ebook img

Integration of borehole and airborne transient electromagnetic data for automatic compilation of ... PDF

173 Pages·2014·13.72 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Integration of borehole and airborne transient electromagnetic data for automatic compilation of ...

Integration of borehole and airborne transient electromagnetic data for automatic compilation of large scale hydrogeological models PhD thesis by Nikolaj Foged Department of Geoscience Faculty of Science and Technology Aarhus University, Denmark April 2014 Preface This dissertation is submitted to the Graduate School of Science and Technology (GSST), Aarhus University to be evaluated for a PhD degree in Geophysics. The PhD candidate has not formal been registered at GSST, but scheduled scientific research work and a Phd plan, was pre-approve in 2011 by GSST (at present time AGSoS). The dissertation is therefore hand in under §15.2, “PhD dissertation for assessment without a completed PhD programme” in the PhD order. The main part of the thesis is related to research work carried out with in the last 2-3 years where the candidates work has been carried out in two research projects, with a workflow close to a normal PhD student. The thesis also holds selected research work carried out in the 12 years of employment as academic staff (AC-TAP) at the Department of Geoscience, Aarhus University in the HydroGeophysics Group (HGG). The bulk of the thesis consists of five papers, where at present stage two are published, and three are submitted, all in internationally peer-reviewed journals. The five papers are included in the appendices, and extended summary and discussion of each paper are placed in chapters 5-9. Main supervisor: Co-supervisor: Professor MSO, Esben Auken Ass. professor, Anders V. Christiansen Departmen of Geoscience, Department of Geoscience, Aarhus University Aarhus University Papers in peer-reviewed journals: Included in this thesis I Christiansen, A. V., N. Foged and E. Auken, A concept for calculating accumulated clay thickness from borehole lithological logs and resistivity models for nitrate vulnerability assessment, reviewed and re-submitted to Journal of Applied Geophysics, April, 2014. II Foged, N., P. A. Marker, A.V. Christansen, P. Bauer-Gottwein, F. Jørgensen, A. Høyer, E. Auken, Large scale 3D-modeling by integration of resistivity and borehole data through inversion, submitted to HESS, January, 2014. III Høyer, A.-S., F. Jørgensen, N. Foged, X. He, and A. V. Christiansen, 2014, Three- dimensional geological modelling of AEM resistivity data - a comparison of two automatic modelling concepts with manual cognitive modelling, submitted to Environmental Modelling & Software, April, 2014. IV Auken, E., A.V. Christiansen, J. A. Westergaard, C. Kirkegaard, N. Foged, and A. Viezzoli, 2009, An integrated processing scheme for high-resolution airborne electromagnetic surveys, the SkyTEM system, Exploration Geophysics, 40, 184-192. V Foged, N., E. Auken, A. V. Christiansen, and K. I. Sørensen, 2013, Test site calibration and validation of airborne and ground based TEM systems, Geophysics, 78, E95-E106. Co-author publications not included in this thesis • Meier, P., T. Kalscheuer, J. E. Podgorski, A. Green, S. Greenhalgh, L. Rabenstein, J. Doetsch, W. Kinzelbach, E. Auken, P. Mikkelsen, N. Foged, B. Jaba, G. Tshoso, and O. I Ntibinyane, 2014, Hydrogeophysical investigations in the western and northern Okavango Delta (Botswana) using electrical resistance tomography (ERT) and transient electromagnetic (TEM) techniques, Submitted to Geophysics 2014. • Auken, E., A. V. Christiansen, C. Kirkegaard, G. Fiandaca, C. Schamper, A. A. Behroozmand, A. Binley, E. Nielsen, F. Effersø, N. B. Christensen, K. I. Sørensen, N. Foged, and G. Vignoli, An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electric and electromagnetic data, Submitted to Exploration Geophysics 2013. • Kirkegaard, C., N. Foged, E. Auken, A. V. Christiansen, and K. I. Sørensen, 2012, On the value of including x-component data in 1D modeling of electromagnetic data from helicopterborne time domain systems in horizontally layered environments, Journal of Applied Geophysics, 84, 64-69. • Pfaffhuber, A. A., E. Grimstad, U. Domaas, E. Auken, N. Foged, and M. Halkjaer, 2010, Airborne EM mapping of rockslides and tunneling hazards, Leading Edge, 29, 956-959. • Christiansen, A. V., E. Auken, N. Foged, and K. I. Sørensen, 2007, Mutually and laterally constrained inversion of CVES and TEM data - A case study, Near Surface Geophysics, 5, 115-124. • Auken, E., A. V. Christiansen, B. H. Jacobsen, N. Foged, and K. I. Sørensen, 2005, Piecewise 1D Laterally Constrained Inversion of resistivity data, Geophysical Prospecting, 53, 497-506. Selected 1st author peer-reviewed abstracts, presented at the confernces: • Foged, N., A. V. Christiansen, and P. A. Marker, 2013, Large-scale automatic generation of hydrological input from resistivities and boreholes, SAGA AEM, South Africa. • Foged, N., E. Auken, P. Nehlig, J. Deparis, and J. Perrin, 2011, Geological Mapping using Airborne TEM at Mayotte, 17th European Meeting of Environmental and Engineering Geophysics, Leicester. • Foged, N., A. V. Christiansen, and E. Auken, 2010, Validating SkyTEM Data Against Ground-based TEM Data at the Danish National Test Site by Upward Continuation, EAGE Zurich. Acknowledgments First of all I would like to thank my supervisor Esben Auken for offering me the opportunity to obtain the PhD degree, for the supervision, and for providing the funding for the PhD project in connection with the STAIR3D-project (funded by Geo- Center Danmark) and the HyGEM-project (funded by the Danish Council for Strategic Research under contract no. DSF 11-116763). I also wish to thank my co-supervisor and colleague Anders V. Christiansen for dedicated teamwork and interaction in the daily research progress. I also wish to emphasize the excellent cooperation with our external partners and co-authors of the publications: Flemming Jørgensen and Anne- Sophie Høyer (GEUS), Pernille Marker and Peter Bauer-Gottwein (DTU). Finally, I sincerely thank my colleagues in the HydroGeophysics Group at Aarhus University, who all, on different levels, have been involved in the research and development carried out within my PhD project. Nikolaj Foged, April 2014 II Table of contents Summary ...................................................................................................................... 1 Summary (Danish) ......................................................................................................... 3 1 Introduction ............................................................................................................ 5 2 Resistivity based petrophysical relationships ........................................................... 7 3 Geological modeling approaches ........................................................................... 13 3.1 Resolution, scale, and uncertainty issues ................................................................................... 13 3.2 Modeling approaches ................................................................................................................. 14 4 Hydrogeophysical mapping – geophysical resistivity methods ................................ 17 4.1 Data accuracy and calibration .................................................................................................... 17 4.2 Airborne EM systems .................................................................................................................. 18 4.3 Ground based systems................................................................................................................ 20 5 Estimating accumulated clay thickness from borehole and resistivity data (paper I) ........................................................................................ 23 5.1 Introduction ................................................................................................................................ 23 5.2 Methodology .............................................................................................................................. 23 5.3 Hadsten field case - results ......................................................................................................... 27 5.4 Discussion ................................................................................................................................... 30 6 Large scale 3D-modeling by integration of resistivity models and borehole data through inversion (paper II) ............................................................ 31 6.1 Methodology .............................................................................................................................. 31 6.2 Results - Norsminde field case .................................................................................................... 33 6.3 Discussion and outlook ............................................................................................................... 36 7 3D geological modeling of AEM resistivity data - a comparison of modeling concepts (paper III) ................................................................................ 39 7.1 Modelling approaches ................................................................................................................ 39 7.2 Model comparison and discussion ............................................................................................. 41 7.3 Conclusion .................................................................................................................................. 43 8 Processing of SkyTEM data (paper IV) .................................................................... 45 8.1 Introduction ................................................................................................................................ 45 8.2 Methodology .............................................................................................................................. 45 III 9 Test site calibration and validation of Airborne and ground-based TEM (Paper V) ................................................................................. 49 9.1 The Danish TEM test site ............................................................................................................. 49 9.2 Test site calibration ..................................................................................................................... 52 9.3 Validation of the SkyTEM-system................................................................................................ 54 9.4 Conclusion ................................................................................................................................... 57 10 Discussion and outlook .......................................................................................... 59 References ................................................................................................................... 63 Appendix 1 Paper I: A concept for calculating accumulated clay thickness from borehole lithological logs and resistivity models for nitrate vulnerability assessment Appendix 2 Paper II: Large scale 3D-modeling by integration of resistivity and borehole data through inversion Appendix 3 Paper III: Three-dimensional geological modelling of AEM resistivity data - a comparison of two automatic modelling concepts with manual cognitive modelling Appendix 4 Paper IV: An integrated processing scheme for high-resolution airborne electromagnetic surveys, the SkyTEM system Appendix 5 Paper V: Test site calibration and validation of airborne and ground based TEM systems IV Summary Increasingly airborne electromagnetic methods are being used to provide large scale and high quality surveys of the upper 300 m of the geological layers. The surveys reveal a detailed and often complex picture of the resistivity distribution of the subsurface. This information is useful when compiling geological and hydrogeological models, since the formation resistivity correlates both to lithology and to hydrological properties, and because borehole data have a low spatial density compared to airborne surveys. To utilize the resistivity surveys in hydrogeological modeling, correlations to geological or hydrological parameters need to be established. These correlations most often need to be site specific to perform a valid and optimum interpretation of the resistivity results. Traditional “manual” geological modeling can be very time consuming when incorporating large scale dense geophysical surveys because of the huge amount of data/information to integrate. Automatic or semi-automatically integrated modeling utilizing both borehole and geophysical resistivity data therefore seems a natural step to take to produce hydrogeological models in a relatively fast and objective way. In this PhD-project a concept has been developed for integration of resistivity and borehole data to set up the structure of large scale hydrogeological models. This concept is automatic and by inversion we determine the optimum translation of the resistivity models into percentage of clay content. The inverse problem determines the parameters of a translator function that gives the best fit between the clay content described in the boreholes and the clay content computed from the resistivity models. A key part in the concept is that the resistivity-to-clay translator function is distributed (it varies in space), thereby taking variation in pore water resistivity, clay mineral content and scaling issues into account in the translation. The concept has been used for various applications. One application is to estimate the accumulative clay thickness of clay layers overlying aquifers. This application is for vulnerability assessment of aquifers. Another application of the modeling concept is an automatic compilation of large scale 3D models, expressing the clay fraction of each voxel in a 3D-model. The 3D clay fraction model can easily be converted to a lithological sand- clay model, incorporating the key information from both the borehole and the resistivity dataset. One of the initial objectives of the integrated modeling concept was to use it to set up large scale hydrogeological models to inform a groundwater model. We have achieved this by making a clustering of the 3D clay fraction model, to form hydrostratigraphic units for the hydrological model. Another part of the PhD work was focused on the importance of high initial data accuracy for the geophysical TEM measurements, where careful data processing, test- site calibration and validation of the instruments are key elements to achieve this. A comprehensive processing scheme for airborne TEM data has been further developed as well as standardized focusing on processing of airborne TEM data from the SkyTEM-system. The developed test-site calibration schemes for airborne and ground based TEM instruments are based on calibration to reference responses. Since the calibration is performed in data space, we obtain a very accurate set of calibration parameters for each instrument. The comprehensive validation of the SkyTEM-system confirmed a high initial data quality and a high quality in the subsequent processing and inversion of the SkyTEM-data. 1 Summary (Danish) Storskalakortlægninger med luftbårne elektromagnetiske metoder (AEM) anvendes i stigende grad i den hydrogeologiske kortlægning. De fladedækkende AEM kortlægninger resulterer i en detaljerede 3D-resistivitetsmodel af de ofte komplekse geologiske strukturer i undergrunden. Denne information er særdeles nyttig i udarbejdelsen af geologiske og hydrogeologiske modeller, dels fordi resistiviteten kan korreleres til litologiske og hydrologiske parametre, dels fordi boringstætheden normalt er for lille til at repræsentere den geologiske kompleksitet. For at anvende resistivitetskortlægningerne i den hydrogeologiske modellering, skal resistivitets- værdierne korreleres til geologiske og/eller hydrologiske parametre. Integrering og tolkning af storskala AEM resistivitetskortlægninger i en traditionel manuel geologisk modelleringsproces er meget tidskrævende. Endvidere er en traditionel ”manuel” geologisk modelleringsproces relativt subjektiv i tolkningen af de geofysiske resultater. Automatiske og semi-automatiske modelleringskoncepter, der integrerer boringsinformation og geofysiske kortlægninger, kan levere et målrettet input til en grundvandsmodel på en relativt hurtig og objektiv måde. I PhD-projekt er der udviklet et modelleringskoncept, der integrerer de geofysiske resistivitetsmodeller og boringer i udarbejdelsen af 3D hydrogeologiske modeller. Konceptet er automatisk og bygger på en lokal oversætter af resistivitetsværdierne til et ler-indhold. Ved inversion bestemmes den mest optimale resistivitet til ler oversætterfunktion. En central del af konceptet er, at oversætterfunktionen kan variere rummeligt, således at den resulterende ler-fraktionsmodel er i overensstemmelse med både de geofysiske modeller og boringerne. Konceptet har forskellige anvendelsesområder. Således er konceptet blevet anvendt til estimering af den akkumulerende lertykkelse til sårbarhedsvurderinger af grundvandsmagasinerne. En anden anvendelse af det automatiske modelleringskoncept er til generering af storskala 3D- lerfraktionsmodeller eller litologiske ler-sand modeller. Et af de oprindelige formål med modellerings-konceptet var automatisk, at kunne generere storskala hydrogeologiske modeller indeholdende hydrostratigrafiske enheder til en grundvandsmodel. Dette er opnået ved at lave en clustering af ler-frationsmodeller. En 3D-model med hydrostratigrafiske enheder er blevet udarbejdet for Norsminde testområdet, og en grundvandsmodelkalibrering af modellen er udført med foreløbige positive resultater til følge. I PhD-forløbet er der også blevet arbejdet med processering, kalibrering og validering af TEM-data og TEM-instrumenter. Dette har bl.a. medført videreudvikling og standardisering af de forskellige processeringsrutiner for AEM-data. Endvidere er der udviklet en kalibreringsprocedure for jordbaserede og luftbårne TEM-instrumenter, der bygger på kalibrering til referencerespons for teststed. Da kalibreringen foretages i data-domænet, opnår vi en meget præcis kalibrering af TEM- instrumenterne. Den udførte validering af SkyTEM-systemet (AEM metode) på baggrund af målinger på teststedet, bekræftede en høj datakvalitet for SkyTEM systemet og en høj kvalitet i den efterfølgende processering og inversion af data. 3

Description:
The main part of the thesis is related to research work carried out with in the last 2-3 years where the candidates work has .. Discussion and outlook .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.