ebook img

Integrated Design by Optimization of Electrical Energy Systems PDF

301 Pages·2012·11.982 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Integrated Design by Optimization of Electrical Energy Systems

Integrated Design by Optimizationof Electrical Energy Systems Integrated Design by Optimization of Electrical Energy Systems Edited by Xavier Roboam Firstpublished2012inGreatBritainandtheUnitedStatesbyISTELtdandJohnWiley&Sons,Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permittedundertheCopyright,DesignsandPatentsAct1988,thispublicationmayonlybereproduced, storedortransmitted,inanyformorbyanymeans,withthepriorpermissioninwritingofthepublishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentionedaddress: ISTELtd JohnWiley&Sons,Inc. 27-37StGeorge’sRoad 111RiverStreet LondonSW194EU Hoboken,NJ07030 UK USA www.iste.co.uk www.wiley.com ©ISTELtd2012 TherightsofXavierRoboamtobeidentifiedastheauthorofthisworkhavebeenassertedbyhimin accordancewiththeCopyright,DesignsandPatentsAct1988. BritishLibraryCataloguing-in-PublicationData ACIPrecordforthisbookisavailablefromtheBritishLibrary ISBN:978-1-84821-389-0 PrintedandboundinGreatBritainbyCPIGroup(UK)Ltd.,Croydon,SurreyCR04YY Table of Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Chapter1.MissionandEnvironmentalDataProcessing. . . . . . . . . . . . 1 AmineJAAFAR,BrunoSARENIandXavierROBOAM 1.1.Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2.Considerationsofthemissionandenvironmentalvariables . . . . . . . 3 1.2.1.Missionrepresentationthroughanominaloperatingpoint . . . . . 4 1.2.2.Extractionofa“sizing”temporalchronogram. . . . . . . . . . . . . 4 1.2.3.Representationofanenvironmentalvariable ormissionresultingfromstatisticalanalysis. . . . . . . . . . . . . . . . . . 5 1.3.Newapproachforthecharacterization ofa“representativemission” . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1.Characterizationindicatorsofthemission andenvironmentalvariables . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.2.Missionandenvironmentalvariables attheheartofthesystem:aneminentlysystemic bidirectionalcoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4.Classificationofmissionsandenvironmentalvariables. . . . . . . . . . 16 1.4.1.Classificationwithoutaprioriassumption onthenumberofclasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4.2.Missionclassificationforhybridrailwaysystems. . . . . . . . . . . 18 1.5.Synthesisofmissionandenvironmentalvariableprofiles . . . . . . . . 21 1.5.1.Missionorenvironmentalvariablesynthesisprocess. . . . . . . . . 21 1.5.2.Elementarypatternsforprofilegeneration . . . . . . . . . . . . . . . 23 1.5.3.Applicationtothecompactingofawindspeedprofile. . . . . . . . 24 1.6.Fromclassificationtosimultaneousdesignbyoptimization ofahybridtractionchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.6.1.Modelingofthehybridlocomotive . . . . . . . . . . . . . . . . . . . 27 vi IntegratedDesign 1.6.2.Optimizationmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.6.3.Missionclassification . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.6.4.Synthesisofrepresentativemissions . . . . . . . . . . . . . . . . . . 33 1.6.5.Simultaneousdesignbyoptimization . . . . . . . . . . . . . . . . . . 37 1.6.6.Designresultscomparison . . . . . . . . . . . . . . . . . . . . . . . . 38 1.7.Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1.8.Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Chapter2.AnalyticalSizingModelsforElectrical EnergySystemsOptimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ChristopheESPANET,DanielDEPERNET,Anne-ClaireSAUTTER andZhenwaiWU 2.1.Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2.Theproblemofmodelingforsynthesis . . . . . . . . . . . . . . . . . . . 46 2.2.1.Modelingforsynthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.2.2.Analyticalandnumericalmodeling . . . . . . . . . . . . . . . . . . . 48 2.3.Systemdecompositionandmodelstructure. . . . . . . . . . . . . . . . . 55 2.3.1.Advantageofdecomposition . . . . . . . . . . . . . . . . . . . . . . . 56 2.3.2.Applicationtotheexampleofthehybrid series-paralleltractionchainforthehybridelectricalheavyvehicle. . . . 58 2.4.Generalinformationaboutthemodelingofthevarious possiblecomponentsinanelectricalenergysystem . . . . . . . . . . . . . . 60 2.5.Developmentofanelectricalmachineanalyticalmodel . . . . . . . . . 61 2.5.1.Thevariousphysicalfieldsofthemodel andtheassociatedmethodsforsolvingthem . . . . . . . . . . . . . . . . . 62 2.5.2.Applicationtotheexampleofahybridelectrical heavyvehicle:modelingofamagnetsurface-mounted synchronousmachine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.6.Developmentofananalyticalstaticconvertermodel . . . . . . . . . . . 73 2.6.1.Thevariousphysicalfieldsofthemodel andassociatedresolutionmethods. . . . . . . . . . . . . . . . . . . . . . . . 73 2.6.2.Applicationtotheexampleofahybridelectrical heavyvehicle:modelingofinverters feedingsynchronousmachines. . . . . . . . . . . . . . . . . . . . . . . . . . 75 2.7.Developmentofamechanicaltransmissionanalyticalmodel . . . . . . 82 2.7.1.Thevariousphysicalfieldsofthemodel andassociatedresolutionmethods. . . . . . . . . . . . . . . . . . . . . . . . 82 2.7.2.Applicationtotheexampleofahybridelectric heavyvehicle:modelingoftheRavigneauxgearset. . . . . . . . . . . . . 83 2.8.Developmentofananalyticalenergystoragedevicemodel . . . . . . . 91 2.9.Useofmodelsfortheoptimumsizingofasystem. . . . . . . . . . . . . 91 2.9.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 TableofContents vii 2.9.2.Considerationofoperatingcycles . . . . . . . . . . . . . . . . . . . . 94 2.9.3.Independentcomponentoptimization. . . . . . . . . . . . . . . . . . 97 2.9.4.Simultaneouscomponentoptimization . . . . . . . . . . . . . . . . . 100 2.10.Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 2.11.Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Chapter3.SimultaneousDesignbyMeans ofEvolutionaryComputation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 BrunoSARENIandXavierROBOAM 3.1.Simultaneousdesignofenergysystems . . . . . . . . . . . . . . . . . . . 107 3.1.1.Introductiontosimultaneousdesign. . . . . . . . . . . . . . . . . . . 107 3.1.2.Simultaneousdesignbymeansofoptimization . . . . . . . . . . . . 109 3.1.3.Problemsrelatingtosimultaneousdesignusingoptimization. . . . 110 3.2.Evolutionaryalgorithmsandartificialevolution. . . . . . . . . . . . . . 113 3.2.2.Evolutionaryalgorithmsprinciple. . . . . . . . . . . . . . . . . . . . 114 3.2.3.Keypointsofevolutionaryalgorithms . . . . . . . . . . . . . . . . . 115 3.3.Considerationofmultipleobjectives. . . . . . . . . . . . . . . . . . . . . 119 3.3.1.Paretooptimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 3.3.2.Multi-objectiveoptimizationmethods. . . . . . . . . . . . . . . . . . 120 3.3.3.Multi-objectiveevolutionaryalgorithms . . . . . . . . . . . . . . . . 121 3.4.Considerationofdesignconstraints. . . . . . . . . . . . . . . . . . . . . . 123 3.4.1.Singleobjectiveproblem . . . . . . . . . . . . . . . . . . . . . . . . . 123 3.4.2.Multi-objectiveproblem. . . . . . . . . . . . . . . . . . . . . . . . . . 125 3.5.Integrationofrobustnessintothesimultaneousdesignprocess . . . . . 126 3.5.1.Robustdesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 3.5.2.Vicinityanduncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . 127 3.5.3.Characterizationofrobustness . . . . . . . . . . . . . . . . . . . . . . 128 3.6.Exampleapplications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 3.6.1.Designofapassivewindturbinesystem . . . . . . . . . . . . . . . . 130 3.6.2.Simultaneousdesignofanautonomoushybridlocomotive . . . . . 143 3.7.Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 3.8.Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Chapter4.Multi-LevelDesignApproachesfor Electro-MechanicalSystemsOptimization . . . . . . . . . . . . . . . . . . . . 155 StéphaneBRISSET,FrédéricGILLONandPascalBROCHET 4.1.Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 4.2.Multi-levelapproaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 4.3.Optimizationusingmodelswithdifferentgranularities. . . . . . . . . . 160 4.3.1.PrincipleofSM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 4.3.2.Mathematicalexample. . . . . . . . . . . . . . . . . . . . . . . . . . . 164 viii IntegratedDesign 4.3.3.SMvariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 4.3.4.Safetytransformerapplication . . . . . . . . . . . . . . . . . . . . . . 172 4.4.Hierarchicaldecompositionofanoptimizationproblem . . . . . . . . . 178 4.4.1.Targetcascadingforoptimaldesign. . . . . . . . . . . . . . . . . . . 178 4.4.2.FormulationoftheTCmethod. . . . . . . . . . . . . . . . . . . . . . 180 4.4.3.Mathematicalexample. . . . . . . . . . . . . . . . . . . . . . . . . . . 183 4.4.4.Railwaytractionengineexample. . . . . . . . . . . . . . . . . . . . . 186 4.5.Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 4.6.Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 Chapter5.Multi-criteriaDesignandOptimizationTools . . . . . . . . . . . 193 BenoitDELINCHANT,LaurenceESTRABAUD,LaurentGERBAUDand FrédéricWURTZ 5.1.TheCADESframework:exampleofanewtoolsapproach . . . . . . . 194 5.2.Thesystemapproach:abreakfromstandardtools. . . . . . . . . . . . . 195 5.2.1.Somecomponentdefinitions . . . . . . . . . . . . . . . . . . . . . . . 196 5.2.2.Fromintegratedenvironmentstocollaborative toolframeworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 5.2.3.Acenteredmodelcanvas:fromgenerationtoutilization. . . . . . . 198 5.2.4.Some“business”applicationframeworks . . . . . . . . . . . . . . . 201 5.3.Componentsensuringinteroperabilityaroundaframework . . . . . . . 203 5.3.1.Modeltypes:whitebox,blackbox . . . . . . . . . . . . . . . . . . . 203 5.3.2.Blackboxes:positivecollaborationandre-use . . . . . . . . . . . . 205 5.3.3.Object,component,andserviceparadigms. . . . . . . . . . . . . . . 206 5.3.4.ICArsoftwarecomponents:modelnormalizationforsizing . . . . 209 5.4.Somecalculationmodelingformalismsforoptimization. . . . . . . . . 210 5.4.1.Analyticalformalisms:algebraicandalgorithmic. . . . . . . . . . . 210 5.4.2.Physicalmodelswithinvariousformalisms . . . . . . . . . . . . . . 213 5.4.3.Thegenerationchain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 5.5.TheprinciplesofautomaticJacobiangeneration. . . . . . . . . . . . . . 218 5.5.1.TheJacobian:complementarydataforthemodel. . . . . . . . . . . 218 5.5.2.Derivationofmathematicalexpressions . . . . . . . . . . . . . . . . 219 5.5.3.Algorithmderivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 5.5.4.Derivationofspecificformulations . . . . . . . . . . . . . . . . . . . 222 5.6.ServicesusingmodelsandtheirJacobian. . . . . . . . . . . . . . . . . . 223 5.6.1.Sensitivitystudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 5.6.2.Compositionofmodels . . . . . . . . . . . . . . . . . . . . . . . . . . 224 5.6.3.Optimaldesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 5.7.ApplicationsofCADESinsystemoptimization. . . . . . . . . . . . . 227 5.7.1.Overalloptimizationofastructure. . . . . . . . . . . . . . . . . . . . 227 5.7.2.Evaluationofthepotentialofastructure . . . . . . . . . . . . . . . . 229 5.7.3.Comparisonbetweenstructures . . . . . . . . . . . . . . . . . . . . . 230 TableofContents ix 5.8.Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 5.8.1.Towardsoptimizationusingdynamicmodeling. . . . . . . . . . . . 231 5.8.2.Towardsrobustdesign. . . . . . . . . . . . . . . . . . . . . . . . . . . 233 5.8.3.Robustoptimizationunderreliabilityconstraints . . . . . . . . . . . 234 5.8.4.TowardstheInternet. . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 5.9.Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 5.10.Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 Chapter6.Technico-economicOptimizationofEnergyNetworks. . . . . . 247 GuillaumeSANDOU,PhilippeDESSANTE,MarcPETIT andHenriBORSENBERGER 6.1.Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 6.2.Energynetworkmodeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 6.2.1.Context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 6.2.2.Notations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 6.2.3.Objectivefunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 6.2.4.Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 6.2.5.Expressionoftheproblemandeventuallinearreformulation. . . . 253 6.2.6.Positionoftheproblemprocessedrelativetotheproblem ofenergynetworkmanagement . . . . . . . . . . . . . . . . . . . . . . . . . 254 6.3.Resolutionoftheenergynetworkoptimizationproblem foradeterministiccase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 6.3.1.Stateoftheart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 6.3.2.Resolutionbydynamicprogramming andLagrangianrelaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 6.3.3.Resolutionbygeneticalgorithm . . . . . . . . . . . . . . . . . . . . . 262 6.4.Introductiontouncertaintyconsideration . . . . . . . . . . . . . . . . . . 266 6.4.1.Considerationofuncertainties . . . . . . . . . . . . . . . . . . . . . . 266 6.4.2.Recoursenotion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 6.5.Considerationofuncertaintiesonconsumerdemand . . . . . . . . . . . 269 6.5.1.Safetymargin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 6.5.2.Scenariotreeuncertaintymodeling . . . . . . . . . . . . . . . . . . . 269 6.5.3.Resolutionbydynamicprogrammingand Lagrangianrelaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 6.5.4.Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 6.6.Considerationofuncertaintiesoverproductioncosts . . . . . . . . . . . 273 6.6.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 6.6.2.Mathematicalformulation. . . . . . . . . . . . . . . . . . . . . . . . . 274 6.6.3.Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 6.6.4.Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 6.7.Fromoptimizationtocontrol . . . . . . . . . . . . . . . . . . . . . . . . . 279 6.7.1.Thepredictiveapproachprinciple . . . . . . . . . . . . . . . . . . . . 279 x IntegratedDesign 6.7.2.Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 6.8.Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 6.9.Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 ListofAuthors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 Preface The increasingly competitive field of system design is driving designers to produce ever more efficient systems, minimizing investment, and ownership costs. The analysis, synthesis, and management methods presented in the book Systemic Design Methodologies for Electrical Energy Systems by the same editor and published by ISTE, and John Wiley and Sons, clearly contribute to the optimization of energy systems. However, the techniques, algorithms, and optimization tools explained in this book enable us to elucidate performance, as the number of inter-element and inter- domain couplings and interactions between the system and its mission and environment complicate the designer’s task. The process of design by optimization, which consists of coupling a model to an optimization algorithm using software, is thus most useful. Multiple criteria, traditionally optimized for energy systems, involve geometry (mass or volume), energy efficiency (loss, consumption, pollution), and dynamic performance. These criteria are optimized under different constraintsrelated to quality (harmonic content, electromagnetic compatibility (EMC)), stability, and technological consistency (thermal, magnetic, etc.). The inherent costs obviously need to be consideredandenablecouplingofvarioushighly heterogeneouspointsof view:optimizationthusbecomestechnico-economic. Even whileintensiveresearchanddevelopmentinthisareacontinues,we see now how systems analysis through system simulation has matured, with the development of some particularly effective tools and solvers, such as Matlab/Simulink©, Saber©, Simplorer©, Modelica/Dymola© and VHDL- AMS. The use of virtual prototyping has thus become commonplace in industry to accelerate design cycles and minimize costs. The aeronautics industry is a particularly typical example of this, with the European MOET

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.