ebook img

Integration of environmental aspects in modelling and optimisation of water supply chains PDF

2018·3.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Integration of environmental aspects in modelling and optimisation of water supply chains

ScienceoftheTotalEnvironment636(2018)314–338 ContentslistsavailableatScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Integration of environmental aspects in modelling and optimisation of water supply chains MariyaN.Kolevaa,b,AndrésJ.Calderóna,DiZhanga,CraigA.Styanb,LazarosG.Papageorgioua,* aCentreforProcessSystemsEngineering,Dept.ofChemicalEngineering,UCL,TorringtonPlace,LondonWC1E7JE,UnitedKingdom bSchoolofEnergyandResources,UCLAustralia,220VictoriaSquare,Adelaide,SouthAustralia5000,Australia H I G H L I G H T S G R A P H I C A L A B S T R A C T • The proposed framework encom- passes climatic, governmental and sustainabilityconstraints. • Costandwatersupplyreliabilityare addressed through multi-objective optimisation. • Trade-offbetweencostandreliability isstudiedthroughgametheoryusing Nashequilibrium. • The framework is applied to a case studybasedonAustralia. A R T I C L E I N F O A B S T R A C T Articlehistory: Climatechangebecomesincreasinglymorerelevantinthecontextofwatersystemsplanning.Toolsare Received10January2018 necessarytoprovidethemosteconomicinvestmentoptionconsideringthereliabilityoftheinfrastructure Receivedinrevisedform27March2018 fromtechnicalandenvironmentalperspectives.Accordingly,inthiswork,anoptimisationapproach,formu- Accepted29March2018 latedasaspatially-explicitmulti-periodMixedIntegerLinearProgramming(MILP)model,isproposedfor Availableonline27April2018 thedesignofwatersupplychainsatregionalandnationalscales.Theoptimisationframeworkencompasses decisionssuchasinstallationofnewpurificationplants,capacityexpansion,andrawwatertradingschemes. Editor:SimonPollard Theobjectiveistominimisethetotalcostincurringfromcapitalandoperatingexpenditures.Assessment ofavailableresourcesforwithdrawalisperformedbasedonhydrologicalbalances,governmentalrulesand Keywords: sustainablelimits.Inthelightoftheincreasingimportanceofreliabilityofwatersupply,asecondobjec- Hydrologicalbalances tive,seekingtomaximisethereliabilityofthesupplychains,isintroduced.Theepsilon-constraintmethod Watersupplychains SpatiallyexplicitMILP isusedasasolutionprocedureforthemulti-objectiveformulation.Nashbargainingapproachisappliedto Supplyreliability investigatethefairtrade-offsbetweenthetwoobjectivesandfindtheParetooptimality.Themodels’capa- Gametheory bilityisaddressedthroughacasestudybasedonAustralia.Theimpactofvariabilityinkeyinputparameters istackledthroughtheimplementationofarigorousglobalsensitivityanalysis(GSA).Thefindingssuggest thatvariationsinwaterdemandcanbemoredisruptiveforthewatersupplychainthanscenariosinwhich rainfallsarereduced.Theframeworkscanfacilitategovernmentalmulti-aspectdecisionmakingprocesses fortheadequateandstrategicinvestmentsofregionalwatersupplyinfrastructure. ©2018PublishedbyElsevierB.V. 1. Introduction Concurrent population growth, economic development and cli- *Correspondingauthor. E-mail address:[email protected](L.G.Papageorgiou). matechangearethemaindriversfortheacuteandchronicwater https://doi.org/10.1016/j.scitotenv.2018.03.358 0048-9697/©2018PublishedbyElsevierB.V. M.N.Kolevaetal. /ScienceoftheTotalEnvironment636(2018)314–338 315 shortages (Dizikes, 2016; Morrison et al., 2009; US Environmental addressanadequatemanagementsystem,thecurrentworkconsid- Protection Agency, 2016). To mitigate and adapt to the changes, erswatersupplychaindesign,entailingresourcesallocationunder authoritiesexaminestrategicoptionstoenhancethesupply-demand hydrologicalbalancesandwatertrading,andsupplyreliabilityboth management for a long term resilience. Planning for 15–35years assingleandmulti-objectiveoptimisationframeworks. ahead by water industries ensures adequate facilities and infras- Muchattentionhasbeenpaidtooptimisationtechniquesinwater tructure in place to maintain the security of supplies throughout supply chains (WSC) as they provide a systematic way of making thoseperiods.Thegapbetweensupplyanddemandcanbefilledby decisionsonfutureinvestments.Rayetal.(2010)addressedtheissue diversifyingtheportfolioofoptionsforwatersupply.Forinstance, through a linear programming model for the minimum cost con- alternative sources of water, investing in storage and production figuration of future water supply, wastewater disposal, and reuse capacities, expanding market participants and water quality grade optionsforthecityofBeirut.Kolevaetal.(2016,2017)proposedlin- trading options, alongside with interconnectivity and distribution earandnon-linearprogrammingmodelsfortheoptimaldesignof lossesminimisation,shouldbeincludedinthelist(Pricewaterhouse waterandwater-relatedtreatmentprocesses.Lietal.(2009)devel- Coopers,2010). opedamulti-stream,multi-reservoirandmulti-periodmixedinteger Besides the conventional surface water sources diverted from linearprogramming(MILP)modelthatwasintegratedintoaninex- rivers and lakes, and groundwater extracted from aquifers, non- act multistage joint-probabilistic programming to investigate the conventionalsourcessuchasseawater,brackishandrecycledwater decision under uncertainty and surplus-flow diversions. Kondili et have been taking place in the source mix for water provision. al.(2010)presentedamathematicalframeworkforthewatersup- Althoughtreatedwastewaterisnotthepubliclyacceptedsourcefor ply design taking into consideration various sources and users as drinking,itisessentialforother,non-potableapplicationsinorderto wellaspossibleconflictingdemandoveratimeperiod.Themodel meetoveralldemand.Ontheotherhand,non-conventionalsources wasappliedtoacasestudyfortheAegeanIslands.Liuetal.(2010, require more extensive treatment and therefore, more expensive 2012,2011),Liu(2011),Padulaetal.(2013)andPadula(2015)pro- purificationtechniques,hence,theyoftenserveasaback-upduring posedmathematicalformulationsfortheminimisationofproposed prolongdroughts(PricewaterhouseCoopers,2010). installations of plants, storages, pipelines applied on specific case Asalimitedresource,waterusagebyanentitycanaffectitsavail- studies.Matrosovetal.(2015)lookedatmulti-objectiveoptimisa- abilitytoanother.Conflictandcompetitionamongentities,whenit tionforwatersuppliesfocusedonLondonandbasedon4-dominance comestoresources,islikelytoarisehence,acoordinatedallocation non-dominatedsortinggeneticalgorithmsandsimulation.Saifand system is sought. Such a system is represented by water markets, Almansoori (2014) suggested a multi-period MILP model for the operatingontheprincipleof‘capandtrade’systemwhere desalinationsupplychainswithdecisionsonlocationsfornewand extendedplants,storagesandpipelines.Al-NoryandGraves(2013) • thecapillustratesthewateravailableforsustainableextraction proposed a mathematical programme for the design of desalina- • market participants hold water abstraction rights or licences tionsupplychainstakingintoconsiderationlocationsofnewplants whichareapartofthetotalavailablepool installations. Guerra et al. (2016) and Saif and Almansoori (2016) • the rights and the allocations in every season can be traded integrated water management in different supply chain contexts. amongparticipants Loucksetal.(2005)andJoshiandJoshi(2016)contributedwithcom- • thetradingpriceissetbytheparticipantsinthewatermarket prehensive insights into water resources planning, modelling and management,andadvancesinsupplychain. Various works on modelling of water resources allocation and Such water trading schemes exist in Spain, Chile, South Africa, pricinghavebeenpublishedinBrebbia(2015).Heydarietal.(2015) Australia,UKandsomestatesintheUnitedStatesofAmerica.Water developed an MILP model for the multi-purpose reservoirs opera- market participants may include users such as industry, irrigation tion. Veintimilla-Reyes et al. (2016) introduced a spatio-temporal operators,andurbanwaterutilities(AustralianGovernment,2016a). mixedintegerformulationforwaterallocation.Yildiranetal.(2015) In a regulated market, the availability of water would govern the formulated an MILP model for the short-term scheduling of water extentoftradeofanentitywithanotherentity.Athoroughwayof reservoirsconsideringday-aheadmarketprices.Heetal.(2015)pro- assessing water availability is by taking into account the environ- posedan MILPmodelandappliedBendersdecompositionmethod mentalflows,suchasprecipitation,evaporation,run-off,andinfil- fordynamicresourceallocationandtrafficassignmentinevacuation trationwhichcanbeexpressedbyaninflow-outflowwaterbalance networks. Hughes (1976) developed an optimisation framework, foraparticularsysteminaregion. based on integer programming, on solving algorithms for water Affordableandsecurewatersupplyiscrucialforthedomesticand resources planning problems. Li et al. (2016) presented a stochas- industrial conductofdailyactivities(Zhuetal., 2015).Watersup- ticquadraticmodelapplicabletodiscrete,fuzzyandrandominput plyreliabilitycanbedefinedastheprobabilityofmeetingdemand data for water resources allocation with a case study on Heihe ortheprobabilityofnotmeetingdemandsubtractedbyone(Hawk, Riverbasin,China.Roozbahanietal.(2015)proposedanapproach 2003).Overatimeperiod,reliabilitybecomesthefrequencyorthe and a mathematical model for the allocation of water resources quantity of supply shortfalls measured against demand. Temporal amongstakeholders.Zengetal.(2014)constructedamodelbased reliabilitymostofteninvolvessystemfailures,whicharerelatedto on inexact credibility-constrained programming method to inves- mathematicalproblemswithhighergranularity,forinstance,oper- tigatetheefficiencyofwatertradingundermultipleuncertainties. ation problems. For designing the water supply chain, the focus Britzetal.(2013)proposedaMultipleOptimisationProblemswith of interest is a quantification of how much of the demand will Equilibrium Constraints (MOPEC) for hydro-economic river basin not be met. Hence, the choice of reliability assessment in the cur- modelstoaccountforthedecentralisedaccesstowateruse.Qureshi rentworkisvolumetric.Governmentsandwaterentitiesarefacing et al. (2013) introduced a mathematical programming model with numerouschallengesprovidinganadequatesupplyreliability.Such an application on agricultural water use in Murray-Darling Basin, challenges are climate change, population growth, environmental Australia.Rinaudoetal.(2016)proposedaprice-endogenousmodel regulations,decayinginfrastructureandcalamities.Enhancingtrad- forthetradingactivityandequilibriumpricesinurbanwatermar- ing,andexpandingstorageandtreatmentcapacitieswouldincrease kets. Blanco and Viladrich-Grau (2014) analysed the outcomes of supply reliability (Shamir, 1987; Goulter, 1995; Zhu et al., 2015). irrigatingwatertradingschemethroughanonlinearmathematical Therefore,satisfactorywatermanagementplanninganddesignhave programmingmodel,appliedtoacasestudyinSpain.Erfanietal. tobeinplace(CaliforniaUrbanWaterAgencies,2012).Inorderto (2014) presented an optimisation model for short-term pair-wise 316 M.N.Kolevaetal. /ScienceoftheTotalEnvironment636(2018)314–338 spot-markettradingofsurfacewaterrights.Itisbasedonanode-arc waterdistributionnetworksusingmultiobjectiveoptimisationand multi-commodityapproachfollowingatransactiontrackingmethod gametheory. (Erfani et al., 2013). Peng et al. (2015) proposed an optimisation To the best of the authors’ knowledge, there is no work which modelforwatertransferdecisionmakingprocessconsideringshort- integratesindetailtheconceptsofsupplychains,allocations,reli- agesinreservoirsofboth,recipientsanddonors. ability and game theory. The current work addresses this gap by Reliabilityofwatersupplyhasincreasinglybecomethefocusofa not only combining all the aforementioned separate concepts but numberpublications.Damelinetal.(1972)firstintroducedthecon- alsoconsideringtheentirewatercyclewithlegislativeregulations cept of reliability of water supply in a simulation context. Barlow altogetherinamixedintegerlinearprogramming(MILP)formula- (1984)presentedahistoricalangleofmathematicaltheoryofrelia- tion.Thepaper,thus,aimsatinvestigatinghowtoconsolidatethose bility.Pengetal.(2015)presentedamathematicalformulationfor multiple-aspects into a single optimisation framework. A multiple waterallocationsaccountingforreliability.Reliabilityhasalsobeen number of sources, users, trading and time periods are geograph- thefocusofnumerousworkswhichconsideritalongsidecalamities icallyconsidered.Thelocationsandcapacitiesforsurface,ground- andchangingclimate(WangandAu,2009;Simonitetal.,2015;Clark water, seawater plants and the trading volumes of each source etal.,2015;Yooetal.,2016). amongregionsaretobeoptimised.Then,amulti-objectiveoptimi- Multi-objectiveoptimisationapproacheshavebeenthefocusofa sationisformulatedforthesimultaneousminimisationoftotalcost largenumberofliteratureworks.Pokharel(2008)wasoneofthefirst andmaximisationofreliabilityusing4-constraintmethod.Inorder workstousemulti-objectiveoptimisationinsupplychainnetwork to identify the fairest operating point along the Pareto curve, we design where two-objective decision-making model for the choice propose the implementation of game theory, specifically, the bar- ofsuppliersandwarehousesforasupplychainnetworkdesignwas gainingapproach.Aglobalsensitivityanalysis(GSA)isimplemented proposed.Amodeoetal.(2009)integratedevolutionaryalgorithms toaddresstheimpactofuncertaintyassociatedwithinputdataon andsupplychainsimulationforthemaximisationofcustomerser- thewatersupplychain.Fourparameterswereselectedforthispur- vicelevelandthetotalinventorycost.LiuandPapageorgiou(2013) pose as follows: rainfalls, capital investments, facilities efficiency, developed an MILP model for cost, responsiveness and customer anddemand.Therestofthisworkisstructuredasfollows:Section2 servicelevelusing4-constraintmethodandlexicographicminimax sets out the problem statement whose mathematical formulation methodassolutionapproaches.ChenandAndresen(2014)applieda is presented in Section 3. The applicability of the model is inves- weighted-sumapproachminimisingcosts,emissions,andemployee tigated in a case study, described in Section4, followed by results injuriesinasupplychain. anddiscussioninSection5.Finally,concludingremarksaremadein Whenmorethanonefactordeterminesthedesignofthewater Section6. managementsystem,besidesanoptimal,afairstrategicdecisioncan betakenbyapplyinggametheory.Gametheorycanbeutilisedfor variousapplications,suchasengineering,lifesciences,management 2. Problemstatement and economics. Games can be collaborative, when the best strate- gies for the players are to cooperate, and competitive, when the The supply chain problem at hand entails strategic decisions players can maximise their outcome if they do not take into con- for the allocation of water resources, procurement and treatment siderationtheoutcomesoftherestoftheplayers.Gamescanalso ofsourcestypes,locationsandcapacitiesexpansionsfordamsand besimultaneousandsequential,whenthedecisionsoftheplayers treatmentplants,tradingdirectionsandvolumes. are taken at the same time or one after another, like in a leader- Ageographicalareaisconsideredwherewaterdemandscanbe followertypeofgame.Theformeroftenimpliestheinformationis metbysurfacewater,groundwaterandseawater.Optionssuchas not well known and in cases of the latter, normally the follower reclaimed water and individually collected rain water are disre- makes a decision based on the action of the leader. This leads to gardedinthiswork.Theareaisdividedintosub-regions,orstates, dealingwithperfectandimperfectinformationgames.Recentworks basedontheirfederalgovernanceandautonomy.Thewaterdemand on game theory in mixed integer programming have been classi- for each territory is estimated according to the population predic- fiedqualitativelybasedontheaforementionedapplications.Atypical tionsandconsumptionpatternspercapita.Additionally,thewater leader-follower game is the Stackelberg game which has been the demand varies seasonally, peaking in summer and plummeting in chosenstrategyindifferentliteraturesources(YueandYou,2014; winter.Springandautumnseasonsarecharacterisedwithmoder- Bard et al., 2000; Yang et al., 2015; Pita et al., 2010; Yin, 2013). ateconsumptionvolumes.Regulatedwaterservicesofeveryregion Zhang et al. (2013) developed mathematical models for fair elec- areprovidedbywatersupplierstomeettheurbanwaterdemand, tricity pricing microgrid, scheduling, planning, and in Zhang et al. whichoccursfromresidential,commercial,municipalandindustrial (2017) - carbon capture and storage following cooperative Nash usage.Astatemightnotbeabletomeetitsregionaldemandconse- approach(Nash,1950).Nashequilibriumhasbeenappliedinsupply quently,itshouldidentifyastrategyfordealingwithwaterdeficit.In chainsandscheduling(Zamarripaetal.,2013;Gjerdrumetal.,2002; casesourcewaterisindeficit,tradingamongregionsisconsidered. Banaszewskietal.,2013;PiraandArtigues,2016;Ortiz-Gutierrezet Onlysurfaceandgroundwatercanbetraded.Ontheotherhand,if al.,2015;Tusharetal.,2014).Generalsupplychaingametheoryand storageorproductioncapacitiesarenotsufficient,optimaldecisions transferpriceshavebeencoveredbySimchi-Levietal.(2004)and forthecapacityandlocationfortheexpansionofexistingplants,and Rosenthal (2008). Additionally, Shelton (1997) and Tambe (2012) installationofnewdamsandplantsaremade. havepublishedexhaustivecompilationbooksongametheory,secu- Waterisdivertedfromlakesandreservoirs,andabstractedfrom rity and markets. Madani (2010) compiled a literature review on aquiferstakingintoaccounttheseasonalhydrologicalcyclesandsus- gametheoryconceptsappliedtowaterresourcesmanagement.The tainableyields(withdrawals)withintheterritories.Waterbalances, research suggested non-cooperative game theory can be a power- or budgets, are performed over the total regional available water fultoolformanagingrealconflictswithoutthenecessityofaccurate storages. Reservoirs, dams, ponds, lakes and groundwater aquifers quantitative information. Sechi et al. (2011) suggested a decision are referred to as storages. The inflows into the storages are the makingtoolusinggametheorytodeterminefairwaterpricingwith seasonalprecipitations,run-off,streamflowsandrechargewhilethe sustainability principles. Daumas (2009) proposed a mathematical outflows consist of evaporation, discharge and diverted/abstracted modelforthetheoryofcooperativegamesfortransferableutilities volumes. Precipitation refers to the rainfall that falls directly onto (TU). Souza Filho et al. (2008) investigated game theory on water the storage area. Run-off represents excess of moisture turning users’strategicbehaviour.NikjoofarandZarghami(2013)simulated intothestreamflowfromthecatchmentsordrainagebasinstothe M.N.Kolevaetal. /ScienceoftheTotalEnvironment636(2018)314–338 317 storage.Streamflowsrefertotheriverflowingintothestorage.Evap- Thus,theproblemdescriptionwithkeyparameterscanbestated oration is the direct evaporation from the storage surface, while below. dischargereferstotheriverstreamleavingthesystem.Diversions Given: arethewaterflowswithdrawnforhumanusage.Groundwaterdis- chargeorseepageisignoredduetobeingaminorcomponentand • geographicaldivisionsintoregions/states/territories due to the scarce historical data available. As a matter of conve- • planningtimehorizon,e.g.a25-yearhorizon nience,thestreamflowsfordifferentriversystemsinaregionhave • water sources, i.e. surface water (sw), groundwater (gw), been summed up. It is assumed that dead storage comprises 10% seawater,ordesalinatedwater(dw),etc. of the water storage capacity. Further, by a rule of thumb, 10% of • final water uses, i.e. urban (uw), rural (rw), etc., and sea- the rainfall in drainage basins infiltrates to become groundwater sonaldemandoverplanninghorizon inflow. Climatic data is extracted for the entire planning horizon • regionalandseasonalclimaticdata,i.e.precipitation,evap- reflecting fluctuations in the weather conditions and therefore, el oration,run-off,streamflows NiñoandlaNiñaevents,whichoccurevery5–7years.Oceansand • initialwaterstoragesindrainagebasinsandreservoirs seas are not taken into account in water budgets due to their • geographicaldistribution,capacities,operatingefficiencies, abundance. andoperatingandcapitalcostparametersofexistingand In every region there are rights for maximum water sources potentialdamsandplants diversions/extractions.Theyarecalledtargetallocations,orentitle- • maximumallocatedwatersourcesperend-use,i.e.entitle- ments, and apply for surface water and groundwater. In a season ments whenavailabilityinstorageissufficient,theallocationsinaregion • tradingtopologyandpricesoptions can reach target allocations. The amount of water that has been • inflationanddiscountfactors allocated for withdrawal and has not been used in a given year • regionalsustainablediversions/abstractions can be rolled to the next year unless regulations oblige a return • penaltycostsfornotmeetingdemand to the abstraction basin. After the resources are withdrawn, they areprocessedinsurfacewatertreatmentplants(SWTP),groundwa- Determine: tertreatmentplants(GWTP)andseawaterdesalinationplants(SDP) • availablewatersourcesfordiversion/abstraction whichoperatewithdifferentefficiencies.Then,theproductwateris • procurementrateforeachwatersourceandend-usewater distributed for urban usage, after which it is assumed 60% of that productionrate water is collected as sewerage. The wastewater is then treated in • trading and carry-over flowrates of surface and wastewatertreatmentplants(WWTP)andreturnedasrecharge.It groundwater mustbenotedthatnodecisionsaremadewithrespecttoWWTPs • watersupplyreliability and the concept is introduced merely to close the water cycle. • location and capacities of new dams and plants installa- Ascheme,representingtheproblem,isillustratedinFig.1. tions,andexistingplantsexpansions Fig.1. Schematicrepresentationofthewaternetworksystem. 318 M.N.Kolevaetal. /ScienceoftheTotalEnvironment636(2018)314–338 So as to minimise the annualised total cost for operating and whereRain isthedirectrainfalltothereservoir,Runoff istherun-off igtq igtq buildingthenetworkproposedsubjecttoenvironmental,opera- seepingintothereservoirsandRiverrepresentsthestreaminflowsto tional,logicalandeconomicconstraints.Initially,thesupplychain igtq thestorage.Itisassumedthatrun-offoccurringinoneregionfills problemisformulatedasaspatially-explicitmulti-periodMixed thereservoirsinthesameregionandnootherneighbouringregions. IntegerLinearProgramming(MILP)model.Then,asecondobjec- A proportion of the rainfall which falls onto the mainland, LRain, tiveisaddedforthemaximisationofreliability,hence,themodel igtq infiltratesintothegroundandbecomesaninflowforaquifers. becomesmulti-objective. Rigtq=rinfl • LRaigitnq, ∀i=“gw”,g,t,q (2) 3. Mathematicalformulation where rinfl is the fraction of the rainfall that infiltrates. Simultane- In this section the mathematical formulation is presented first, ously,thetotaloutflowsfromthesystemaretheevaporationlosses, as a single objective problem, in Section 3.1, where key con- Ligtq,outflows,Oigtqandallocatedwater,Aigtq.Itisassumednoaddi- straints are the water cycle balances, procurement and produc- tionallossesoccurforboth,surfacewaterandgroundwatersystems. tionconstraints,logicalconstraints,supplyreliability,andoperating TheinflowsandoutflowsareillustratedinFig.2.Theseasonaland and capital expenditures. The objective is to minimise the total yearlyformulationsareshowninEqs.(3)and(4),respectively. cost for the entire region for the planning horizon. Next, reliabil- ity of supply is added as a second objective function and solved DSigtq|i=“sw”+WSigtq=DSigt,q−1|i=“sw”+WSigt,q−1+Rigtq+RCigtq usingan4-constraintmethodinSection3.2.1,andgametheoryin +AC −L | −A igtq igtqi=“sw” igtq Section 3.2.2. A multi-objective optimisation for minimising total −O | , ∀i∈LW,g,t,q>1 (3) cost and maximising reliability of supply is going to reveal the igtqi=“sw” extentthesupplychainnetworkdesignisinfluencedbybothfactors. Additionally,gametheorywillprovideafairtrade-offbetweenthe twoobjectives. DSigtq|i=“sw”+WSigtq=DSig,t−1,q|i=“sw”,q=4+WSig,t−1,q|q=4+Rigtq 3.1. Monolithicapproach +RCigtq+ACigtq−Ligtq|i=“sw”−Aigtq −O | , ∀i∈LW,g,t,q=1 (4) igtqi=“sw” 3.1.1. Hydrologicalbalances Theestimationofwateravailabilityinstoragerestsontheinflows whereLWisasetcontainingtheinlandwatersources,i.e.surface into the system, R , recharges, RC and the total storage from igtq igtq waterandgroundwater.Surfacewaterstoragesincludedams,and thepreviousseason,Sigt,q−1.Rigtqrepresentsasummationofrainfall, naturalstorages,i.e.lakesandwetlands.Inthiswork,acumulative run-offandstreamflowsforsurfacewater,andinfiltratedrainfallfor termtorefertoboth,human-madeandnaturalstorages,isstorage groundwater,showninEqs.(1)and(2). or reservoir. Aquifers are the only storage for groundwater which occursinitsnaturalform.Thesumofdams’storage,DS ,andnat- Rigtq=Raigitnq+Ruigntqoff +Riivgteqr, ∀i=“sw”,g,t,q (1) uralstorage,WSigtqadduptothetotalstorage,Sigtq,showigntqinEq.(5). Fig.2. Inflows(rainfall,run-off,riverstreamflows,recharges)andoutflows(evaporation,withdrawals,outflows)fromareservoirsystem. M.N.Kolevaetal. /ScienceoftheTotalEnvironment636(2018)314–338 319 Fig.3. Visualisationofyearandseasonaltimediscretisation.Thesequenceofseasonsqdependsonthestartandendofthefiscalyeartagovernmentuses. Sigtq=DSigtq|i=“sw”+WSigtq, ∀i∈LW,g,t,q (5) gradewaterw,Pwgtq,tomeetpopulatedcentresdemand,Dwgtq.Italso takesintoaccountQigg(cid:5)tqandQig(cid:5)gtq,whicharethetradedflowssent toandreceivedfromotherregions,respectively. where at t = 0 and q = 0 the storage is the summation of the initial reservoirs’ and lakes’ storages. A representation of the time (cid:2) (cid:2) discretisationinyears,seasonsandtheirsequenceisdemonstrated Digtq+ Qigg(cid:5)tq−PDigtq=Pigtq+ Qig(cid:5)gtq, ∀i,g,t,q (7) inFig.3. g(cid:5)∈gigg(cid:5) g(cid:5)∈gig(cid:5)g Themaximumnaturalstoragecapacityperregion,WSmax,should ig not be exceeded in any year t and season q in order to prevent overflows(Eq.(6)). where gigg(cid:5) and gig(cid:5)g define the allowed directions of flow from region to region. Regions with hydrological or physical connectiv- ity are selected for trading. When a demand cannot be met by WSigtq≤WSimgax, ∀i=“sw”,g,t,q (6) the treatment plants, water flows, PDigtq, are allowed to compen- sate for the shortage. These flows are penalised in the objective function. 3.1.2. Supply-demandbalances Fig.4delineatesthewatersupplychainflowsforgivenregionsg 3.1.3. Procurementconstraints andg(cid:5). Theamountsofdivertedsurfacewaterandextractedgroundwa- Eq.(7)representsthoseinteractionsthroughaglobalmassbal- teraredeterminedbytheallocatedwaterrights,orallocationsA , igtq anceequationwhichentailsthewatertypeflowsi(I = S∪W)at aregiongisallowedtowithdrawinyeartandseasonq.Thecarry- every node of the WSC: withdrawals of raw water s, Psgtq, accord- overvolumes,ACigtq,aretheamountsrolledoverfromoneseason ingtopurificationplantintakedemand,Dsgtq,andproductionoffinal tothenextafterensuringenoughwaterissetasideformeetingthe Fig.4. Asupply-demandflowdiagram,includingwithdrawals,production,distributionandtradingbetweenregiongandregiong(cid:5). 320 M.N.Kolevaetal. /ScienceoftheTotalEnvironment636(2018)314–338 regionaldemand.Theseasonalandannualexpressionsareshownin 3.1.5. Capacityconstraints Eqs.(8)and(9),respectively. At a given time t, every region g and plant p have produc- tion capacity, TCAPgpt, which is a limiting factor for the plant feed ACigtq=ACigt,q−1+Aigtq−Pigtq, ∀i∈LW,g,t,q>1 (8) flow,Vigptq.Therefore,theeffluentshouldnotexceedthetotalplant capacity,demonstratedinEq.(17). ACigtq=ACig,t−1,q|q=4+Aigtq−Pigtq, ∀i∈LW,g,t,q=1 (9) (cid:2) (cid:2)4ii(cid:5)·Vigptq≤TCAPgpt/Qmax,∀g,p∈PGg,t,q (17) i∈S∩SPpi(cid:5)∈W Thecentralprinciplebehindcarry-overisthatunusedwatercan becarriedover,butitmustnotdisplaceinflowsthatsupportnew where4ii(cid:5) istheproductionyield,dependingonwatersourcei.PGg allocations.OnlyinlandwaterLWisaffectedbyallocationrulesdue is a subset of g which contains the operating plant p in region g, totheassociatedfinitenesswiththoseresources.Theallocationsare and Qmax is the number of seasons used to obtain seasonal capac- calculatedonthebasisofthewaterrights,ortheentitlementsent , igt ity.Providedmorewaterhastobeprocessedtomeetdemand,the whicharethemaximumwatervolumesthatcanbewithdrawnin total capacity will increase by installing new plants or expanding yeart. old ones. A binary variable I is assigned for the installation of gplt (cid:2) newplantpwithcapacitylinregiongattimet.Whenanincrease Aigtq≤entigt, ∀i∈LW,g,t (10) incapacityisnecessary,Igplt isactivatedandequals1,otherwiseit q equals0.Anotherbinaryvariable,E ,isassignedfortheexpansion gplt ofexistingplants,whichoperatesonthesameprinciple. The entitlements are treated as parameters based on the (cid:2) aInsstuhmispwtioornk,thitaitstahsesyumareedauthtoamtmataicxaimllyumren1e0w0%edoffrtohmeeynetairtlteomyeenatrs. TCAPgpt=TCAPgp,t−1+ icappl•Igpl,t−ictp|p∈NP (cid:2) l canbereceivedinayeart. Additionally,alimitationisconsideredthataregiongcantrade + ecappl•Egpl,t−ectp, ∀g,p∈PGg,t (18) waterwithotherregionsg(cid:5)onlywhengsatisfiesitsregionaldemand l fromtheseasonalallocationsavailable(Eqs.(11)–(13)). where ictp and ectp are the respective construction and expansion (cid:2) times for plant p, ecap represents the available options of capac- Qigg(cid:5)tq≤entigt•Bigtq, ∀i∈LW,g,t,q (11) ityexpansionlandicappl -thecapacityinstallationoptionsofnew pl g(cid:5)∈gigg(cid:5) plants(NP)throughouttheplanninghorizon. Atmostonecapacitylevellfromagivennumberofoptionscan Pigtq≤Digtq+entigt•Bigtq, ∀i∈LW,g,t,q (12) bechosen(Eq.(19)). (cid:2)(cid:2) Pigtq≥Digtq−entigt•(1−Bigtq), ∀i∈LW,g,t,q (13) Igplt≤1,∀g,p∈PGg∩NP (19) l t where B is a binary variable, equal to 1 when demand for a igtq sourceiinaregiongislowerthanthesupply.Further,thediverted Egplt isabinaryvariablethatisactivewhenaplantisexpanded or abstracted volumes should be within the limit of sustainable whichcanhappenuptoEmaxnumberoftimes(Eq.(20)). withdrawals,recommendedbylocalgovernments(Eq.(14)). (cid:2)(cid:2) (cid:2) Egplt≤Emax,∀g,p∈PGg (20) P ≤SPmax, ∀i=LW,g,t (14) l t igtq igt q Onlyonecapacitylevellfromagivennumberofoptionscanbe whereSPmaxisthemaximumsustainablewaterdiversionorabstrac- chosentobeexpandedatatime(Eq.(21)). igt tioninayeart.Theselimitsareinplacetoensurethewithdrawnvol- (cid:2) umeswouldnotexhibitadetrimentalimpactontheenvironment. Egplt≤1,∀g,p∈PGg,t (21) l 3.1.4. Reliabilityofwatersupply It is a common practice in many cities to be under agreed vol- Expansions can occur only after a plant has been installed, umetric or temporal water restrictions, or an agreed reliability of imposedbyEq.(22). supply. The reliability of water supply is calculated based on the (cid:2) (cid:2) (cid:2) volumetricshortage,whenthedemandexceedssupply.Thewater Egplt≤ Igplt(cid:5),∀g,p∈PGg∩NP,t (22) supplyreliability,WSRigtq,isshowninEq.(15). l l t(cid:5)≤t−ictp WSR =1−PD /dem ,∀i∈W,g,t,q (15) Thesurfacewaterthatiskeptindams’storageshouldbelessor igtq igtq igtq equalthanthecurrentexistingdams’capacity. wherePD istheimportinaperiodofwatershortageanddem istheurbaigntqwaterdemand.Thenormalisedreliabilityfortheentiigrteq DSigtq≤DAMgt,∀i=“sw”,g,t,q (23) countryisanaverageoftheregionalreliabilities(Eq.(16)). (cid:2)(cid:2)(cid:2)(cid:2) InEq.(23),DAMgt isthetotalcapacityofdamsineveryregiong WR= WSRigtq/(Gmax•Tmax•Qmax) (16) attimet.AsDSigtqisthewatervolumerelatedtotheabilitytowith- drawwaterfromit,thevolumeofwaterwhichstagnatesshouldbe i∈W g t q considered.Hence,simultaneously,thestorageshouldnotfallbelow whereWRisthenormalisedreliability,Tmaxistheplanninghorizon thedeadstorageofthereservoir,expressedinEq.(24). period,Qmax-thenumberofseasonsandGmaxisthetotalnumberof regions. DSigtq≥dsf•DAMgt,∀i=“sw”,g,t,q (24) M.N.Kolevaetal. /ScienceoftheTotalEnvironment636(2018)314–338 321 wheredsfisafactorforthetypicaldeadstoragewhichremainsin wherecaplant andcapexp arethecapitalcostsassociatedwitha pl pl dams.Thetotaldamscapacityinaregionequalsthecapacityofthe plantpanditsrespectiveinstalledorexpandedcapacityl.Thetotal existingdamsandthenewlybuiltdams.Thedecisionofbuildinga capitalcostisthesumofallthecapitalcostcomponentsandisshown newdamisexecutedthroughabinaryvariableID . inEq.(33). glt (cid:2) DAMgt=DAMg,t−1+ l idamgl•IDgl,t−dct,∀g,t (25) CAPEXt=CDAMt+CPLt, ∀t (33) where dct is the time for dam construction and idamgl represents whereCAPEXtisthecapitalexpenditureattimet. theoptionlforcapacityinstallationofdamsinregiong.Onlyone capacityoptionlcanbeselectedinaregiong,giveninEq.(26). 3.1.8. Operatingexpenditureconstraints (cid:2)(cid:2) The operating expenditures are calculated in a similar manner. IDglt≤1,∀g (26) Theoperatingcostsformaintainingthedams,ODAMt,arecalculated l t byEq.(34). (cid:2) 3.1.6. Productionconstraints ODAMt= vodt•DAMgt,∀t (34) The water flows that are withdrawn to be processed in plants g must equal the demand for raw sources, D , calculated from igtq Eq.(27). wherevodt arethevariableoperatingcostsofdamsattimet.The (cid:2) operating costs of plantsconsist of fixed, fopplt and variable, vopplt D = V ,∀i∈S,g,t,q (27) costs(Eq.(35)). igtq igptq p∈SPi∩PGg (cid:2)(cid:2) (cid:2) (cid:2) (cid:2) OPLt= fopplt+ fopplt•IPgplt The above equation applies only to raw sources, S, i.e. surface water,groundwaterandseawater.Theproductionofwaterforusage, p∈O(cid:2)P l(cid:2) (cid:2) (cid:2)g p(cid:2)∈PGg(cid:2)∩NP l P , equals the summation of the effluents from plants treating + vopplt•4ii(cid:5)•Vigptq, ∀t (35) diigftfqerentrawwaters(Eq.(28)). g p∈PGg l i:p∈SPii(cid:5)∈W q (cid:2) (cid:2) Pigtq= 4i(cid:5)i•Vi(cid:5)gptq,∀i∈W,g,t,q (28) calcTuhleatpeednbaylisEeqd.(c3o6s)t.fornotmeetingtheproductwaterdemandsis i(cid:5)∈Sp∈SPi(cid:5)∩PGg (cid:2)(cid:2)(cid:2) Theregionaluserdemand,demigtq,mustbemetandthiscondition OPent= pc•PDigtq,∀t (36) isenforcedfromthefollowingequation: i∈W g q (1−dffg)•Digtq=demigtq,∀i∈W,g,t,q (29) wherepcisapenaltycostrate,significantlyhigherthantradingcosts. The total OPEX is a summation of the operating dams’ and plants’ costsandtradingcosts,expressedfromEq.(37). wheretheequationappliesonlyforfinalproductwaterpurposeW. Theparameterdff accountsforthedistributionlossesduetobro- g ken pipes and leakages varying regionally. The recharge volumes, OPEXt=ODAMt+OPLt+OTRt,∀t (37) RC ,areestimatedbytheamountofwaterthathasbeencollected igtq insewerage,treatedbywastewatertreatmentplantsandreturned tosurfaceandgroundwaterstorages(Eq.(30)). 3.1.9. Objectivefunction (cid:2) Thetotalcost,TC,representstheadditionofthecapital,operating RCigtq= up•4i(cid:5)i•Di(cid:5)gtq,∀i∈LW,g,t,q (30) costsandpenaltyovertheplanningtimehorizon(Eq.(38)). i(cid:5)∈W (cid:2) whereupisthewaterutilisationpercentage,i.e.thefractionofdis- minimiseTC= (cdft•CAPEXt+odft•OPEXt+odft•OPent) (38) t tributedwaterwhichiscollectedassewage,and4i(cid:5)iistheoperating efficiencyofthewastewatertreatmentplant. wherecdf andodf arediscountfactorsofthecapitalandoperating t t costs,respectively.Theobjectivefunctionissubjectto 3.1.7. Capitalexpenditureconstraints Next, the capital expenditure for dams, plants installation and • hydrologicalandsupply-demandbalancesEqs.(3)–(7) expansionisdiscussed.TheCAPEXofdams,CDAMt,dependsonthe • procurementconstraintsEqs.(8)–(14) capacityoptionlforinstallationselectedandthecorrespondingcost • reliabilityconstraintsEqs.(15)and(16) forconstruction,capdam (Eq.(31)). l • capacityconstraintsEqs.(17)–(26) (cid:2) (cid:2) • productionconstraintsEqs.(27)–(30) CDAMt= capdaml•IDglt, ∀t (31) • capitalexpenditureconstraintsEqs.(31)–(33) g∈ND l • operatingexpenditureconstraintsEqs.(34)and(37) The capital cost of plants, CPLt, is a summation of the costs for Inthelightoftheincreasingimportanceofreliability,theobjec- installationsandexpansions,andiscalculatedfromEq.(32). tiveisnolongertoonlyminimisecostbutalsoensurethesystem (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) is reliable to an economically adequate level while shortfalls are CPLt= caplantpl•Igplt+ capexppl•Egplt, ∀t brought to minimum. Therefore, a multi-objective optimisation is g p∈PGg∩NP l g p∈PGg l appliednextfortheminimisationofthetotalcostandthemaximi- (32) sationofthereliability. 322 M.N.Kolevaetal. /ScienceoftheTotalEnvironment636(2018)314–338 3.2. Multi-objectiveoptimisationformulation Similarly,aparameter,kkisassignedforthelogarithmreliability difference,showninEq.(44). 3.2.1. 4-constraintmethod An4-constrainedmethodisappliedforthesolutionofthemulti- kk=ln(WRk−WRquo),∀k (44) objectiveoptimisationwherethefirstobjectiveistominimisethe totalcostforthesupplychainandthesecondobjectiveistomax- AnSOStype2variable,X ,isusedtorepresenttheselectionofthe k imisethereliability.Thereliability,however,isimplicitlyrelatedto cost,shownasfollows: thepenalty,OPent,whichisthereasonithastobeexcludedfromthe (cid:2) (cid:2) objectivefunctionofthetotalcost.Hence, TCk•Xk= (cdft•CAPEXt+odft•OPEXt) (45) (cid:2) k t Objective1: minimise TC= (cdft•CAPEXt+odft•OPEXt) (39) t Thesamevariableisusedforthereliability,expressedasfollows: (cid:2) (cid:2)(cid:2)(cid:2)(cid:2) whichissubjectto WRk•Xk= WSRigtq/(Gmax•Tmax•Qmax) (46) k i∈W g t q Objective2: WR≥WR∗ (40) Uptotwoconsecutivekpointscanbeselectedthroughaspecial setorderset(SOS2)requirement.Theactiveoptionkshouldaddup and to1,representedinEq.(47). • hydrologicalandsupply-demandbalancesEqs.(3)–(7) (cid:2) • procurementconstraintsEqs.(8)–(14) Xk=1 (47) • reliabilityconstraintsEqs.(15)and(16) k • capacityconstraintsEqs.(17)–(26) • productionconstraintsEqs.(27)–(30) Andtheauxiliaryvariablehastobepositive. • capitalexpenditureconstraintsEqs.(31)–(33) • operatingexpenditureconstraintsEqs.(34),(35)and(37) Xk≥0,∀k (48) The obtained solutions will be Pareto optimal and any of them Then,theobjectivefunctionbecomes canbechosentoplanthewatersupplychain.TheNashbargaining (cid:2) approach,however,canprovidetheexactpointontheParetocurve maximise tˆ = [(nk+kk)•Xk] (49) wherethetwostrategiescanco-existatequilibrium. k whichissubjectto 3.2.2. Nashbargainingapproach Acooperativegameisconsideredtoobtainthebeststrategiesfor • hydrologicalandsupply-demandbalancesEqs.(3)–(7) expendituresandsupplyreliabilityusingNashbargainingapproach. • procurementconstraintsEqs.(8)–(14) Itisaimedtominimisetotalcountry’scostbyincreasingthediffer- • reliabilityconstraintsEq.(15) encebetweenthestatusquopointandtheoptimisationvariable.On • capacityconstraintsEqs.(17)–(26) the other hand, it is aimed to maximise the reliability by increas- • productionconstraintsEqs.(27)–(30) ingthedifferencebetweenthevariableanditsstatusquopoint.By • capitalexpenditureconstraintsEqs.(31)–(33) maximisingtheproductofallthestrategies’deviations,afairsolu- • operatingexpenditureconstraintsEqs.(34),(35)and(37) tiondistributionisensuredwherenostrategycanbeimproved.The • gametheoryconstraintsEqs.(45)–(49) dependencyisexpressedinEq.(41). The applicability of the mathematical model is investigated maximise t¯ =(WR−WRquo)•(TCquo−TC) (41) throughacasestudy,presentedinthefollowingsection. where TCquo is the upper cost bound for the country, which is 4. Illustrativeexample obtainedinacasenoinfrastructureisplannedandnotradingoccurs. Then,TC≤TCquo.WRquoisthecorrespondingpointforthestatusquo The applicability of the proposed framework is investigated pair.Then,WR≥WRquo.Eq.(41)resultsinanon-linearformulation through the implementation of a case study based on Australia. whichcanresultinlocaloptima.Therefore,itfollowstobefurther The objective is to minimise the total country’s cost for obtaining linearised.Eq.(41)isexpressedasaseparablefunctionbytakingthe an optimal water network by meeting the regional urban water logarithmofbothhandsidesandusinglogarithmicproperties: demands. In this section, the major data on regional divisions, waterdemands,efficiencyfactors,hydrologicaldata,installationand lnt¯ =ln(WR−WRquo)+ln(TCquo−TC) (42) expansioncapacities,andcostfactorsarepresented. 4.1. GeographicalrepresentationofAustralianregions Each of the logarithmic terms on the right hand side of the equation contains a continuous variable, which means they are Australia is divided into 8 internal state and territory gov- stillnon-linear.Hence,thetotalcost,TC,andwaterreliability,WR, ernments, namely: Queensland (QLD), New South Wales (NSW), domains are discretised into k number of points, which necessi- Victoria(VIC),SouthAustralia(SA),WesternAustralia(WA),North- tatestheintroductionoftheTCkandWRkparameters.Anadditional ernTerritory(NT),AustralianCapitalTerritory(ACT)andTasmania parameter,nkisintroducedtoequalthelogarithmofthecostdiffer- (TAS). Each state has itslocal state governmentwhichownsall or ence(Eq.(43)). mostofthewaterprovidersoperatingwithinthestate(Australian Government, 2017). Australian water providers can supply urban nk=ln(TCquo−TCk),∀k (43) and rural areas with drinking as well as different quality grades M.N.Kolevaetal. /ScienceoftheTotalEnvironment636(2018)314–338 323 water.Duetothelargenumberofprovidersandtheavailabledata consideredforbrackishwaterandhence,itspurificationcansome- on regional water demand and hydrological balances, the spatial timesbereferredtoasbrackishwaterdesalination.Statesthatcount discretisation is performed on a state basis. Besides water supply, on groundwater availability are Western Australia and the North- majority of the suppliers offer sewerage management, too. A map ern Territory due to their remoteness from the main river basin - showingtheconsideredregionsisshowninFig.5. Murry-Darling.Fig.5depictsthelocationsofthelargergroundwater treatmentplantsinAustralia. 4.2. Existingplantsanddamsforprovidingurbanwatersupply Damscanbedefinedas“anartificialbarrierthathastheability toimpoundwater,wastewater,oranyliquid-bornematerial,forthe Eachstatepossessesassetsforthetreatmentofanyofthethree purposeofstorageorcontrolofwater”(InternationalCommissionon sourcesconsidered:seawater,surfacewaterandgroundwater. LargeDams,2016).Theycanvaryimmenselyinsizeandshape,from The prolonged lack of rainfall from 2000 to 2010 in Australia smalldamsthatserveforwateringfarmstolargedamsthatcanpro- necessitated finding alternative sources of water supply. Seawater videthestorageforurbancentres.InAustraliatherearealtogether desalination,althoughanexpensiveoption,hasbeenconsideredas more than 600 dams numbering a total capacity of approximately theleadingsolutiontowatershortages.Currently,ineverystatebut 80,000GL.AspatialrepresentationofallAustraliandams’locations TAS,NTandACTexistsatleastonelargecapacityseawaterdesalina- isshowninFig.5.Thecumulativecapacityofalldamsinastateis tionplant(Fig.5).Theirlocations,capacitiesandconstructioncosts reportedinTable2. are summarised in Table 1. The plants are in operation as a non- Surface water in Australia is diverted from lakes, rivers and conventionalmeasureindroughtperiods,whenthereisinsufficient streamsanddams,anditsabstractionvolumesdependonthepre- freshwaterinthestates’storages.In2016alldesalinationsiteswere cipitationintheterritories.Tasmaniapossessessufficientamountsof producingdrinkingwater. freshwaterwhereasSA,VIC,QLDandNSWrelypredominantlyonthe GroundwaterinAustraliaisextractedfromundergroundaquifers availabilityinMurry-DarlingBasin(MDB).Theavailabilityoffresh- and after the appropriate treatment it can be used for water sup- waterinWAandNTislimited.Surfacewatertreatmentplantsmay ply,agricultureandindustry.Itssalinitycanbehighenoughtobe involvefulltreatmentwithcoagulationandfiltrationormembrane Fig.5. Dams,majorplantsandurbanwaterdemandandsourcemixinAustralia.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.