ebook img

Integrated design solution of a residential structural insulated panel dwelling PDF

350 Pages·2013·3.03 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Integrated design solution of a residential structural insulated panel dwelling

INTEGRATED DESIGN SOLUTION OF A RESIDENTIAL STRUCTURAL INSULATED PANEL DWELLING Vinh Thi Thuy Doan BSc (Hons), MSc A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Civil Engineering The University of Birmingham October 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract In the transition pathway to low carbon construction, the UK Government affirms the legal commitment by setting ambitious targets that legislated for a reduction of carbon dioxide emissions of 34% by 2020 and 80% by 2050, against 1990 base level. This includes reducing the carbon dioxide emissions, associated with energy use in buildings whereas all new homes are required to be zero carbon by 2016. In parallel, there is a pressing need by 2016 to build 240,000 new homes per year at the affordable price to supply for the UK housing shortage. To supply for the needs of affordable and better quality homes, the Government is committed to promote Modern Method of Construction (MMC). One area where significant development is taking place is through highly insulated and airtight building envelopes. These produce energy efficient designs whilst maintaining a stable thermal condition through low levels of heat loss/gain and air leakage. In addition to reducing the environmental impact of a building, fast-track prefabrication methods have recently been promoted in the UK to speed up the construction process, and reduce wastage and defects. There have been some successes achieved by the use of Structural Insulated Panels (SIPs), a ready insulated and prefabricated product, as part of the MMC that offers positive benefits in energy efficiency. However, detailed field performance of SIP units are still relatively rare in the UK, and issues related to thermal bridging and other as-built effects on thermal performance coupled to lack of ventilation potential have not been fully assessed. Thus there is a need to monitor SIPs unit throughout heating and cooling cycles to understand what the potential energy demand patterns will be and thus enable suitable design and energy strategies to be developed, optimising the considerable potential benefits SIPs unit provide. These have been assessed by a systematic post construction evaluation of a SIP based dwelling covering analytical verification, thermo-dynamic computer simulation, and field experimental work. This is the first time that this kind of systematic post construction evaluation of a SIP based dwelling has been undertaken in the UK. Focus throughout was on generating post construction performance data, which have been used to validate and verify models developed in simulation software to understand how gap between design and post construction performance can be closed. Consideration of a SIP based product was particularly important as this solved a number of challenges i faced by the UK housing sector, particularly the need for cost effective and energy efficient solutions whose performance under a range of changing conditions or orientations can be predicted. ii Acknowledgements Moving from a career as a structural engineer, I could not have completed this thesis without the help of many amazing people. I would like to express my sincere gratitude to Professor Mark Gaterell for his invaluable support, supervision and suggestions throughout this study. I thank him for his guidance in directing my doctoral study, practical experiences and the innovative ideas he suggested that have all helped me throughout my research. I am also indebted to Dr Ian Jefferson for his continuous encouragement and support, his valuable advice and comments, without which I might not have been able to complete the study. I would like to thank Paul Chadwick, for without his support, this project would not have happened. Special thanks to Dr. Colin Oram, at the School of Engineering of the University of Warwick for his enormous help in conducting the building air leakage tests and for sharing his in-depth knowledge of building ventilation measurements. I thank also my friends in room F59B, at the School of Civil Engineering of the University of Birmingham, for stimulating conversations, continuous encouragement and friendship over the years. I thank, too, Dr. Rob Liddiard for discussions of the research and much-needed motivation. Great thanks go to the generous scholarship provided by the Dorothy Hodgkin Postgraduate Award, joint-funded by the Engineering and Physical Sciences Research Council and E.On, and to the University of Birmingham for its generous support, which together allowed me to undertake and complete my research. iii iv Contents Abstract .............................................................................................................................. i  Acknowledgements .......................................................................................................... iii  Contents ............................................................................................................................ v  List of Tables ................................................................................................................... xi  List of Figures ................................................................................................................ xiv  Abbreviations and Acronyms ........................................................................................ xvii  Chapter 1:  INTRODUCTION .................................................................................... 1  1.1  BACKGROUND .............................................................................................. 1  1.2  PROBLEM STATEMENT ............................................................................... 2  1.3  RESEARCH AIMS AND OBJECTIVES ......................................................... 2  1.4  SCOPE OF RESEARCH .................................................................................. 4  1.5  NOVELTY ........................................................................................................ 4  Chapter 2:  UK HOUSING CONTEXT ...................................................................... 5  2.1  HOUSING CONSTRUCTION IN THE UK .................................................... 6  2.1.1  Legislative challenges ................................................................................... 7  2.1.2  Building practice challenges ....................................................................... 10  2.1.3  Social challenges ......................................................................................... 12  2.2  NEW BUILD PRACTICES ............................................................................ 14  2.2.1  Regulatory Compliances and Building Standards ...................................... 14  2.2.1.1  Building Regulations – Approved Documents part L1A .................... 15  2.2.1.2  Standard Assessment Procedure (SAP) .............................................. 16  2.2.1.3  Code for Sustainable Homes ............................................................... 18  2.2.1.4  Energy Saving Trust Practices ............................................................ 20  2.2.1.5  Passivhaus ........................................................................................... 21  2.2.2  Reducing building environmental impact ................................................... 23  2.2.2.1  Modern Methods of Construction in housing (MMC) ........................ 23  2.2.2.2  Passive design ..................................................................................... 24  2.2.2.3  Life cycle assessment .......................................................................... 25  2.3  STRUCTURAL INSULATED PANELS ....................................................... 31  2.3.1  Benefits ....................................................................................................... 31  2.3.2  Drawbacks ................................................................................................... 33  2.3.3  Knowledge gap ........................................................................................... 34  2.4  SUMMARY .................................................................................................... 36  v Chapter 3:  LITTERATURE REVIEW ..................................................................... 39  3.1  SIP BUILDING PERFORMANCE ................................................................ 40  3.1.1  Previous studies........................................................................................... 41  3.1.2  Novelty of the project ................................................................................. 43  3.2  METHODOLOGY.......................................................................................... 43  3.2.1  Simulation ................................................................................................... 44  3.2.1.1  Building performance simulation tools ............................................... 44  3.2.1.2  Criteria of selection ............................................................................. 46  3.2.2  Testing and Monitoring ............................................................................... 48  3.2.2.1  Background ......................................................................................... 48  3.2.2.2  Instrumentation and testing methodologies ........................................ 49  3.2.3  Validation techniques .................................................................................. 53  3.2.3.1  Background ......................................................................................... 53  3.2.3.2  Method ................................................................................................ 54  3.3  SELECTED METHODOLOGY..................................................................... 54  3.3.1  Selection of BPS tool .................................................................................. 54  3.3.2  Monitoring .................................................................................................. 55  3.3.3  Validation .................................................................................................... 57  3.3.3.1  Analytical validation ........................................................................... 57  3.3.3.2  Empirical calibration ........................................................................... 58  Chapter 4:  CASE STUDY: ERGOHOME DWELLING ......................................... 59  4.1  OVERVIEW ................................................................................................... 59  4.2  BUILDING DESCRIPTION .......................................................................... 61  4.2.1  Constructional information ......................................................................... 64  4.2.2  Thermal properties of the fabric of building envelope ............................... 66  4.3  BUILDING SIMULATION ........................................................................... 68  4.3.1  Analytical verification using CIBSE Simple Model ................................... 68  4.3.2  Analytical verification using CIBSE Cyclic model .................................... 70  4.4  TESTING AND MONITORING.................................................................... 72  4.4.1  Air leakage testing ...................................................................................... 72  4.4.2  Long term monitoring ................................................................................. 73  4.4.2.1  Data monitoring at initial stage ........................................................... 73  4.4.2.2  Monitoring with equipment at new locations ..................................... 78  4.4.2.3  Weather station and data treatment ..................................................... 79  4.5  EMPERICAL CALIBRATION ...................................................................... 80  4.6  SUMMARY .................................................................................................... 89  vi Chapter 5:  SIMULATION DEVELOPMENT ......................................................... 91  5.1  WEATHER DATA ......................................................................................... 92  5.2  OCCUPANCY FACTOR ............................................................................... 93  5.2.1  Occupancy profile ....................................................................................... 94  5.2.2  Household appliance profile ....................................................................... 95  5.2.3  Lighting profile ........................................................................................... 98  5.2.4  Heating profile .......................................................................................... 101  5.2.5  Domestic Hot Water consumption ............................................................ 103  5.3  PREDICTED BUILDING PERFORMANCE .............................................. 103  5.3.1  Trickle ventilator performance .................................................................. 104  5.3.2  Thermal performance ................................................................................ 107  5.3.3  Ventilation performance............................................................................ 109  5.3.3.1  Overheating risk assessment ............................................................. 110  5.3.3.2  Comfort benchmark for natural ventilated building .......................... 112  5.3.4  Lighting performance ................................................................................ 115  5.4  SUMMARY .................................................................................................. 118  Chapter 6:  INVESTIGATION FOR IMPROVEMENT ......................................... 119  6.1  SIMULATION DEVELOPMENT STRATEGIES ...................................... 119  6.2  INTERVENTIONS FOR REDUCING COOLING LOAD ......................... 122  6.2.1  Shading devices ......................................................................................... 123  6.2.1.1  Fixed overhang .................................................................................. 124  6.2.1.2  External shutter ................................................................................. 130  6.2.1.3  Internal shading device ..................................................................... 130  6.2.1.4  Solar control glass ............................................................................. 131  6.2.2  Integrated thermal mass ............................................................................ 133  6.2.2.1  Production selection .......................................................................... 134  6.2.2.2  Simulate PCM on building envelope ................................................ 135  6.2.2.3  Results of cooling performance PCM ............................................... 137  6.3  INTERVENTIONS FOR REDUCING HEATING LOADS ....................... 138  6.3.1  Improved building fabric .......................................................................... 139  6.3.1.1  Improved building fabric meeting Passivhaus criteria ...................... 140  6.3.1.2  Simulation results .............................................................................. 141  6.3.2  Mechanical Ventilation Heat Recovery system ........................................ 143  6.3.2.1  Design and system selection and simulation information input........ 144  6.3.2.2  Simulation results .............................................................................. 147  6.4  FURTHER DEVELOPMENT ...................................................................... 148  vii

Description:
of the clothed human body to any diffuse solar radiation reflected from the . ArchiCAD. Clothes worn vary within seasons, outdoor and indoor.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.