ebook img

Integrated chemical processes : synthesis, operation, analysis, and control PDF

552 Pages·2005·20.359 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Integrated chemical processes : synthesis, operation, analysis, and control

cover1.fm Page III Thursday, March 10, 2005 1:47 PM Integrated Chemical Processes Synthesis, Operation, Analysis, and Control Edited by Kai Sundmacher, Achim Kienle and Andreas Seidel-Morgenstern cover1.fm Page IV Monday, March 21, 2005 9:34 AM Prof. Dr.-Ing. Kai Sundmacher All books published by Wiley-VCH are carefully Prof. Dr.-Ing. Achim Kienle produced. Nevertheless, authors, editors, and Prof. Dr. Andreas Seidel-Morgenstern publisher do not warrant the information contained Max Planck Institute for Dynamics of Complex in these books, including this book, to be free of errors. Technical Systems Readers are advised to keep in mind that statements, Sandtorstr. 1 data, illustrations, procedural details or other items 39106 Magdeburg may inadvertently be inaccurate. Germany Library of Congress Card No.: applied for. and British Library Cataloguing-in-Publication Data: Otto-von-Guericke-University A catalogue record for this book is available from Magdeburg the British Library Universitätsplatz 2 39016 Magdeburg Bibliographic information published by Germany Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http://dnb.ddb.de © 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim All rights reserved (including those of translation into other languages). No part of this book may be repro- duced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law. Printed in the Federal Republic of Germany. Printed on acid-free paper Typesetting Shiv e-Publishing Technologies Pvt. Ltd. Bangalore, India Printing betz-druck GmbH, Darmstadt Bookbinding Schäffer GmbH i.G., Grünstadt ISBN-13: 987-3-527-30831-6 ISBN-10: 3-527-30831-8 SundmacherTOC-2.fm Page V Wednesday, February 23, 2005 1:22 PM V Contents Preface XV Part I Integration of Heat Transfer and Chemical Reactions 1 1 Enhancing Productivity and Thermal Efficiency of High-Temperature Endothermic Processes in Heat-Integrated Fixed-Bed Reactors 3 Grigorios Kolios, Achim Gritsch, Bernd Glöckler and Gerhart Eigenberger Abstract 3 1.1 Introduction 3 1.2 Heat-Integrated Processes for Endothermic Reactions 4 1.2.1 Optimality Conditions 6 1.2.1.1 Efficiency of Heat Recovery 6 1.2.1.2 Temperature Control 8 1.3 Multifunctional Reactor Concepts 10 1.3.1 Regenerative Processes 12 1.3.1.1 Simultaneous Mode 13 1.3.1.2 Asymmetric Mode 13 1.3.1.3 Symmetric Mode with Side Stream Injection 20 1.3.1.4 Counter-cocurrent Mode 21 1.3.1.5 Overheating During Oxidative Coke Removal 24 1.3.2 Recuperative Processes 27 1.3.2.1 Processes for Large-Scale Applications 29 1.3.2.2 Processes for Small-scale Applications 31 1.4 Conclusions 39 Symbols and Abbreviations 39 References 41 2 Conceptual Design of Internal Reforming in High-Temperature Fuel Cells 45 Peter Heidebrecht and Kai Sundmacher 2.1 Introduction 45 2.2 Technical Background 46 2.3 Modeling 48 2.3.1 Model Derivation 48 2.3.1.1 Anode Channel 49 SundmacherTOC-2.fm Page VI Wednesday, February 23, 2005 1:22 PM VI Contents 2.3.1.2 Mixing Rules 52 2.3.1.3 Cathode Channel 53 2.3.1.4 Reaction Kinetics 54 2.3.1.5 Cell Power 55 2.3.2 Conversion Diagram 56 2.4 Applications 58 2.4.1 Comparison of Reforming Concepts 59 2.4.2 Anode Cascade 59 2.4.3 Anode Exhaust Gas Recycling 63 2.5 Summary and Conclusions 65 Symbols 66 References 67 3 Instabilities in High-Temperature Fuel Cells due to Combined Heat and Charge Transport 69 Michael Mangold, M Krasnyk, Achim Kienle and Kai Sundmacher 3.1 Introduction 69 3.2 Modeling 70 3.2.1 Model Assumptions 70 3.2.2 Model Equations 70 3.2.3 Simplified Model 72 3.3 Potentiostatic Operation 74 3.3.1 Cell with Infinite Length 74 3.3.2 Cell with Finite Length 76 3.4 Galvanostatic Operation 78 3.5 Conclusions 81 Symbols 82 Appendix: Numerical Methods for the Bifurcation Analysis in Section 3.0 83 References 84 Part II Integration of Separations and Chemical Reactions 85 4 Thermodynamic and Kinetic Effects on the Feasible Products of Reactive Distillation: A-zeo-tropes and A-rheo-tropes 87 Kai Sundmacher, Zhiwen Qi, Yuan-Sheng Huang and Ernst-Ulrich Schlünder 4.1 Introduction 87 4.2 Azeotropes 89 4.2.1 Reactive Condenser and Reboiler 89 4.2.2 Conditions for Singular Points 90 4.2.2.1 Potential Singular Point Surface 90 SundmacherTOC-2.fm Page VII Wednesday, February 23, 2005 1:22 PM Contents VII 4.2.2.2 Reaction Kinetic Surface 91 4.2.3 Examples 92 4.2.3.1 Hypothetical Ternary Systems 92 4.2.3.2 Real Ternary System: MTBE-Synthesis 97 4.2.3.3 Real Ternary System with Phase Splitting: Methanol Dehydration 101 4.2.3.4 Real Quaternary System: Isopropyl Acetate Hydrolysis 103 4.2.4 Application of Feasibility Diagram: Column Feasible Split 106 4.2.5 Remarks on Azeotropes 110 4.3 Arheotropes 110 4.3.1 Definition and Conditions 110 4.3.2 Illustrative Examples 111 4.3.2.1 Example 1: Stagnant Sweep Gas 111 4.3.2.2 Example 2: Flowing Sweep Gas 114 4.3.2.3 Example 3: Flowing Sweep Gas with Pervaporation 117 4.3.2.4 Example 4: Reactive Liquid Mixture 119 4.3.3 Remarks on Arheotropes 126 4.4 Kinetic Arheotropes in Reactive Membrane Separation 127 4.4.1 Model Formulation 127 4.4.1.1 Reaction Kinetics and Mass Balances 127 4.4.1.2 Kinetics of Vapor Permeation 129 4.4.2 Residue Curve Maps 130 4.4.2.1 Example 1: Ideal Ternary System 130 4.4.2.2 Example 2: THF Formation 133 4.4.3 Singular Point Analysis 137 4.4.3.1 Approach 137 4.4.3.2 Ideal Ternary System 138 4.4.3.3 THF-System 142 4.4.4 Remarks on Kinetic Arheotropes 144 4.5 Summary and Conclusions 144 Symbols and Abbreviations 145 References 147 5 Equilibrium Theory and Nonlinear Waves for Reaction Separation Processes 149 Achim Kienle and Stefan Grüner 5.1 Introduction 149 5.2 Theoretical Background 150 5.2.1 Wave Phenomena 150 5.2.2 Mathematical Model 153 5.2.3 Prediction of Wave Patterns 157 5.3 Analysis of Reaction Separation Processes 161 SundmacherTOC-2.fm Page VIII Wednesday, February 23, 2005 1:22 PM VIII Contents 5.3.1 Reactive Distillation 161 5.3.2 Chromatographic Reactors 163 5.3.2.1 Reactions of Type 164 5.3.2.2 Reactions of type 166 5.3.2.3 Binaphthol Separation Problem 168 5.3.3 Extension to Other Processes 171 5.4 Applications 172 5.4.1 New Modes of Operation 172 5.4.2 New Control Strategies 173 5.5 Conclusion 175 Acknowledgments 177 Symbols 178 References 179 6 Simulated Moving-Bed Reactors 183 Guido Ströhlein, Marco Mazzotti and Massimo Morbidelli 6.1 Introduction 183 6.2 Continuous Reactive Chromatography 185 6.2.1 Annular Reactive Chromatography 185 6.2.2 Simulated Moving-Bed Reactors 185 6.3 Design Parameters for Simulated Moving-bed Reactors 188 6.4 Modeling Simulated Moving-bed Reactors 195 6.5 Influence of the Stationary Phase Properties on SMBR Efficiency 197 6.6 Conclusion 200 References 200 7 The Dos and Don’ts of Adsorptive Reactors 203 David W. Agar 7.1 Introduction 203 7.1.1 Adsorptive Reactors 203 7.1.2 Multifunctional Reactors 204 7.1.3 Preliminary Evaluation 205 7.2 Reaction Systems 206 7.2.1 The Claus Process 207 7.2.2 Direct Hydrogen Cyanide Synthesis 208 7.2.3 Water-gas Shift Reaction 210 7.2.4 The Deacon Process 211 7.3 Catalyst and Adsorbent 212 7.3.1 The Claus Process 212 7.3.2 Direct Hydrogen Cyanide Synthesis and Water-gas Shift Reaction 214 7.3.3 The Deacon Process 217 SundmacherTOC-2.fm Page IX Wednesday, February 23, 2005 1:22 PM Contents IX 7.3.4 Other Adsorptive Catalysts 217 7.4 Reactor and Regeneration 218 7.4.1 Fixed-bed Reactors 218 7.4.2 Fluidized-bed Reactors 219 7.4.3 Pressure Swing Regeneration 220 7.4.4 Temperature Swing Regeneration 221 7.4.5 Reactive Regeneration 221 7.5 Design and Operation 222 7.5.1 Fixed-bed Macrostructuring 222 7.5.2 Pellet Microstructuring 223 7.5.3 Operating Parameter Profiling 224 7.5.4 Heat Effects 227 7.6 Conclusions and Perspectives 228 Acknowledgments 230 References 230 8 Reactive Stripping in Structured Catalytic Reactors: Hydrodynamics and Reaction Performance 233 Tilman J.Schildhauer, FreekKapteijn, Achim K.Heibel, Archis A.Yawalkar and Jacob A.Moulijn 8.1 Introduction 233 8.2 Hydrodynamics 236 8.2.1 Flow Patterns 236 8.2.1.1 Monoliths 236 8.2.1.2 Sulzer DX® 240 8.2.1.3 Sulzer katapak-S® 241 8.2.2 Hold-up, Pressure Drop, and Flooding Limits 242 8.2.3 Residence Time Distribution 244 8.2.4 Gas–Liquid Mass Transfer 247 8.2.5 Conclusions 248 8.3 Reactive Experiments 249 8.3.1 Model Reaction 250 8.3.1.1 Kinetics 250 8.3.1.2 Side Reactions 250 8.3.2 Experimental 251 8.3.2.1 Catalysts 251 8.3.2.2 Experimental Set-ups 251 8.3.3 Experimental Results 253 8.3.3.1 Effect of Water Removal 253 8.3.3.2 Co-current versus Countercurrent 254 8.3.3.3 Selectivity 255 SundmacherTOC-2.fm Page X Wednesday, February 23, 2005 1:22 PM X Contents 8.3.3.4 Acid Excess 257 8.3.4 Conclusions 258 8.4 Comparison of Different Internals 259 8.4.1 Film-flow Monoliths 259 8.4.2 Monoliths versus DX® and katapak-S® 260 8.4.2.1 Activity 260 8.4.2.2 Selectivity 261 8.5 Conclusions and Future Trends 262 Acknowledgments 263 Symbols 263 References 264 9 Reactive Absorption 265 Eugeny Y. Kenig and Andrzej Górak 9.1 Introduction 265 9.2 Reactive Absorption Equipment 267 9.3 Modeling Concept 270 9.3.1 General Aspects 270 9.3.2 Equilibrium Stage Model 270 9.3.3 HTU/NTU-concept and Enhancement Factors 271 9.3.4 Rate-based Stage Model 272 9.3.4.1 Balance Equations 273 9.3.4.2 Mass Transfer and Reaction Coupling in the Fluid Film 274 9.4 Model Parameters 276 9.4.1 Thermodynamic Equilibrium 276 9.4.2 Chemical Equilibrium 277 9.4.3 Physical Properties 278 9.4.4 Mass Transport and Fluid Dynamics Properties 280 9.4.5 Reaction Kinetics 280 9.5 Case Studies 282 9.5.1 Absorption of NOx 283 9.5.1.1 Chemical System 283 9.5.1.2 Process Set-up 284 9.5.1.3 Modeling Peculiarities 284 9.5.1.4 Model Parameters 285 9.5.1.5 Results 286 9.5.2 Coke Gas Purification 286 9.5.2.1 Chemical System 286 9.5.2.2 Process Set-up 289 9.5.2.3 Modeling Peculiarities 290 9.5.2.4 Model Parameters 290 SundmacherTOC-2.fm Page XI Wednesday, February 23, 2005 1:22 PM Contents XI 9.5.2.5 Results 291 9.5.2.6 Dynamic Issues 292 9.5.3 CO3 Absorption by Aqueous Amine Solutions 295 9.5.3.1 Chemical System 295 9.5.3.2 Process Set-up 296 9.5.3.3 Modeling Peculiarities 296 9.5.3.4 Model Parameters 297 9.5.3.5 Results 298 9.5.4 SO2 Absorption into Aqueous NaHCO3/Na2CO3 Solutions 299 9.5.4.1 Chemical System 299 9.5.4.2 Process Set-up 300 9.5.4.3 Modeling Peculiarities 301 9.5.4.4 Model Parameters 301 9.5.4.5 Results 302 9.6 Conclusions and Outlook 304 Acknowledgments 305 Symbols 305 References 307 10 Reactive Extraction: Principles and Apparatus Concepts 313 Hans-Jörg Bart 10.1 Introduction 313 10.1.1 Physical Extraction 313 10.1.2 Reactive Extraction 314 10.1.3 Additives 319 10.2 Phase Equilibria 321 10.3 Reactive Mass Transfer 323 10.4 Hydrodynamics 328 10.5 Conclusions 332 Acknowledgments 333 References 334 11 Development of Reactive Crystallization Processes 339 Christianto Wibowo, Vaibhav V. Kelkar, Ketan D. Samant, Joseph W. Schroer and Ka M. Ng 11.1 Introduction 339 11.2 Workflow in Process Development 339 11.3 Process Synthesis 341 11.4 Reactive Phase Diagrams 344 11.4.1 Projections and Canonical Coordinates 344 11.4.2 High-Dimensional Phase Diagrams 346 SundmacherTOC-2.fm Page XII Wednesday, February 23, 2005 1:22 PM XII Contents 11.5 Kinetic Effects 351 11.5.1 Reactive Crystallization with a Solid Reactant 351 11.6 Asymmetric Transformation of Enantiomers 353 11.6.1 Base Case (BC) 353 11.6.2 Seeded Crystallization (SC) 354 11.6.3 Seeded Crystallization with Racemization (SR) 356 11.7 Conclusions 357 Acknowledgments 357 References 357 12 Analysis and Experimental Investigation of Catalytic Membrane Reactors 359 Andreas Seidel-Morgenstern 12.1 Introduction 359 12.2 Basic Aspects of Chemical Reaction Engineering 359 12.2.1 Reaction Rates 360 12.2.2 Conversion as a Function of Rate Laws and Feed Composition 361 12.2.3 Selectivity and Yield 364 12.3 Mass Transfer through Membranes 366 12.4 Kinetic Compatibility in Membrane Reactors 368 12.5 Example 1: Product Removal with Membranes (“Extractor”) 369 12.5.1 Model Reaction, Procedures and Set-up 370 12.5.2 Reaction Rates 370 12.5.3 Fixed-bed Reactor Experiments 372 12.5.4 Mass Transfer through the Membrane 373 12.5.5 Membrane Reactor Experiments and Modeling 374 12.5.6 Evaluation of the Extractor-type of Membrane Reactor 376 12.6 Example 2: Reactant Dosing with Membranes (“Distributor”) 378 12.6.1 Model Reaction, Set-ups and Procedures 380 12.6.1 Reaction Rates 381 12.6.2 Fixed-bed and Membrane Reactor Experiments 382 12.6.3 Theoretical Analysis 383 12.7 Summary and Conclusions 385 Acknowledgments 386 References 387

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.