprotein interactions[18],mitochondrialdiseasegenes[19],andsmallRNApathwaygenes[20]. Inthisworkwesystematicallyexploitthewealthofavailable(gen)omicsdata,including transcriptomicsandproteomicsdata,genomesequences,proteindomaininformation,and functionalgenomics,todiscoverdescriptivemolecularsignaturesoftheRLRpathwaysystem. Bayesianintegrationofthesedata,togetherwithcomprehensivecomputationalandexperi- mentalvalidation,confidentlyidentifiesnovelgenesinvolvedinantiviralRIG-Isignaling. Results TheRIG-I-likereceptor(RLR)pathwayisahighlyinterconnectedanddiversemolecularsys- tem.Weinvestigatedwhetheravailablegenomicsdatacontainsufficientsignaltoaccurately describeRLRpathwaycomponents,andwhethersuchdatacouldbeusedtoprioritizenovel genesforapossibleroleinRLRsignaling. TenmolecularsignaturesofRLRpathwaycomponentsingenomics data TodiscovermolecularsignaturesthatdistinguishRLRpathwaycomponentsfromothergenes, weexploredawidevarietyofgenome-scaledatadescribingdifferentaspectsofthevirology andbiologyofthepathway.Someofthesedataweuseddirectly,whileotherdatawereusedas thebasisforfurthercalculations(Table1).Wequantitativelyassessedthepredictivepowerof eachdatasetusingaliterature-curatedstandardof49knownRLRpathwaycomponentsfrom InnateDB[21](‘RLRgenes’,S1Fig)andasetof5,818‘non-RLRgenes’thatareunlikelytobe partofthepathway(i.e.geneswithknownfunctionsnotdirectlyrelatedtotheinnateantiviral response,suchasdevelopment,housekeepingandneurologicalprocesses,seeMethods).Below wedescribe10signaturesforpredictingnovelRLRpathwaycomponents.Thefirstfivesigna- turesarebasedontherelationshipofRLRgeneswithviruses,whereasthesecondsetoffivesig- naturesarebasedonpropertiesoftheRLRpathwayitself. Virus-basedsignatures Positiveselectioninprimates. Virusesevaderecognitionorinterferewiththeimmune systemsoftheirhoststoachievesuccessfulinfection[7].Thisinvolvesinteractionsbetween viralandhostproteins,theinterfacesofwhichareunderconstantpressuretochange[22].We collecteddataonrecurrentpositiveselectionintheprimatelineage,basedonmaximumlikeli- hoodanalysisofsequencealignments[23].RLRpathwaycomponents,e.g.themitochondrial signalingadapterMAVS[24]andtranscriptionfactorIRF7[25],areenrichedforrapidly evolvinggenes(9%of49RLRgenes)comparedtogenesthatareunlikelytobepartofthepath- way(5%of5,818non-RLRgenes,1.7-foldenrichment,non-significantP=0.38,one-tailed Fisher’sexacttest,Fig1A,Tables1andS1). Protein-proteininteractions(PPI)withviruses. Thenextsignatureisbasedonthephys- icalinteractionsbetweenhostRLRpathwaycomponentsandviruses.Viralproteinsoften interactwithmanyhostproteinsduringtheirinfectioncycle,includingthoseinvolvedinanti- viraldefense[26,27].Extractionofvirus-humanPPIsfromspecializeddatabases[28]revealed ~2,600humanproteinsthatarereportedtointeractwithatleastoneviralprotein(virus-inter- actinghumanproteins,S2Fig).Thesevirus-interactinghumanproteinsincludethemajority PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004553 October20,2015 3/35 IntegrativeGenomicsoftheRLRPathway Table1. TenmolecularsignaturesfromgenomicsdatausedforpredictingnovelRLRpathwaycomponents. Group Molecular Datasetdescription Typea References Numberof Likelihoodratio signature genesb scoreb,c Virus-based Positiveselectionin Rapidlyevolvinggenesintheprimateslineage, d [23] 926 1.7 primates detectedusingmaximumlikelihoodanalysisof nucleotidealignments PPIwithviruses Virus-interactinghumanproteinsextractedfromPPI c [28] 2,587 4.2 databases ViralmiRNAtarget Likelihoodscoresoftargetingofhumantranscriptsby c [30] 6,761 1.3 viralmiRNAs,basedonpredictedtargetsites Differential Genesshowingdifferentialexpressioninlung c see 1,680 3.5 expressionupon epithelialcellsinfectedwithfourrespiratoryviruses Methods infection Antiviralhostfactor Metaanalysisofgeneswithantiviralactivityfrom c seeS3 173 2.1 sevenRNAiscreensstudyingavarietyofviruses Table Pathway- Co-expressionwith Weightedco-expressionwithknownRLRgenes c [32] 4,149 2.4 based RLRpathway across>450humangeneexpressionstudies RLRpathwayprotein Proteinscontainingoneofthe25domainsthatare c [66] 711 8.9 domain significantlyenrichedinknownRLRproteins InnateantiviralTF GeneswithIRF,AP–1,NFκB,orSTATTFbinding c [33] 4,508 2.3 bindingmotifs motifsintheirpromoters,basedonconservation across29mammals NFκBactivation Hitsfromagenome-widesiRNAscreenofEpstein- d [34] 154 19.8 mediator Barrvirus-inducedNFκBactivation RLRpathwayPPI ProteinsthatinteractwithknownRLRproteins, c [35] 1,750 4.3 calculatedfromPPIdata Integration RLRscore Bayesianintegrationofthe10molecularsignaturestopredictnovelRLRpathwaycomponents aDatauseddirectly(d)orasbasisforfurthercalculation(c) bCombinationofallbinswithpositivelikelihoodratioscoresperfeature,derivedfromFig1A cRLRgenesversusnon-RLRgenes:P(D |RLRgenes)/P(D |non-RLRgenes),seeMethods. i i Notethat,toavoidcircularity,thepredictiveabilityoftheco-expression,proteindomainandRLRpathwayPPIdatasetswasassessedusingthesetof TLR,CLR,NLR,cytDNAgenesinsteadoftheRLRgenes(seeMethods). SeealsoFig1AandS1Table. doi:10.1371/journal.pcbi.1004553.t001 ofRLRpathwaycomponents(35/49=71%),whiletheyincludeasignificantlysmallerfraction ofnon-RLRgenes(1,000/5,818=17%,4.2-foldenrichment,P=1.4×10−16,one-tailedFisher’s exacttest,Fig1AandTable1).AmongtheRLRgenes,TRAF2(4PPIs),DDX3,MAPK9,and theNFκBsubunitRELA(3PPIseach)havereportedinteractionswiththelargestnumberof distinctvirusspecies. ViralmiRNAtarget. Anothermechanismthatvirusesusetointerferewiththeantiviral activityofhumancellsisdown-regulationofgeneexpressionbymiRNAs[29].Wecollected 128miRNAsencodedbynine,mainlyherpesDNAviruses(S2Table)[30],mostofwhich haveconfirmedphysiologicalrelevance.PredictedtargetsitesofthesemiRNAstothe3’UTRof humantranscriptswerethenusedtocalculateforeachgeneascorerepresentingthelikelihood thatvirusesaffectitsexpression(viralmiRNAtargetingscore).Forexample,ourmethod assignedIKBKE(IKKε)arelativelystrongviralmiRNAtargetingscoreof2.7.Indeed,Kaposi’s sarcoma-associatedherpesvirusmiR-K12-11hasbeenshowntoinhibittranslationofIKKε transcripts,leadingtosuppressionofinterferonsignaling[31].AnalysisoftheviralmiRNA targetingscoresrevealedthatRLRgenestendtohavestrongerscoresthannon-RLRgenes (P=0.03,one-tailedMann-WhitneyUtest).Althoughthestatisticalsignificanceofthistrend isonlymarginal,weincludeditasamolecularsignatureofRLRgenesasitstillprovidesa PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004553 October20,2015 4/35 IntegrativeGenomicsoftheRLRPathway Fig1.BayesianintegrationoftenmolecularsignaturesofRLRpathwaycomponentsfromgenomicsdata.(A)Distributionsofthe49knownRLR pathwaycomponents(RLRgenes,green)and5,818genesunlikelytobepartofthepathway(non-RLRgenes,red)acrossthe10molecularsignaturedata setsweidentifiedaspredictiveoftheRLRsystem(seealsoTable1).Datasetswerebinnedintodiscreteintervalsandfractionsof(non-)RLRgenesaddup toone.ArrowsindicatethebehaviorofRIG-Iacrossthedata.ThetopfivesignaturesdescribetherelationshipofRLRsignalingwithviruses;thebottomfive describepropertiesofthepathwayitself.(B)Boxplotsofthegenome-wideintegratedRLRscore(Bayesianposteriorprobabilityscore).Genesweregrouped intooneoffiveclasses:knownRLRgenes(green,see[A]),componentsofotherPRRsignalingpathways(‘TLR,CLR,NLR,cytDNA’;purple),genes functioninginotheraspectsoftheinnateimmuneresponse(‘innateimmunity’;blue),andnon-RLRgenes(red,see[A]).Theremaininggenesareclassified as‘other’(gray).(C)The50geneswiththehighestRLRscores.RepresentativeRLRandotherinnateantiviralresponsegenesareindicated.Thepiechart showstheoccurrencesofthedifferentgeneclassesinthetop354RLRranks.(D)Receiveroperatingcharacteristic(ROC)curveillustratingtheperformance oftheintegratedRLRscore(solidblackline)andtheindividualmolecularsignatures(blackdots)forpredictingknownRLRversusnon-RLRgenes. Sensitivityandspecificitywerecalculatedatvariousscorethresholds(fortheRLRscore),oratspecificthresholdsthatincludeallbinswithpositivelikelihood ratioscores(fortheindividualdatasets;see(A)).Theasteriskdenotesthesensitivityandspecificitycorrespondingtoafalsediscoveryrate(FDR)of57% (top354genes).Notethat,toavoidcircularity,thepredictiveabilityoftheco-expression,proteindomainandRLRpathwayPPIdatasetsin(A)and(D)was assessedusingthesetofTLR,CLR,NLR,cytDNAgenesinsteadoftheRLRgenes(seeMethods). doi:10.1371/journal.pcbi.1004553.g001 PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004553 October20,2015 5/35 IntegrativeGenomicsoftheRLRPathway moderateenrichmentovernon-RLRgenes(1.3-foldenrichmentamonggeneswiththestron- gestviralmiRNAtargetingscores,Table1),andevenweakfeaturescansubstantiallyimprove thepredictionsfornovelRLRgenes. Differentialexpressionuponinfection. Next,weaskedwhetherRLRpathwaygenesare differentiallyexpresseduponvirusinfection.Toanswerthis,weusedin-housegeneexpression dataofhumanlungepithelialcells(A549)exposedtofourrespiratoryviruses(respiratorysyn- cytialvirus,humanmetapneumovirus,parainfluenzavirus,ormeaslesvirus),forwhichgene expressionwasmeasuredat6,12and24hoursafterinfection(seeMethods).Analysisofthe transcriptomesrevealedthatmanyRLRgenes(31%)underwentsubstantialexpressionchanges (log foldchange>0.5)incellsinfectedwiththerespiratoryviruses,comparedtotheunin- 2 fectedcells.Thiscomparestoamuchsmallerfractionofnon-RLRgenes(9%,3.5-foldenrich- ment,P=1.3×10−5,one-tailedFisher’sexacttest,Fig1AandTable1).Thedifferentially expressedRLRgenesincludewell-knowninterferon-stimulatedgenes(ISGs)likeISG15, DDX58(RIG-I),IRF7,IFIH1(MDA5),andTRIM25,whicharethetopfiveRLRgenesmost inducedbytherespiratoryvirusesstudied(log foldchange>1.5comparedtouninfectedcells, 2 S3Fig).Thus,eventhoughweexpectmanyRLRgenestoalreadybeexpressedbeforeviral infection,theirexpressionlevelsarereinforcedininfectedcells. Antiviralhostfactor. RNAiscreeningpotentiallyallowstheidentificationofhostfactors thatlimitvirusreplication,suchasgenesinvolvedintheinnateantiviralresponse,although moststudiesfocusonhitswiththeoppositeeffect(i.e.factorsrequiredbyvirusesforreplica- tion)[11].Weperformedametaanalysisofhitsfromsevenlarge-scaleRNAistudiesinhuman cells,identifying173geneswithantiviralactivityagainstHIV–1,influenza,hepatitisC(HCV), WestNile,orenterovirusinfection(S3Table).IncontrasttoourexpectationthatRLRgenes wouldbecommonamongtheseantiviralhostfactors,thisdatasetisoneoftheweakerpredic- torsofRLRgenes:the173antiviralhostfactorscontainonlyasinglegene(IRF3)thatbelongs tothesetof49knownRLRgenes(~2%)comparedto56of5,818non-RLRgenes(~1%, 2.1-foldenrichment,non-significantP=0.38,one-tailedFisher’sexacttest,Fig1Aand Table1). Pathway-basedsignatures Co-expressionwithRLRpathway. ToaidinfindingnovelRLRgenes,wescreened>450 humanexpressionstudiesforgenesthatco-expresswithknownRLRpathwaycomponents usingatwo-stepapproach[32].First,weweighedindividualexpressiondatasetsfortheir propensitytopredictnewRLRgenes:experimentsinwhichthewholegroupofknownRLR genesshowhighco-expressionwitheachotherreceivedahigherweightandcontributedmost tothecalculations.Inthesecondstep,wecalculatedtheco-expressionofallgeneswiththe RLRgenes.Asexpected,RLRgenesdisplaysignificantlyhigherco-expressionscoreswitheach otherthanwiththerestofthegenomeorwithnon-RLRgenes(P(cid:1)10−27forbothcompari- sons,one-tailedMann-WhitneyUtest,S4Fig).However,RLRgenesalsoscorehigher thancomponentsofotherPRRsignalingpathways(Toll-likereceptor[TLR],C-typelectin receptor[CLR],NOD-likereceptor[NLR],andcytosolicdsDNAsensing[cytDNA]pathways; P=4.5×10−13,one-tailedMann-WhitneyUtest).Cross-validationbyleave-one-outanalysis confirmsthattheweightedco-expressionapproachretrievesRLRgenesmorereadilythan otherPRRpathwaygenes,orgenesinvolvedinotheraspectsofinnateimmunity(S4DFig), demonstratingspecificityforidentifyingRLRgenesintheco-expressiondata. RLRpathwayproteindomain. AnalysisofRLRpathwayproteinsequencesrevealedthe presenceof40uniquedomains,25ofwhichweresignificantlyover-representedcomparedto thefullhumanproteome(Benjamini-Hochberg-correctedFisher’sexactP<0.01,S4Table). PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004553 October20,2015 6/35 IntegrativeGenomicsoftheRLRPathway Theseincludeproteinkinasedomains(12-foldenrichment,P=1.1×10−8;presentinIKKα/β/ ε,MAPkinases,TBK1),theTBK1/IKKibindingdomain(TANK,TBK1BP1,AZI2),caspase anddeathdomains(CASP8/10,FADD),IRFdomains(IRF3/7),andtheDExD/HboxRNA helicasedomain(15-foldenrichment,P=2.7×10−3;RIG-I,MDA5,LGP2).Wethenassessed thedomainorganizationsofallhumanproteinsanddeterminedasetof711proteinscontain- ingoneormoreofthedomainsenrichedinRLRcomponents.Theseproteinsarepredictivefor RLRcomponentswithanenrichmentscoreof8.9(Table1). Innateantiviraltranscriptionfactor(TF)bindingmotifs. SignalingthroughtheRLR pathwaytriggerstheactivationofkeytranscriptionfactors(TFs)likeIRF3,IRF7,AP–1and NFκB.ActivationoftheseTFsleadstotheproductionoftypeIinterferonsandproinflamma- torycytokinesthateventuallyactivateSTAT1andSTAT2[2].STAT1andSTAT2inturnstim- ulatetranscriptionofinterferon-stimulatedgenes(ISGs),whichincludemanyRLRpathway components.TofurtherexplorethetranscriptionregulationofRLRpathwaycomponents,we analyzedtheirgenepromotersforthepresenceofTFbindingmotifsthatarehighlyconserved acrossthegenomesof29placentalmammals,suchasprimates,rodentsandmanyfarmani- mals[33].ConservedIRFandNFκBmotifsarehighlyabundantinthepromotersofRLR genes(Fisher’sexactP=3.3×10−3andP=2.0×10−4,respectively;S5Table),suggestingthe pathwayispartlyself-regulatingashasbeenobservedforindividualcomponents.Interestingly, aconservedIRFmotifwasdetectednotonlyinthepromotersofIRF7itselfandinallthree RIG-I-likereceptorfamilymembers(DDX58[RIG-I],IFIH1[MDA5],DHX58[LGP2]),but alsoinTRIM25,ISG15,andCYLD;threefactorscontrollingRIG-Isignalingactivationbyregu- latingthelevelofK63polyubiquitination.InordertopredictnovelRLRcomponents,we searchedforgenescontainingconservedIRFbindingmotifs(severalmotifvariants,collectively recognizedbyIRF1-9),STATbindingmotifs(severalmotifvariants,collectivelyrecognizedby STAT1-6),AP–1bindingmotifs,orNFκBbindingmotifs(Fig1A).Wefound3,558genes acrossthehumangenomecontainingoneofthesemotifsintheirpromoters.Thislargenum- berpartiallystemsfromsimilaritiesintheDNAbindingpreferencesofTFsthatbelongtothe samefamily,butdoesnotmeanthatallidentifiedgenesareregulatedbytheRLRpathway.For example,STATmotifsnotonlyoccurinthepromotersofISGs,butalsoingenesinvolvedin cellularproliferation,differentiationandapoptosis.Nevertheless,genescontainingoneofthe fourconservedTFmotifsalreadyshowagoodpredictivevalueforRLRpathwaycomponents (enrichmentscoreof2.2,S1Table).Geneswithmorethanonemotifareevenmorelikelytobe RLRgenes:789genescontaintwomotifs(2.6-foldenrichment)and161genescontainthreeor allfourmotifs(2.4-foldenrichment). NFκBactivationmediator. HostfactorsthatregulateNFκBactivationoftenalsoaffect theRLRpathway.Indeed,the154hitsthatwerepickedupinagenome-widesiRNAscreenof Epstein-Barrvirus-inducedNFκBactivation[34]includeamuchlargerfractionofknownRLR genes(6/49=12%)thannon-RLRgenes(36/5,818<1%,20-foldenrichment,P=1.0×10−6, one-tailedFisher’sexacttest,Fig1AandTable1).Thus,these154NFκBactivationmediators arelikelytocontainnovelRLRpathwaycomponentsaswell. RLRpathwayPPI. Finally,tofindnovelRLRgenesweassessedthehumanproteininterac- tionnetworkconnectingtheRLRpathway.PPIdatabases[35]report3,504interactionsbetween 1,750uniqueproteinsand47ofthe49RLRcomponents,theonlyexceptionsbeingDAKand NLRX1.Ofthe47RLRproteinswithreportedPPIs,41areinvolvedinatotalof147interactions withinthepathway(i.e.betweentwopathwaymembers).ThisnetworkofRLRcomponentshas significantlymoreconnectionswitheachotherthandorandomnetworksofthesamesizeand interactiondegreedistribution(physicalinteractionenrichmentscore=3.6,P<1.0×10−6[36]). UsingthePPIdata,weobtainedforeachhumanproteinthenumberofinteractingRLRpathway components(Fig1A).Wefoundatotalof1,397proteinsreportedtointeractwithoneortwo PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004553 October20,2015 7/35 IntegrativeGenomicsoftheRLRPathway RLRproteins.TheseproteinsarepredictiveforRLRcomponentswithanenrichmentscoreof1.8 (S1Table).Afurther221proteinsinteractwiththreeoffourRLRproteins(6.3-foldenrichment) and132proteinsinteractwithfiveormoreRLRproteins(15.8-foldenrichment).TBK1(18inter- actions),TRAF2andMAVS(both16)topthelist,supportingtheirrolesascentralplayersinthe RLRsystem[12].Thus,anincreasingnumberofinteractionswithRLRproteinsindicatesa higherlikelihoodthataproteinispartoftheRLRpathway. Bayesianintegrationofmolecularsignaturesprovidesgenome-wide probabilitiesforRLRpathwaycomponents TheRLRpathwaycomponentspublishedthusfarprobablyconstituteonlypartofthetotal proteinswithafunctioninthispathway.Toprioritizenovelhigh-confidencegenesforarolein theRLRpathway,weintegratedthe10identifiedmolecularsignaturesofRLRgenesinanaive Bayesianclassifier[18,19](seeMethods).Thisapproachweighsdatasetsbasedontheirpre- dictivevalue(i.e.theirabilitytoseparateknownpositivesandnegatives;Fig1A,Tables1and S1)sothat‘better’datacontributemoretothepredictions.Eachhumangenereceivedaposte- riorprobabilityscore(‘RLRscore’)reflectingthelikelihoodthatthegeneispartoftheRLR pathwaybasedonitsbehaviorinthecollectedgenomicsdata.Ascoreofzeroindicatesequal probabilitiesofagenebeinganRLRversusanon-RLRgene.S6Tablepresentsthegenome- widerankingofRLRscores(alsoavailableathttp://rlr.cmbi.umcn.nl/). Asexpected,knownRLRpathwaycomponentshavethehighestRLRscores(Figs1Band S5).Two-thirds(32/49)oftheserankwithinthefirst150genes.Thetoprankinggenesare IRF7,RIG-I,IKKε,subunitsofNFκB,TRADD,TRAF2,MDA5,andIKKγ(NEMO)(Fig1C). Otherexamplesofwell-describedRLRpathwaycomponentsincludeIRF3(rank51),ISG15 (52),MAVS(102),andLGP2(114).Genesthatareunlikelytoplayaroleinthepathway(the setofnon-RLRgenes)generallyhaveverylowRLRscores,althoughsomeofthesereceived highscoresaswell(Fig1B).Thisisnotunexpected,aseventhoughthislargesetofgeneswas selectedfromfunctionannotationsgenerallyunrelatedtotheinnateantiviralresponse,this doesnotprecludethatindividualgenes(also)functionintheRLRpathway. TogaininsightintowhatkindofgenesarepresentamongtheRLRpredictions,weexamined theirfunctionsbypathwayandgeneontologyenrichmentanalyses.Thetop354geneswiththe highestRLRscores(correspondingtohigh-confidencepredictions,seebelow)havestronglinks withotherpathwaysoftheinnateimmuneresponse,suchasTLR,NLR,interferon,andcytokine signaling(S6andS7Figs).Antiviraldefensefunctionsarealsoamongthemostfrequentandsig- nificanttermsassociatedwiththehigh-scoringgenes(S8FigandS7Table).Otherimportant biologicalprocessesincludevariousapoptosis-relatedfunctions,cancerandcellcyclepathways, andregulationofmetabolicprocessesandproteinlocalization.Furthermore,thetoppredictions includeawiderangeofproteinfamilies,notablyproteasomesubunits,ubiquitin(-like)conjugat- ingenzymes,andgenesinvolvedinphosphatidylinositolsignaling(whichwasrecentlyshownto affectthetypeIIFNresponse[14]).Finally,22%ofthetoppredictionsareinducedincells treatedwithinterferons(i.e.theyareinterferon-stimulatedgenes,ISGs)and~18%arepartofthe commonhosttranscriptionresponsetopathogens(Table2).Together,theseobservationsindi- catethatourframeworksuccessfullypredictsgeneswithalikelyroleintheinnateantiviral responseandsuggestsothercellularsystemsandfunctionsrequiredforthisresponse. Performanceestimatesandindependentdataestablishthereliabilityof theRLRscore WefurthercomputationallyassessedthereliabilityoftheintegratedRLRscorebyestimating thesensitivity,specificityandfalsediscoveryrate(FDR)ofthepredictionsusingthepositive PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004553 October20,2015 8/35 IntegrativeGenomicsoftheRLRPathway Table2. Overlapbetweeninnate(antiviral)responsedatasetsandthetop354RLRpredictionsexcludingknownRLRgenes. Dataset References Numberofgenes Fraction(number)ofdatasetgenes One-tailedFisher’s indataset intop354predictions exactP Interferon-stimulatedgenes(ISGs) [16] 354 22.0%(78) 1.2×10−67 ISGswithvalidatedantiviralactivity [16,91] 45 42.2%(19) 4.9×10−23 Commonhosttranscriptionresponseto [92] 496 17.7%(88) 5.2×10−68 pathogens InteractorsofthetypeIIFNproteinnetworkduring [12] 241 11.2%(27) 1.2×10−15 patternrecognition(HCIP)a HCIPwithconfirmedeffectsonIFNβexpression [12] 22 22.7%(5) 1.9×10−5 andantiviralactivity Tripartitemotif(TRIM)familygenes [17] 71 12.7%(9) 1.6×10−6 TRIMsthatenhanceRIG-I-inducedactivationof [17] 34 14.7%(5) 1.7×10−4 IFNβ,NFκBandISREpromoters Humaninteractorsofinnateimmune-modulating [37] 569 6.7%(38) 4.7×10−14 viralORFsb GenesexpressedinPBMCsstimulatedwith [38] 89 43.8%(39) 4.7×10−47 Candida(CRG) CRGwithalteredexpressioninCMCpatients [38] 23 65.2%(15) 2.6×10−22 TypeIIFNresponsemediators [14] 226 4.0%(9) 9.5×10−3 aThesePPIswerenotpartoftheRLRinteractionnetworkusedfortheRLRpredictions(i.e.forthe‘RLRpathwayPPI’signature) bTheseinteractionswerenotusedtodeterminethevirus-interactinghumanproteinsusedfortheRLRpredictions(i.e.forthe‘PPIwithviruses’signature) doi:10.1371/journal.pcbi.1004553.t002 (RLRgenes)andnegative(non-RLRgenes)standards.Integrationofthedatasetsachievedbet- tersensitivityandspecificitythananyoftheindividualdatasets(Fig1D),therebyenriching forRLRgenesanddepletingfalsepositives(S5,S9andS10Figs).AtanRLRrankthresholdof 354(RLRscore-1.10),theframeworkcorrectlypredicts78%oftheknownRLRgeneswitha specificityof98.4%(Fig1D).Atthisthreshold,only~57%ofthenovelpredictionsareesti- matedtobefalse(S11Fig,adjustedFDRtomatchtheexpectedtotalnumberofgenesinvolved intheRLRpathway,seeMethods).Thiscomparestoagenome-widefalsediscoveryrate (i.e.whenpredictinggenesrandomly)of~99%.Thus,theintegratedRLRscoreincreasesthe probabilityofcorrectlyidentifyingnovelRLRgenesbyafactorof43comparedtorandom classification. BecauseweusedthesamegenesetsforcalculatingtheRLRscoresandestimatingtheper- formanceoftheresultingpredictions(i.e.withoutsystematiccross-validation),thereexistsa dangerofcircularreasoning.Therefore,wealsocarefullyvalidatedthequalityoftheresults usingvariousindependentandexternaldatasets.First,weexaminedthehighRLRscoresfor genesthathaveaknownfunctionininnateimmunity,butnotintheRLRpathway,andthere- forewerenotpartofourtrainingset.ComponentsofotherPRRsignalingpathways(TLR, CLR,NLR,cytDNA)havelowerscoresthanRLRgenes,butmuchhigherscoresthantherest ofthegenome(Fig1B).Thesameistrueforgenesfunctioninginotheraspectsoftheinnate immuneresponse(Fig1B).Ofthe225novelpredictions(i.e.thosegenesthatarenotpartof thetrainingsets)inthetop354(FDRof57%,seeabove),142(~63%)arepartoftheseinnate immunitygenelists(Fig1C).Thus,themajorityofhigh-scoringgeneswithnoknownlinkto theRLRpathwayinfacthaveafunctioninotherPRRpathwaysorotherpartsofinnateimmu- nity,supportingtherelevanceofourpredictions. Second,wecomparedourpredictionstosixrecentdatasetsthatarerelevanttotheinnate (antiviral)responsebutthatwereinnowaypartoftheRLRscorecalculations.Theoverlap withthe354topgenes,excludingknownRLRgenes,issignificantlylargerthanexpectedby PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004553 October20,2015 9/35 IntegrativeGenomicsoftheRLRPathway chanceforallthesedatasets(Table2).Forexample,thetoppredictionsinclude:(i)19of45 (42%)interferon-stimulatedgeneswithvalidatedantiviralactivityagainste.g.HIV–1,HCV, yellowfever,WestNileorchikungunyavirus[16],(ii)27proteinsfromasetof241(11%)that interactwiththetypeIIFNproteinnetworkduringpatternrecognition,amongwhicharefive confirmedmodulatorsofIFNβexpressionandantiviralactivity[12],(iii)ninetripartitemotif (TRIM)familygenes,fiveofwhichenhanceRIG-I-inducedactivationofIFNβ,NFκBand ISRE(IFN-stimulatedresponseelement)promoters[17],and(iv)38humanproteinsinteract- ingwithinnateimmune-modulatingviralopenreadingframes(viORFs)from30viruses[37]. (v)Furthermore,thetypeIIFNresponsehasrecentlybeenproposedtoplayaroleinantifun- galimmunity[38,39]andthetopRLRpredictionsarestronglyenrichedforgenesexpressedin PBMCsstimulatedwiththefungalpathogenCandidaalbicans:almosthalf(39/89=44%) oftheseoccurinourtoppredictions(P=4.7×10−47,one-tailedFisher’sexacttest,Table2). (vi)Finally,theoverlapbetweenourpredictionsandagenome-widescreenforregulatorsof RIG-I-mediatedIFNβproductionis,atonlynine,marginalbutsignificant(9/226genes=4%, P=9.5×10−3,one-tailedFisher’sexacttest,Table2)[14].Insummary,thesediverseandinde- pendentexperimentaldatasupportthevalidityofourintegratedRLRscoreforpredicting geneswitharoleintheinnateantiviralresponse. RNAivalidationscreensconfirmthehighpredictivevalueofthe integratedRLRscore Tofurtherdeterminethepredictivepowerofourinsilicopredictions,weselected187candi- dateRLRgenesforexperimentalvalidation(S6andS8Tables).Theseinclude127high-confi- dencecandidatesfromthetop354,whichhavenotbeenpreviouslylinkedtotheRLRpathway, supplementedwith60candidatesweselectedfromthetop1000predictions,mainlyonthe basisoflimitedfunctionalcharacterizationingeneral(Fig2A).Importantly,candidateswitha knownroleinRLRsignaling,otherbranchesofPRRpathways,orapoptosiswereexcludedas weweremostinterestedinfindingnovelcomponentsoftheRLRpathway. Fortheselectedcandidatesweperformedamedium-throughputRNAiscreen(RNAiscreen 1)usingHeLacellsstablyexpressinganIFNβpromoter-controlledfireflyluciferasereporter (HeLa-IFNβ-Fluc).ToactivatetheRLRpathwayandinduceFlucreporterexpressionweused aknownsmall5’-ppp-containingRIG-Iligand[40].Thissetupledtospecificactivationof RIG-I,asRIG-IorMAVSsiRNAtransfection,butnotMDA5orscrambledsiRNAs,resulted inlossofreporteractivity(Figs2B,S12andS13).Allnegativecontrols(non-transfected, scrambledandMDA5siRNAs)scoredwithin1.25medianabsolutedeviationsoftheplatenor- malizedIFNβinductionlevels(Z-scorecutoff<-1.25or>1.25,Fig2B).Atthiscutoff,siRNA knockdownof94candidates(50%ofallcandidatestested)affectedRIG-I-mediatedIFNβ induction(Figs2AandS13A–S13DandS8Table).Amongthese,knockdownof59genes decreasedRIG-I-mediatedIFNβinduction(down-hits)and35genesincreasedIFNβinduction (up-hits).ItisimportanttonotethattheexperimentalapproachonlyactivatestheRIG-I branchoftheRLRpathwayandwillnotconfirmpredictedRLRcandidatesthatregulate MDA5activationanddownstreamsignalingtoMAVS.Thus,amongthe93non-confirmed candidates,theremightstillbenovelregulatorsoftheMDA5-mediatedIFNβinductionpath- way,whichshouldbefurtherinvestigated.Altogether,theintegratedRLRscoreisclearlya strongandreliablepredictorfornovelregulatorsoftheRIG-Ipathway. Fromthe94confirmedhits,wepickedthe57tophitswiththelargesteffect(stringentZ- score<-2or>2)forasecondRNAiscreenusingadifferentsetofsiRNAs(RNAiscreen2, Fig2A).InthissecondRNAiscreen,onlyasingleup-hit(7%of15up-hitstested)showedaZ- score>1.25.Besidesthishit,twonegativecontrolwellsalsohadaZ-score>1.25(Figs2B, PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004553 October20,2015 10/35

Description:
Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The. Netherlands, 3 Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud Durmuş Tekir S, Зakır T, Ardiз E, Sayılırbaş AS, Konuk G, Konuk M, et al. PHISTO:
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.