ebook img

Integrated Common and Differential Mode Filters with Active Damping for Active Front End Motor ... PDF

147 Pages·2011·4.71 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Integrated Common and Differential Mode Filters with Active Damping for Active Front End Motor ...

Integrated Common and Differential Mode Filters with Active Damping for Active Front End Motor Drives A Thesis Submitted for the Degree of Master of Science in the Faculty of Engineering By Anirudh Acharya B Department of Electrical Engineering Indian Institute of Science Bangalore - 560 012 India January 2011 Acknowledgements Any accomplishment in any walk of life is a collective effort - some contribute directly and few indirectly. Hence I would like to mention a few who influenced, enthused, guided and helped me to bring out this thesis. At the outset, I would like to record my gratitude to my advisor Dr. Vinod John for acceptingmeasastudentofPowerElectronicsGroup. Hisenthusiasm, guidanceandconcern throughout my research have made my stay at IISc a memorable and cherishable moment in my life. Apart from being a great teacher and a guide, his student centric approach with grace and humility has been a great inspiration to me. I owe my deepest gratitude to Dr. V. Ramanarayanan for sharing his wisdom inside and outside the class room. His thought provoking ideas and simplistic approaches to complex problems have influenced my research in a great way. I am grateful to (late) Dr. V.T. Ranganathan for his lectures in Electric Drives and for his advice during my research. His ideas, humble nature and simplicity have been a true inspiration. I am thankful to Dr. G. Narayanan for his support and encouragement from initial to final level of my research. I am grateful for all the guidance and concern he has showed towards me during my research. I am thankful to Dr. G. K. Purushothama (MCE, Hassan), for his constant encourage- ment and advice to pursue higher studies. I am indebted to all friends in Power Electronics Group for their support, stimulating discussions and valuable inputs. I am thankful to Mr. Ravi, Mr. Ramachandran and the other workshop staff for their help in building my hardware and Mrs. Silvi Jose for the support extended in procuring components. I also extend my thanks to Mr. D. M. Channe Gowda and his team at EE offce for the smooth conduct of administrative activities. I am thankful to my former colleagues of Mindtree for their encouragement and support for pursuing higher studies. This thesis would not have been possible without the continuous support of my family for which I remain thankful. I am indebted to all who directly, indirectly helped me in this accomplishment. i ii Acknowledgements Abstract IGBT based power converters acts as front end in the present day Adjustable Speed Drive (ASD). This offers many advantages and makes regenerative action possible. PWM rectifier operation produces electrically noisy DC bus on common mode basis. This results in higher ground current as compared to three phase diode bridge rectifier. Due to fast turn-ON and turn-OFFtimeofIGBT,theinverteroutputvoltagedv/dtishighduringswitchingtransients and voltage waveform is rich in harmonics. As a result, in applications involving long cable the motor terminal voltage during the switching transient is as high as twice the applied voltage. This voltage stress reduces the life of insulation in motors. The high dv/dt output voltage applied at the motor terminal excites the parasitic capacitive coupling resulting in increased ground currents and causes Electric Discharge Machining (EDM) which reduces the life of motor bearings. The common mode voltage due to PWM rectifier and the inverter appear at the motor terminals exacerbating these problems. The common mode voltage due to PWM inverter with AFE converter is analyzed. An integrated approach for filter design is proposed wherein the adverse effects due to common mode voltage of both AFE converter and the inverter is addressed. The proposed topol- ogy addresses the problems of common mode voltage, common mode current and voltage doubling due to ASD. The design procedure for proposed filter topology is discussed with experimental results that validate the effectiveness of the filter. Inclusion of such higher order filter in the converter topology leads to problems such as resonance. Passive methods are investigated for damping the line resonance due to LCL filter and common mode resonance due to common mode filter. The need for active damping technique for resonance due to common mode filter is presented. State space based damping technique is proposed to effectively damp the resonance due to line filter and the common mode filter. Experimental results are presented that validate the effectiveness of active damping both on the line basis (differential mode) and line to ground basis (common mode) of the filter. iii iv Abstract Contents Acknowledgements i Abstract iii List of Tables viii List of Figures ix 1 Introduction 1 1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Voltage Doubling at Motor Terminal . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Effect of High Frequency Common Mode Voltage on Motor . . . . . . . . . . 7 1.4 Common Mode Voltage due to Power Converter . . . . . . . . . . . . . . . . 8 1.5 Mitigation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.6 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.6.1 Passive Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.6.1.1 Output Reactor . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.6.1.2 Common Mode Filter . . . . . . . . . . . . . . . . . . . . . 13 1.6.1.3 Sine Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.6.1.4 Clamp Filters . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.6.2 Active Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.7 Other Mitigation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.7.1 Increasing Insulation Grade . . . . . . . . . . . . . . . . . . . . . . . 17 1.7.2 Insulated Bearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.7.3 Grounding Shaft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.7.4 Conductive Lubricant . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.7.5 Electro-statically Shielded Motor . . . . . . . . . . . . . . . . . . . . 18 1.7.6 ASD Carrier Setting and PWM Techniques . . . . . . . . . . . . . . . 18 1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 v vi Contents 2 Filter Design 21 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 High Frequency Behavior of Induction Motor . . . . . . . . . . . . . . . . . . 21 2.2.1 HF behavior of IM on Differential Mode . . . . . . . . . . . . . . . . 24 2.2.2 HF behavior of IM on Common Mode . . . . . . . . . . . . . . . . . 28 2.3 Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.1 Filter Design Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.1.1 Design Objectives for Motor Filter . . . . . . . . . . . . . . 31 2.3.1.2 Design Objectives For Common Mode DC Bus Filter . . . . 32 2.4 Principle and Design of dv/dt Filter . . . . . . . . . . . . . . . . . . . . . . . 34 2.4.1 Working of dv/dt Filter . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4.2 Design of dv/dt Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4.2.1 Design of Snubber Circuit . . . . . . . . . . . . . . . . . . . 41 2.5 Common Mode Circuit of AFE Converter . . . . . . . . . . . . . . . . . . . 45 2.6 Design of Common Mode Filter for AFE Converter . . . . . . . . . . . . . . 48 2.6.1 Selection of Filter Capacitor C and C . . . . . . . . . . . . . . . 49 y Mg 2.6.1.1 Common Mode Circuit of Proposed Topology . . . . . . . . 53 2.7 Design Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3 Active Damping 61 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.2 Transfer Function Analysis of LCL Filter . . . . . . . . . . . . . . . . . . . . 61 3.3 Passive Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.3.1 Differential Mode Damping . . . . . . . . . . . . . . . . . . . . . . . 62 3.3.2 Common Mode Damping . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.4 State Space Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.4.1 LCL Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.4.2 Common Mode Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.5 Active Damping Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.5.1 State Space Control Law . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.5.2 Control Gain Formula . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.5.2.1 LCL Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.5.2.2 CM Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.5.2.3 Sampling Technique . . . . . . . . . . . . . . . . . . . . . . 75 3.6 Analysis in Discrete Time Domain . . . . . . . . . . . . . . . . . . . . . . . . 76 3.6.1 Discrete Time Representation . . . . . . . . . . . . . . . . . . . . . . 76 Contents vii 3.6.2 Closed Form Expression for Φ and Γ . . . . . . . . . . . . . . . . . . 76 3.6.2.1 Expressing Φ and Γ in terms of Filter Parameters . . . . . . 78 3.7 Reduced order estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.8 Design Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4 Experimental Results 85 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2 Experimental Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.3 Voltage Doubling at Motor Terminals . . . . . . . . . . . . . . . . . . . . . . 86 4.4 Mitigation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.4.1 L filter at Inverter Terminals . . . . . . . . . . . . . . . . . . . . . . . 87 4.4.2 dv/dt Filter at Inverter Terminals . . . . . . . . . . . . . . . . . . . . 87 4.4.2.1 Working of dv/dt Filter . . . . . . . . . . . . . . . . . . . . 89 4.4.2.2 Effectiveness of dv/dt Filter . . . . . . . . . . . . . . . . . . 93 4.5 Common Mode DC Bus Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.5.1 Traditional Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.5.2 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.6 CM Voltage at Motor Terminals . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.7 Active Damping using State Space Method . . . . . . . . . . . . . . . . . . . 106 4.7.1 Effect of Moving Average Filter . . . . . . . . . . . . . . . . . . . . . 106 4.7.2 Resonance Damping due to LCL filter . . . . . . . . . . . . . . . . . 106 4.7.3 Resonance Damping due to CM Filter . . . . . . . . . . . . . . . . . 108 4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5 Conclusion 113 5.1 Summary of Present Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.2 Suggestions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 A Per Unit System 117 B Guideline from NEMA MG Part 31 121 C Experimental Setup 123 References 127 List of Tables 1.1 The switching states, pole voltages and common mode voltage magnitude . . 10 2.1 Net impedance of the winding for different DM configurations with identical winding assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2 Thebehaviorofmotorwith100mlongcableandparasiticcapacitancebetween theturnsobtainedfordifferentialmodeconfigurationforYconnectedwinding, the leakage inductance is obtained using no-load and blocked rotor tests . . . 28 2.3 Design constraints and governing design variable for dv/dt filter . . . . . . . 36 2.4 Base Value used for calculations ActualValue = PerUnit×BaseValue . . . 57 2.5 Parameters for Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.6 Designed value of filter parameter . . . . . . . . . . . . . . . . . . . . . . . . 58 3.1 Value of α and α for different sampling time . . . . . . . . . . . . . . . . . 82 1 2 3.2 Value of Φ and Γ for different sampling time . . . . . . . . . . . . . . . . . . 82 3.3 Values of gain matrix coefficients . . . . . . . . . . . . . . . . . . . . . . . . 83 4.1 Reference to different experimental configuration and results . . . . . . . . . 85 4.2 Converter parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.3 The ground current, inverter output voltage dv/dt, voltage between neutral point M to ground V with and without dv/dt filter and CM bus filter. . . . 111 Mg C.1 Controller Parameter for system ratings indicated in Table. 4.2 . . . . . . . . 124 viii List of Figures 1.1 The common mode and differential mode voltages and currents in a power circuit with motor load connected. . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 The characteristic impedance of cable and load with source. . . . . . . . . . 4 1.3 Motor cross-section showing shaft voltage and circulating current. . . . . . . 7 1.4 Parasitic capacitor associated with the motor. . . . . . . . . . . . . . . . . . 8 1.5 The inverter with diode bridge rectifier front end. . . . . . . . . . . . . . . . 9 1.6 Waveforms illustrating (a) CMV due to drive inverter alone and (b) resulting CMC due to presence of parasitic capacitance. (c) CMV due to AFE rectifier switching at higher frequency than inverter (d) CMV due to combined effect ofinverterandAFErectifier(e)CMCwithAFErectifierASDduetopresence of parasitic capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.7 dv/dt reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.8 Sine filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.9 Basic sine filter with neutral point connected to DC bus mid-point O . . . . 15 1.10 Basic sine filter with neutral point connected to DC bus positive and negative rail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.11 dv/dt filter topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.12 A variant of dv/dt filter topology. . . . . . . . . . . . . . . . . . . . . . . . . 16 1.13 The common mode voltage at motor neutral due to AZSPWM1 . . . . . . . 19 2.1 Three phase Y-connected stator winding with parasitic capacitance. . . . . . 22 2.2 (a) Turn-turn parasitic capacitance associated with the single winding (b) turn-turn, turn- ground parasitic capacitance associated with the single winding 22 2.3 Impedance plot for Y connected DM arrangement of stator windings. . . . . 24 2.4 Impedance plot for Y connected CM arrangement of stator windings. . . . . 26 2.5 Differential Mode test set up for obtaining the impedance plot (a)∆ connected (b) Y connected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 ix

Description:
I am thankful to Dr. G. K. Purushothama (MCE, Hassan), for his constant encourage- ment and advice to The common mode voltage due to PWM inverter with AFE converter is analyzed. An integrated .. the active front end rectifier, DC bus common mode filter, and dv/dt filter at inverters terminal for t
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.