ebook img

Integrative Computational Materials Engineering: Concepts and Applications of a Modular Simulation Platform PDF

332 Pages·5.49 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Integrative Computational Materials Engineering: Concepts and Applications of a Modular Simulation Platform

Editedby Georg J.SchmitzandUlrichPrahl IntegrativeComputational MaterialsEngineering RelatedTitles VazJunior,M.,deSouzaNeto,E.A., Breitkopf,P.,Filomeno,C.R.(Eds.) Munoz-Rojas,P.A.(Eds.) DesignOptimizationin AdvancedComputational Computational Mechanics MaterialsModeling 2010 FromClassicaltoMulti-ScaleTechniques ISBN:978-1-84821-138-4 2011 ISBN:978-3-527-32479-8 Berlioz,A.,Trompette,P. Solid Mechanicsusing Dubois,J.-M.,Belin-Ferre´,E.(Eds.) theFiniteElementMethod ComplexMetallic Alloys 2010 FundamentalsandApplications ISBN:978-1-84821-191-9 2011 ISBN:978-3-527-32523-8 vanSanten,R.A.,Sautet,P.(Eds.) Computational Methodsin Roters,F.,Eisenlohr,P.,Bieler,T.R., Raabe,D. CatalysisandMaterialsScience AnIntroductionforScientists CrystalPlasticityFinite andEngineers ElementMethods 2009 inMaterialsScienceandEngineering ISBN:978-3-527-32032-5 2010 ISBN:978-3-527-32447-7 Edited by Georg J. Schmitz and Ulrich Prahl Integrative Computational Materials Engineering Concepts and Applications of a Modular Simulation Platform TheEditors AllbookspublishedbyWiley-VCHare carefullyproduced.Nevertheless,authors, Dr.rer.nat.Georg J.Schmitz editors,andpublisherdonotwarrantthe RWTHAachenUniversity informationcontainedinthesebooks, Accesse.V. includingthisbook,tobefreeoferrors. Intzestr.5 Readersareadvisedtokeepinmindthat 52072Aachen statements,data,illustrations,procedural Germany detailsorotheritemsmayinadvertentlybe inaccurate. Dr.UlrichPrahl RWTHAachenUniversity LibraryofCongressCardNo.:appliedfor DepartmentofFerrous Metallurgy BritishLibraryCataloguing-in-Publication Intzestr.1 Data 52072Aachen Acataloguerecordforthisbookisavailable Germany fromtheBritishLibrary. Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliothek liststhispublicationintheDeutsche Nationalbibliografie;detailedbibliographic dataareavailableontheInternetat <http://dnb.d-nb.de>. ©2012Wiley-VCHVerlag&Co.KGaA, Boschstr.12,69469Weinheim,Germany Allrightsreserved(includingthoseof translationintootherlanguages).Nopart ofthisbookmaybereproducedinany form–byphotoprinting,microfilm,orany othermeans–nortransmittedortranslated intoamachinelanguagewithoutwritten permissionfromthepublishers.Registered names,trademarks,etc.usedinthisbook, evenwhennotspecificallymarkedassuch, arenottobeconsideredunprotectedbylaw. PrintISBN: 978-3-527-33081-2 ePDFISBN: 978-3-527-64612-8 ePubISBN: 978-3-527-64611-1 mobiISBN: 978-3-527-64610-4 oBookISBN: 978-3-527-64609-8 CoverDesign Adam-Design,Weinheim, Germany Typesetting LaserwordsPrivateLimited, Chennai,India PrintingandBinding betz-druckGmbH, Darmstadt,Germany V Contents ListofContributors XI Preface XV PartI Concepts 1 1 Introduction 3 GeorgJ.SchmitzandUlrichPrahl 1.1 Motivation 3 1.2 WhatIsICME? 4 1.2.1 The‘‘Unaries’’:I,C,M,andE 6 1.2.2 The‘‘Binaries’’ME,IM,IE,IC,CE,andCM 6 1.2.3 The‘‘TernarySystems’’:CME,ICM,IME,ICE 9 1.2.4 The‘‘Quaternary’’System:‘‘ICME’’ 10 1.3 HistoricalDevelopmentofICME 11 1.4 CurrentActivitiesTowardICME 13 1.5 TowardaModularStandardizedPlatformforICME 15 1.6 ScopeofThisBook 17 References 18 2 BasicConceptofthePlatform 21 GeorgJ.SchmitzandUlrichPrahl 2.1 Overview 21 2.2 OpenArchitecture 27 2.3 Modularity 28 2.3.1 IndividualModules 29 2.3.2 BridgingtheScales 30 2.3.3 InterfaceModules/Services 32 2.3.4 DataModules 33 2.4 Standardization 34 2.5 Web-BasedPlatformOperation 35 2.6 BenefitsofthePlatformConcept 36 2.6.1 BenefitsforSoftwareProviders 37 2.6.2 BenefitsforIndustrialUsers 38 VI Contents 2.6.3 BenefitsforAcademia,Education,andKnowledgeManagement 39 2.7 VerificationUsingTestCases 39 3 State-of-the-ArtModels,Software,andFutureImprovements 43 MarkusApelandGeorgJ.Schmitz 3.1 Introduction 43 3.2 OverviewofExistingModelsandSoftware 44 3.3 RequirementsforModelsandSoftwareinanICMEFramework 48 3.3.1 ModelQuality 50 3.3.2 ImprovingNumericalandModelAccuracy 50 3.3.3 SpeedingUpIndividualModelsandDistributedSimulations 52 3.3.4 InformationIntegrity 56 3.4 BenefitsofPlatformOperationsforIndividualModels 56 3.4.1 ImprovedQualityofInitialConditions 56 3.4.2 ImprovedQualityofMaterialsData 57 3.4.3 ConsiderationofLocalEffectiveMaterialsProperties 57 3.5 StrongandWeakCouplingofPlatformModels 58 3.6 Conclusions 59 References 59 4 Standardization 61 StefanBenkeandGeorgJ.Schmitz 4.1 Overview 61 4.2 StandardizationofGeometryandResultData 62 4.2.1 ExtendedFileHeader 64 4.2.2 GeometricAttributes 64 4.2.3 FieldData 65 4.3 MaterialData 65 4.4 ApplicationProgrammingInterface 70 4.4.1 USER MATERIAL TMSubroutine 72 4.4.2 USER MATERIAL HTSubroutine 74 4.4.3 USER EXPANSIONSubroutine 75 4.4.4 USER PHASE CHANGESubroutine 76 4.5 FutureDirectionsofStandardization 78 References 79 5 PredictionofEffectiveProperties 81 GottfriedLaschet,TatyanaKashko,StephanBenke,MehmetO¨te,and KirstenBobzin 5.1 Introduction 81 5.2 HomogenizationofMaterialswithPeriodicMicrostructure 82 5.2.1 StaticEquilibriumofaHeterogeneousMaterial 82 5.2.2 PeriodicityandTwo-ScaleDescription 84 5.2.3 TheAsymptoticHomogenizationMethod 85 5.3 HomogenizationofMaterialswithRandomMicrostructure 88 Contents VII 5.3.1 MorphologyAnalysisandDefinitionoftheRVE 89 5.3.2 InfluenceoftheRVEPositionontheEffectiveElasticProperties 92 5.3.3 StochasticHomogenization 94 5.4 PostprocessingofMacroscaleResults:theLocalizationStep 96 5.5 DedicatedHomogenizationModel:Two-LevelRadialHomogenization ofSemicrystallineThermoplastics 98 5.5.1 MechanicalPropertiesoftheAmorphousandCrystallinePhases 98 5.6 VirtualMaterialTesting 101 5.7 ToolsfortheDeterminationofEffectiveProperties 102 5.7.1 HomogenizationToolHOMATandItsPreprocessor Mesh2Homat 102 5.7.2 ProgramEnvironmentforVirtualTesting 104 5.8 Examples 104 5.8.1 MethodsComparisonBasedonaBenchmark 105 5.8.2 Austenite–FerritePhaseTransformationofaFe–C–MnSteel 106 5.8.3 ApplicationoftheStochasticHomogenization:EffectiveThermal ConductivityofanOpen-CellMetallicFoam 110 5.9 Conclusions 112 References 113 6 DistributedSimulations 117 ThomasBeer,TobiasMeisen,andRudolfReinhard 6.1 Motivation 117 ® 6.2 TheAixViPMaP SimulationPlatformArchitecture 118 6.3 DataIntegration 122 6.4 Web-BasedUserInterfacefortheSimulationPlatform 125 References 128 7 Visualization 131 ThomasBeerandTobiasMeisen 7.1 Motivation 131 7.2 StandardizedPostprocessing 132 7.3 IntegratedVisualization 134 7.4 DataHistoryTracking 139 References 140 PartII Applications 143 8 TestCaseLinePipe 145 PatrickFayek,HendrikQuade,ThomasHenke,GottfriedLaschet,Markus Apel,EduardoSambranoRossiter,MarkusBambach,andUlrichPrahl 8.1 Introduction 145 8.2 Materials 146 8.3 Process 147 8.3.1 OverviewofProcessChain 147 VIII Contents 8.3.2 Reheating 148 8.3.3 HotRolling 148 8.3.4 CoolingandPhaseTransformation 148 8.3.5 U-andO-Forming 149 8.3.6 Welding 150 8.4 Experiments 150 8.4.1 DilatometerExperiments 150 8.4.2 CompressionTeststoDetermineFlowCurvesandDRXKinetics 151 8.4.3 TensileTests 152 8.4.4 WeldingExperiments 152 8.5 ExperimentalProcessChain 153 8.6 SimulationModelsandResults 155 8.6.1 Reheating 155 8.6.2 HotRolling 161 8.6.3 CoolingandPhaseTransformation 164 8.6.4 U-andO-Forming 167 8.6.5 Welding 175 8.7 ConclusionandBenefits 183 References 184 9 TestCaseGearingComponent 187 SergeyKonovalov,ThomasHenke,UlrichJansen,ArioHardjosuwito, WolframLohse,MarkusBambach,andUlrichPrahl 9.1 Introduction 187 9.2 Materials 188 9.3 TheProcessChain 189 9.3.1 Overview 189 9.3.2 HotRollingandForging 190 9.3.3 FPAnnealing 190 9.3.4 Machining 191 9.3.5 Carburizing 191 9.3.6 LaserWelding 192 9.4 ExperimentalProceduresandResults 192 9.4.1 OverviewofPhenomena 192 9.4.2 CharacterizationofDynamicRecrystallizationandGrainGrowth 193 9.4.3 CharacterizationofPhaseTransformations 194 9.4.4 InvestigationoftheParticleEvolutionalongtheProcessChain 195 9.4.5 CharacterizationofWeldingDepth 196 9.5 SimulationChainandResults 197 9.5.1 OverviewofSimulationChain 197 9.5.2 MacroscopicProcessSimulations 201 9.5.3 MicroscopicSimulations 212 9.6 Conclusions 217 References 218 Contents IX 10 TestCase:TechnicalPlasticParts 221 WalterMichaeli,ChristianHopmann,ThomasBaranowski,Gottfried Laschet,BarbaraHeesel,TimArping,KirstenBobzin,TatyanaKashko,and MehmetO¨te 10.1 Introduction 221 10.2 Material 222 10.2.1 Polypropylene 222 10.3 ProcessChain 223 10.4 ModelingofthePhenomenaalongtheProcessChain 224 10.4.1 CrystallizationofSemicrystallineThermoplastics 224 10.4.2 FormationofMolecularOrientations 227 10.4.3 EffectiveMechanicalPropertiesofSemicrystallineThermoplastics 229 10.4.4 MacroscopicMechanicalMaterialsBehavior 231 10.5 ImplementationoftheVirtualProcessChain 236 10.5.1 SigmaSoft 236 10.5.2 SphaeroSim 236 10.5.3 HOMAT 236 10.5.4 AbaqusFEA 237 10.5.5 SimulationChain 237 10.6 ExperimentalMethods 239 10.7 Results 241 10.7.1 MacroscopicProcessSimulation 241 10.7.2 MicrostructureSimulation 242 10.7.3 EffectiveMechanicalProperties 246 10.7.4 MacroscopicPartBehavior 251 10.8 SummaryandConclusion 253 References 255 11 Textile-ReinforcedPistonRod 257 BrittaKuckhoff,JosefKlingele,MarkusLinke,ThomasGries,Kirsten Bobzin,ThomasSchla¨fer,TatyanaKashko,andMehmetO¨te 11.1 Introduction 257 11.2 ExperimentalProcessChain 258 11.2.1 TheBraidingProcess 259 11.2.2 TheInvestmentCastingProcess 261 11.3 SimulationChain 261 11.3.1 Overview 261 11.3.2 SimulationoftheBraidingProcess 262 11.3.3 SimulationoftheBraidingStructure 266 11.3.4 SimulationoftheInfiltrationProcess 267 11.3.5 SimulationoftheSolidificationMicrostructure 268 11.3.6 EffectiveAnisotropicMaterialProperties 271 11.3.7 EffectivePropertiesoftheComponent 276 11.4 Conclusion/Benefits 277 References 278 X Contents 12 TestCaseStainlessSteelBearingHousing 281 StephanFreyberger,StefanBenke,HendrikQuade, andJennyRudnizki 12.1 Introduction 281 12.2 Materials 283 12.2.1 Overview 283 12.2.2 ThermophysicalProperties 283 12.3 Processes 284 12.3.1 OverviewoftheProcessChain 284 12.3.2 TheCastingProcess 284 12.3.3 TheHeatTreatmentProcess 285 12.3.4 TheMachiningProcess 285 12.3.5 TheApplication 286 12.4 Phenomena 286 12.4.1 OverviewofPhenomenatoBeModeled 286 12.4.2 DescriptionoftheIndividualPhenomena 286 12.5 SimulationChain 291 12.5.1 SimulationTools 291 12.5.2 SimulationFlowchart 291 12.6 Results 293 12.6.1 MacroscopicProcessSimulations 293 12.6.2 Microstructures 300 12.7 Conclusions/Benefits 303 References 303 13 FutureICME 305 UlrichPrahlandGeorgJ.Schmitz 13.1 ImperativeSteps 305 13.2 LessonsLearned 308 13.3 FutureDirections 315 13.3.1 EducationandTraining 316 13.3.2 Internationalization,Professionalization,andCommercialization 316 13.3.3 PlatformDevelopment 318 13.4 ClosingRemark 320 References 321 Index 323

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.