IntegratedSmartMicro-SystemsTowardsPersonalizedHealthcare Integrated Smart Micro-Systems Towards Personalized Healthcare Yu Song Wei Gao Haixia Zhang Authors AllbookspublishedbyWILEY-VCHarecarefully produced.Nevertheless,authors,editors,and Dr.YuSong publisherdonotwarranttheinformation PekingUniversity containedinthesebooks,includingthisbook, InstituteofMicroelectronics tobefreeoferrors.Readersareadvisedtokeep No.5YiheyuanRoad inmindthatstatements,data,illustrations, Beijing100871,China proceduraldetailsorotheritemsmay inadvertentlybeinaccurate. CaliforniaInstituteofTechnology EngineeringandAppiliedScience LibraryofCongressCardNo.:appliedfor 1200EastCaliforniaBoulevard Pasadena,CA91125,UnitedStates BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable Prof.WeiGao fromtheBritishLibrary. CaliforniaInstituteofTechnology EngineeringandAppliedScience Bibliographicinformationpublishedbythe 1200EastCaliforniaBoulevard DeutscheNationalbibliothek Pasadena,CA91125,UnitedStates TheDeutscheNationalbibliothekliststhis publicationintheDeutscheNationalbiblio- Prof.HaixiaZhang grafie;detailedbibliographicdataareavailable PekingUniversity ontheInternetat<http://dnb.d-nb.de>. InstituteofMicroelectronics No.5YiheyuanRoad ©2022WILEY-VCHGmbH,Boschstr.12, Beijing100871,China 69469Weinheim,Germany CoverImage:©toodtuphoto/ Allrightsreserved(includingthoseof Shutterstock translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyothermeans– nortransmittedortranslatedintoamachine languagewithoutwrittenpermissionfromthe publishers.Registerednames,trademarks,etc. usedinthisbook,evenwhennotspecifically markedassuch,arenottobeconsidered unprotectedbylaw. PrintISBN:978-3-527-34940-1 ePDFISBN:978-3-527-83346-7 ePubISBN:978-3-527-83348-1 oBookISBN:978-3-527-83347-4 Typesetting Straive,Chennai,India Printedonacid-freepaper 10 9 8 7 6 5 4 3 2 1 v Contents Preface ix 1 Introduction 1 1.1 OverviewofIntegratedSmartMicro-systems 1 1.1.1 TheProgressofPortableSmartMicro-systems 2 1.1.2 IntegratedSmartMicro-systemsTowardHealthcareMonitoring 4 1.2 ThreeCoreUnitsofSmartMicro-systems 5 1.2.1 TriboelectricNanogenerator(Energy-HarvestingUnit) 5 1.2.2 Solid-StateSupercapacitors(Energy-StorageUnit) 9 1.2.3 StrainSensors(FunctionalSensingUnit) 12 1.3 TheProgressoftheIntegrationofSmartMicro-systems 15 1.3.1 Self-ChargingPowerUnit 16 1.3.2 Self-DrivenMonitorPatch 18 1.3.3 Self-PoweredSensingPlatform 20 1.4 TheProgressofApplicationsofIntegratedSmartMicro-systems 22 1.4.1 Real-TimeHealthMonitoring 22 1.4.2 MultifunctionalHuman–MachineInteraction 24 1.4.3 AssistedPrecisionTherapy 26 1.5 ScopeandLayoutoftheBook 28 1.5.1 ScopeoftheBook 29 1.5.2 LayoutoftheBook 31 Abbreviations 33 References 33 2 CoreUnitsofSmartMicro-systems 39 2.1 TriboelectricNanogeneratorsforEnergyHarvesting 39 2.1.1 Single-electrodeTriboelectricNanogenerator 40 2.1.2 FreestandingTriboelectricNanogenerator 44 2.2 SupercapacitorsforEnergyStorage 50 2.2.1 WearableSupercapacitor 50 2.2.2 PlanarMicro-supercapacitor 54 2.3 PiezoresistiveSensorsforFunctionSensing 61 2.3.1 ConductiveSponge-BasedPiezoresistiveSensor 61 vi Contents 2.3.2 PorousConductiveElastomer-BasedPiezoresistiveSensor 67 2.4 Summary 72 Abbreviations 73 References 74 3 SandwichedSelf-chargingPowerUnit 77 3.1 Self-chargingPowerUnit 77 3.1.1 WorkingPrinciple 78 3.1.2 TheoreticalAnalysis 79 3.2 EnhancementofTENGBasedonSurfaceOptimization 81 3.2.1 FormationMechanismofWrinkleStructure 81 3.2.2 FabricationProcessandMorphologyCharacterization 82 3.3 FlexiblePaperElectrode–BasedSupercapacitor 83 3.3.1 PercolationTheory 84 3.3.2 FlexibleCNT–PaperElectrode 85 3.3.3 FabricationProcessandMorphologyCharacterization 87 3.4 PerformanceCharacterizationofSCPU 88 3.4.1 EvaluationofTENG 88 3.4.2 EvaluationofSC 92 3.4.3 Self-chargingPerformance 93 3.5 ApplicationsofSCPU 94 3.5.1 PowerSupplyforLow-powerElectronics 94 3.5.2 SmartDisplayofElectrochromicDevice 95 3.6 Summary 96 Abbreviations 97 References 98 4 All-in-oneSelf-drivenMonitorPatch 101 4.1 Self-drivenMonitorPatch 102 4.1.1 WorkingPrinciple 102 4.1.2 TheoreticalAnalysis 102 4.2 FabricationProcessofSelf-drivenMonitorPatch 104 4.2.1 “Solution-Evaporation”Method 105 4.2.2 ModulationofParametersandMorphologies 106 4.2.3 IntegratedFabrication 108 4.3 PerformanceCharacterizationofSelf-drivenMonitorPatch 110 4.3.1 EvaluationofPRS 110 4.3.2 EvaluationofMSC 114 4.4 ApplicationsofSelf-drivenMonitorPatch 118 4.4.1 Real-timeHealthMonitoring 118 4.4.2 PersonalizedHuman–MachineInteraction 118 4.4.3 StaticPressureDistributionandDynamicTactileTrajectory 120 4.5 Summary 123 Abbreviations 124 References 125 Contents vii 5 FullyIntegratedSelf-poweredSweat-SensingPlatform 127 5.1 StructuralDesignofSelf-poweredSweat-SensingPlatform 128 5.2 FreestandingTriboelectricNanogenerator 130 5.2.1 WorkingPrincipleandStructuralDesign 130 5.2.2 PerformanceCharacterization 133 5.3 PotentiometricElectrochemicalSensingUnit 135 5.3.1 WorkingPrinciple 136 5.3.2 MicrofluidicStructuralDesign 138 5.3.3 FabricationProcess 139 5.3.4 PerformanceCharacterization 141 5.3.4.1 Sensitivity 141 5.3.4.2 Selectivity 142 5.3.4.3 CyclingRepeatability 142 5.4 System-levelIntegratedCircuitModule 143 5.4.1 SchematicDiagramandOperationFlowAnalysis 145 5.4.2 PerformanceCharacterization 146 5.5 ApplicationsofFullyIntegratedSelf-poweredSweat-Sensing Platform 149 5.5.1 ValidationofFlexibleSensingUnit 149 5.5.2 On-bodyEvaluationforDynamicSweatAnalysis 151 5.6 Summary 155 Abbreviations 156 References 156 6 MultimodalSensingIntegratedHealth-Monitoring System 159 6.1 MultimodalSensingPlatform 160 6.1.1 StructuralDesign 160 6.1.2 FabricationandMorphologyofAll-Laser-EngravedProcess 161 6.2 LEG-basedChemicalSensorforUAandTyrDetection 165 6.2.1 PerformanceCharacterization 165 6.2.2 ReliabilityandSelectivity 168 6.3 LEG-basedPhysicalSensorforVitalSignsMonitoring 171 6.3.1 EvaluationofLEG-basedTemperatureSensor 171 6.3.2 MicrofluidicStructuralDesign 173 6.4 System-LevelCircuityModule 175 6.4.1 DesignandBlockDiagram 176 6.4.2 SignalProcessingandValidation 179 6.5 On-bodyEvaluationofIntegratedHealth-MonitoringSystem 181 6.5.1 SweatAnalysisatDifferentBodyParts 181 6.5.2 MultimodalReal-TimeContinuousInSituMeasurement 183 6.6 Health-MonitoringSystemforNon-invasiveGoutManagement 184 6.6.1 Purine-RichDietsandGout 185 6.6.2 PersonalizedNon-InvasiveGoutManagement 185 viii Contents 6.7 Summary 189 Abbreviations 190 References 190 7 ProgressandPerspectives 193 7.1 TheProgressoftheMicro-systems 193 7.2 PerspectivesoftheMicro-systems 195 Abbreviations 196 References 196 Index 199