ebook img

Integrated Approaches to handle UAV actuator fault PDF

171 Pages·2015·2.06 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Integrated Approaches to handle UAV actuator fault

CRANFIELD UNIVERSITY Chang How Lo Integrated Approaches to handle UAV actuator fault chool of erospace ransport and anufacturing S A , T M PhD Academic year 2015 Supervisors: Dr Hyo-Sang Shin, Professor Antonios Tsourdos August 2015 ThisthesisissubmittedinpartialfulfillmentoftherequirementsfortheDegreeofPhD. (cid:13)c CranfieldUniversity, 2015. Allrightsreserved. Nopart ofthispublicationmaybe reproducedwithoutthepriorwrittenpermissionofthecopyrightowner. Abstract UnmannedAerialVehicles(UAV)hashistoricallyshowntobeunreliablewhen compared to their manned counterparts. Part of the reason is they may not be ff able to a ord the redundancies required to handle faults from system or cost constraints. This research explores instances when actuator fault handling may be improved with integrated approaches for small UAVs which have limited actuatorredundancy. Theresearchstartedwithexaminingthepossibilityofhandlingthecasewhere noactuatorredundancyremainspostfault. Twofaultrecoveryschemes,combing control allocation and hardware means, for a Quad Rotor UAV with no redun- dancyuponfaulteventaredevelopedtoenablesafeemergencylanding. Inspired by the integrated approach, a proposed integrated actuator control scheme is developed, and shown to reduce the magnitude of the error dynamics wheninputsaturationfaultsoccur. Geometricalinsightstotheproposedactuator scheme are obtained. Simulations using an Aerosonde UAV model with the proposed scheme showed significant improvements to the fault tolerant stuck faultrangeandimprovedguidancetrackingperformance. While much research literature has previously been focused on the controller to handleactuator faults,fault tolerant guidance schemes mayalso beutilized to accommodate the fault. One possible advantage of using fault tolerant guidance ff isthatitmayconsiderthefaultdegradatione ectsontheoverallmission. A fault tolerant guidance reconfiguration method is developed for a path fol- lowingmission. Themethodprovidesanadditionaldegreeoffreedomindesign, whichallowsmoreflexibilitytothedesignertomeetmissionrequirements. This research has provided fresh insights into the handling UAV extremal actuator faults through integrated approaches. The impact of this work is to ex- pandonthepossibilitiesapractitionermayhaveforimprovingthefaulthandling capabilitiesofaUAV. Tomyfamily ii Contents Abstract i 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Researchaimandapproach . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 Researchpublications . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.6 Organizationofthesis . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 LiteratureReview 10 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 ModelBasedFaultTolerantControlOverview . . . . . . . . . . . . 11 2.2.1 FaultTolerantControlObjective . . . . . . . . . . . . . . . . 12 2.2.2 RedundancyisKeytoFaultTolerantControl . . . . . . . . . 12 2.3 FaultTolerantControlTypes . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 PassiveFaultTolerantControl . . . . . . . . . . . . . . . . . 14 2.3.2 ActiveFaultTolerantControl . . . . . . . . . . . . . . . . . . 14 2.4 FaultDetectionandDiagnosisMethods . . . . . . . . . . . . . . . . 17 2.4.1 ResidualGeneration . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.1.1 ObserverBased . . . . . . . . . . . . . . . . . . . . 17 2.4.1.2 ParityRelations . . . . . . . . . . . . . . . . . . . . 18 2.4.1.3 ParameterEstimation . . . . . . . . . . . . . . . . . 21 2.4.1.4 CombinationsofMethods . . . . . . . . . . . . . . 21 2.4.2 ResidualEvaluation . . . . . . . . . . . . . . . . . . . . . . . 21 iii Contents 2.5 ReconfigurableControlMethods . . . . . . . . . . . . . . . . . . . . 22 2.5.1 ControlAllocation . . . . . . . . . . . . . . . . . . . . . . . . 22 2.5.2 FaultToleranceGuidance . . . . . . . . . . . . . . . . . . . . 24 2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Improving the performance of an actuation system when subjected to saturationfault 27 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 DescriptionofControlScheme . . . . . . . . . . . . . . . . . . . . . 29 3.2.1 ConventionalActuatorControlScheme . . . . . . . . . . . . 29 3.2.2 IntegratedActuatorControlScheme . . . . . . . . . . . . . . 31 3.2.3 ComparisonofControlSchemes . . . . . . . . . . . . . . . . 31 3.2.3.1 Nonsaturationcase . . . . . . . . . . . . . . . . . . 32 3.2.3.2 Oneactuatorsaturationfaultcase . . . . . . . . . . 33 3.2.4 Twoactuatorssaturation . . . . . . . . . . . . . . . . . . . . . 35 3.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.1 SimulationModel . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.2 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4 Discretedomainanalysisontheintegratedactuatorcontrolscheme 47 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2 Conventionalcontrolscheme . . . . . . . . . . . . . . . . . . . . . . 47 4.3 Integratedactuatorcontrolscheme . . . . . . . . . . . . . . . . . . . 50 4.4 Propertiesoftheintegratedactuatorcontrolscheme . . . . . . . . . 52 4.4.1 LinearEquivalenceintheVirtualDemandspace . . . . . . . 52 4.4.2 OrthogonalControlUpdatedirection . . . . . . . . . . . . . 55 iv Contents 4.4.3 Outputstuckfaultbehaviour . . . . . . . . . . . . . . . . . . 58 4.4.3.1 Possibledrawbackandpossiblesolutions . . . . . 60 4.4.4 SimulationsandDiscussion . . . . . . . . . . . . . . . . . . . 63 4.4.4.1 Unconstrainedsimulations . . . . . . . . . . . . . . 65 4.4.4.2 Inputsaturationsimulations . . . . . . . . . . . . . 72 4.4.4.3 Weightedcontrolschemesimulations . . . . . . . . 76 4.4.4.4 Twostepcontrolschemesimulations . . . . . . . . 80 4.4.4.5 AntailfincontrolledUAVexample . . . . . . . . . 84 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5 Application of an integrated actuator control scheme to improve the AerosondeUAV’sfaulttolerance 92 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.2 Demonstrationwithflightcontrol . . . . . . . . . . . . . . . . . . . . 93 5.2.1 SimulationsResults . . . . . . . . . . . . . . . . . . . . . . . . 95 5.2.1.1 Aileronfault . . . . . . . . . . . . . . . . . . . . . . 95 5.2.1.2 Ruddervatorfault . . . . . . . . . . . . . . . . . . . 101 5.2.1.3 Ruddervatorfault . . . . . . . . . . . . . . . . . . . 107 5.2.2 Comparisonsonfaulttolerantrange . . . . . . . . . . . . . . 112 5.3 Demonstrationwithguidanceincluded . . . . . . . . . . . . . . . . 116 5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6 Aguidancereconfigurationstrategy 122 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.2 GuidanceScheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.3 Aileronactuatorfault . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.3.1 Rollperformancedegradationduestuckaileronfault . . . . 126 6.4 Proposedmethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 v Contents 6.4.1 Reconfigurationofpathfollowingalgorithm . . . . . . . . . 127 6.4.2 Impact of path following ability of the guidance scheme withchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.4.3 Changingpathradiustomitigatefault . . . . . . . . . . . . 131 6.5 Simulationresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 7 Conclusions 145 8 FutureWork 147 References 148 vi List of Tables 4.1 Actuatorplantparametersusedinthesimulation . . . . . . . . . . 64 vii List of Figures 1.1 UAV failure rates illustrating the high mishap rates of UAVs com- paredtogeneralaviationaircraft,takenfromRef.[1] . . . . . . . . 2 1.2 AveragedcausesofUAVsystemfailurescauses . . . . . . . . . . . 4 2.1 FlightEnvelopeProtectionusingFaultTolerantControl . . . . . . . 13 2.2 ActiveFaultTolerantControlSystemblockdiagram . . . . . . . . . 15 2.3 ModelBasedFaultDiagnosis . . . . . . . . . . . . . . . . . . . . . . 16 2.4 SomeReconfigurablecontrolmethods . . . . . . . . . . . . . . . . . 23 3.1 Atypicalvehicleautopilotschemewiththeactuationsystemblock. 29 3.2 ConventionalActuatorControlArchitecture . . . . . . . . . . . . . 29 3.3 IntegratedActuatorControlArchitecture . . . . . . . . . . . . . . . 31 3.4 Integratedactuatorcontrolscheme . . . . . . . . . . . . . . . . . . . 32 3.5 Simulation results showing the 2 control schemes having exact responseswhenthereisnoactuatorsaturationevents. . . . . . . . . 41 3.6 Simulationresultsfor1actuatorsaturationcase. . . . . . . . . . . . 42 3.7 Individualactuatorresponsesfor1actuatorsaturationcase. . . . . 43 3.8 SimulationresultsforActuator1and2saturationcase. . . . . . . . 44 3.9 IndividualactuatorresponseforActuator1and2saturationcase. . 45 4.1 Atypicalvehicleautopilotschemewiththeactuationsystemblock. 48 4.2 Aconventionalactuatorcontrolscheme. . . . . . . . . . . . . . . . . 49 4.3 IntegratedActuatorControlArchitecture . . . . . . . . . . . . . . . 50 4.4 IntegratedActuatorControlArchitectureindetail . . . . . . . . . . 51 ff 4.5 Di erences in control signal update direction between the inte- gratedandconventionalactuatorcontrolschemes. . . . . . . . . . . 58

Description:
97. 5.5 Angle of attack and sideslip angle comparison between the con- ventional and integrated schemes with aileron fault without flap usage aircraft to safety. While the UAV has an equivalent ground operator performing the same role in the ground control station (GCS), the lack in tactical feedba
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.