ebook img

Integrals of logarithmic functions and alternating multiple zeta values PDF

0.17 MB·
by  Ce Xu
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Integrals of logarithmic functions and alternating multiple zeta values

Integrals of logarithmic functions and alternating multiple zeta values Ce Xu∗ 7 1 School of Mathematical Sciences, Xiamen University 0 Xiamen 361005,P.R. China 2 n a J Abstract By using the method of iterated integral representations of series, we establish some 2 explicit relationships between multiple zeta values and Integrals of logarithmic functions. As applications of these relations, we show that multiple zeta values of the form ] T N ζ(¯1,{1} ,¯1,{1} ), (k,m ∈ N) m−1 k−1 . h for m = 1 or k = 1, and t a ζ(¯1,{1} ,p,{1} ), (k,m ∈ N) m m−1 k−1 for p = 1 and 2, satisfy certain recurrence relations which allow us to write them in terms of [ zeta values, polylogarithms and ln2. Moreover, we also prove that the multiple zeta values 1 ζ(¯1,{1} ,3,{1} ) can beexpressed as a rational linear combination of products of zeta val- v m−1 k−1 5 ues, multiple polylogarithms and ln2 when m =k ∈ N. Furthermore, we also obtain reductions 8 1 3 for certain multiple polylogarithmic values at . 2 0 0 Keywords Multiple zeta values; multiple polylogarithms; harmonic numbers; Euler sums. . 1 AMS Subject Classifications (2010): 11A07; 11M32; 33B15 0 7 1 1 Introduction : v i X Let N be the set of natural numbers. For integers n,m ∈ N, a generalized harmonic number r ζ (m) (also called the partial sums of Riemann zeta function when m > 1) is defined by (see n a [35, 36]) n 1 ζ (m) := ,m ∈ N (1.1) n jm j=1 X which is a natural generalization of the harmonic number [19, 20] n 1 H := ζ (1) = . (1.2) n n j j=1 X Similarly, let n (−1)j−1 L (m) := ,m ∈ N (1.3) n jm j=1 X ∗ Corresponding author. Email: [email protected] (C. XU) 1 denote the alternating harmonic numbers (also called the partial sums of alternating Riemann zetafunction,see[35]). HeretheRiemannzetafunctionandalternatingzetafunctionaredefined respectively by the convergent series [2, 5, 6] ∞ 1 ζ(s):= ,ℜ(s) > 1, (1.4) ns n=1 X and ∞ (−1)n−1 ζ¯(s)= , ℜ(s)≥ 1. (1.5) ns n=1 X In general, for m ∈ N, S := (s1,s2,...,sm) ∈ (N)m, and a non-negative integer n, the multiple harmonic number (MHN for short) is defined by 1 ζn(s1,s2,...,sm) := ks1···ksm (1.6) 1≤km<X···<k1≤n 1 m and the multiple harmonic star number (MHSN for short) is given by 1 ζn⋆(s1,s2,...,sm):= ks1···ksm. (1.7) 1≤km≤X···≤k1≤n 1 m m The integers m and ω := |S| := s are called the depth and the weight of a multiple i i=1 harmonic number or multiple harmonic star number. By convention, we put ζ (S) = 0 if X n n < m, and ζn(∅) = ζn⋆(∅) = 1. By {s1,s2,...,sj}m we denote the sequence of depth mj with m repetitions of (s1,s2,...,sj).(Many papersusetheopposite convention, with theki’s ordered by n ≥ km > ··· > k1 ≥ 1 or n ≥ km ≥ ··· ≥ k1 ≥ 1, (see [22, 29, 37, 38])). Moreover, we put a bar on top of s (j = 1,2,··· ,m) if there is a sign (−1)kj appearing in the denominator on the j right. For example (−1)k1+km ζn(s¯1,s2,...,s¯m)= ks1···ksm, (1.8) 1≤km<X···<k1≤n 1 m (−1)k2+km ζn⋆(s1,s¯2,...,s¯m)= ks1···ksm. (1.9) 1≤km≤X···≤k1≤n 1 m Thelimitcases of MHNs or MHSNs give risetomultiple zeta values (MZVs for short, also called m-fold Euler sums [10]) or multiple zeta-star values (MZSVs for short): 1 ζ(s1,s2,...,sm) := nl→im∞ζn(s1,s2,...,sm) = k1>··X·>km≥1k1s1···kmsm, (1.10) 1 ζ⋆(s1,s2,...,sm):= nl→im∞ζn⋆(s1,s2,...,sm) = k1≥··X·≥km≥1 k1s1···kmsm (1.11) defined for s2,...,sm ≥ 1 and s1 ≥ 2 to ensure convergence of the series. For alternating MHNs or MHSNs, we have the similar limit cases. For example (−1)k1+km ζ(s¯1,s2,...,s¯m):= nl→im∞ζn(s¯1,s2,...,s¯m)= 1≤kmX<···<k1 k1s1···kmsm, (1.12) 2 (−1)k2+km ζ⋆(s1,s¯2,...,s¯m):= nl→im∞ζn⋆(s1,s¯2,...,s¯m) = 1≤km≤X···≤k1≤n k1s1···kmsm. (1.13) A good deal of work on multiple zeta values has focused on the problem of determining when complicated sums can be expressed in terms of simpler sums. A crude but convenient measure of the complexity of the sums (1.10)-(1.13) is the number m of nested summations. This is also equal to the number of arguments in the definitions (1.10)-(1.13), and is called the depth. Thus, researchers are interested in determining which sums can be expressed in terms of other sums of lesser depth. When m = 2, the multiple zeta values ζ(s1,s2) (or ζ⋆(s1,s2)) are also called double linear Euler sums [19]. The general double nonlinear Euler sums involving harmonic number and alternating harmonic number are defined by the series (see [35, 36]) m1 ζqi (k ) m2 Llj (h ) m1 ζqi (k ) m2 Llj (h ) ∞ n i n j ∞ n i n j i=1 j=1 , i=1 j=1 (−1)n−1. Q npQ Q npQ n=1 n=1 X X where p(p > 1),m1,m2,qi,ki,hj,lj are positive integers. Many values of double nonlinear Euler sumscanbeexpressedasarationallinearcombinationofzetavalues[3,8,19,35,36]. Thestudy of these Euler sums was started by Euler. After that many different methods, including partial fractionexpansions,EulerianBetaintegrals, summationformulasforgeneralizedhypergeometric functionsandcontourintegrals, havebeenusedtoevaluatethesesums. Fordetailsandhistorical introductions, please see [3, 8, 9, 12, 19, 20, 27, 35, 36] and references therein. The evaluation of ζ(s1,s2) (or ζ⋆(s1,s2)) in terms of values of Riemann zeta function at positive integers is known when s2 = 1, s1 = s2, (s1,s2) = (2,4),(4,2) or s1 +s2 is odd [3, 8, 19]. When m = 3, the multiple zeta values ζ(s1,s2,s3) are investigated [13, 19, 25]. Markett [25] gave explicit reductions to zeta values for all triple sums ζ(s1,s2,s3) with s1+s2+s3 ≤ 6, and he proved an explicit formula for ζ(s,1,1) in terms of zeta values. In [13], Borwein and Girgensohn proved that all ζ(s1,s2,s3) with s1 +s2 +s3 is even or less than or equal to 10 or s1 +s2 +s3 = 12 were reducible to zeta values and double sums. The best results to date are due to Jonathan M. Borwein et al [10], D. Zagier [38] and Kh. Hessami Pilehrood et.al [29]. Zagier proved that the multiple zeta values of the form ζ({2} ,3,{2} ) (or ζ⋆({2} ,3,{2} )) can be expressed in terms a b a b of ordinary zeta values and gave explicit formulas: a+b+1 2r 2r ζ({2} ,3,{2} ) = 2 (−1)r − 1−2−2r ζ(2r+1)H(a+b+1−r), a b 2b+2 2a+2 r=1 (cid:18)(cid:18) (cid:19) (cid:18) (cid:19)(cid:19) X (cid:0) (cid:1) π2m whereH(m)= ζ({2} ) = . In[29], HessamiPilehroodetal. gave somenewbinomial m (2m+1)! identities for multiple harmonic numbers ζ ({1} ,c,{1} ),ζ ({2} ,3,{2} ) and provided a new n a b n a b proof of Zagier’s formula for ζ⋆({2} ,3,{2} ). For example: a b n n k ζ ({2} ,1) = 2 (cid:18) (cid:19) , n a n+k k=1 k2a+1 X k (cid:18) (cid:19) letting n tend to infinity in above equation, then have ζ({2} ,1) = 2ζ(2a+1), a ∈N. a 3 The purpose of the present paper is to study multiple zeta values of the form ζ ¯1,{1} ,¯1,{1} ,ζ ¯1,{1} ,p,{1} m−1 k−1 m−1 k−1 for p = 1,2,3 and m,k ∈(cid:0)N. In this paper, we(cid:1)prov(cid:0)e that the multiple(cid:1)zeta values ζ ¯1,{1} ,¯1 ,ζ ¯1,¯1,{1} ,ζ(¯1,{1} ),ζ ¯1,{1} ,2,{1} m−1 k−1 k m−1 k−1 (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) can beexpressed as a rational linear combination of products of zeta values, polylogarithms and ln2. For instance, lnm+12 1 ζ(¯1,{1}m)= (−1)m+1(m+1)!, ζ(¯1,¯1,{1}m)= −Lim+2 2 . (cid:18) (cid:19) The polylogarithm function is defined for |x|≤ 1 by ∞ xn Li (x)= ,ℜ(p) > 1, (1.14) p np n=1 X with Li1(x) = −ln(1−x), x ∈ [−1,1). The generalized multiple polylogarithm function and multiple polylogarithm star function are defined by xk1 Li (x) := , x ∈ [−1,1), (1.15) s1,s2,···,sm ks1ks2···ksm 1≤kmX<···<k1 1 2 m xk1 Li⋆ (x) := , x ∈ [−1,1). (1.16) s1,s2,···,sm ks1ks2···ksm 1≤kmX≤···≤k1 1 2 m For convenience, when S := (s1,s2,...,sm)∈ (Z)m in above definitions of (1.15) and (1.16), we use the following notations ζ(s1,s2,··· ,sm;x) := Lis1,s2,···,sm(x), ζ⋆(s1,s2,··· ,sm;x):= Li⋆s1,s2,···,sm(x). (1.17) Of course, if s1 > 1, then we can allow x = 1. To avoid confusion with the notion of analytic continuation, weshallhenceforthadoptthenotationof[10],inwhicheachs in(1.17) isreplaced j by −s when s < 0. Thus, for example, ζ(¯1)= −ln2. Furthermore, we show that the multiple j j zeta values ζ k+1,{1} and ζ ¯1,{1} ,¯1,{1} can be expressed as a rational linear m−1 m−1 k−1 combination of zeta values, polylogarithms, ln2 and multiple polylogarithmic values at 1/2. (cid:0) (cid:1) (cid:0) (cid:1) Now we state our main theorems. 2 Main Theorems The main result of this paper can be stated as follows. Theorem 2.1 For integers k ≥ 0 and m ≥ 1, then the following identity holds: (−1)m+k ζ k+2,{1} = I(k,m), (2.1) m−1 m!k! (cid:0) (cid:1) 4 where I(k,m) is defined by the integral 1 (lnx)klnm(1+x) I(k,m) := dx. x Z0 Moreover, we have the following result of the integral I(k,m) 1 I(k,m)= (ln2)m+k+1+(m+k)!ζ(m+k+1) m+k+1 m+k − l! m+l k (ln2)m+k−lLil+1 12 l=0 (cid:18) (cid:19) (cid:18) (cid:19) X +(−1)k k j!(k+m−j)! k ζ k+m+2−j,{1}j−1 j  (cid:16)+ζ k+m+1−j,{1(cid:17)}  Xj=1 (cid:18) (cid:19) j  (cid:16) (cid:17) 1 −(−1)k k k+m−jj!l! k k+m−j (ln2)m+k−j−lζ(cid:18)l+2,{1}j−1;2(cid:19) . j l 1 Xj=1 Xl=0 (cid:18) (cid:19)(cid:18) (cid:19)  +ζ l+1,{1}j; 2  (cid:18) (cid:19)  (2.2)     Theorem 2.2 For positive integers m and k, then the following identity holds: (−1)k−1 m−1(ln2)i ζ ¯1,{1} ,¯1,{1} = J(k,m−1)− ζ ¯1,{1} ,¯1,{1} , (2.3) m−1 k−1 k!(m−1)! i! m−1−i k−1 i=1 (cid:0) (cid:1) X (cid:0) (cid:1) where J(k,m) is defined by 1 lnk(1−t)lnm(1+t) J(k,m) := dt. 1+t Z0 We have the following explicit formulas k m J(k,m)= 1 (ln2)m+k+1+ (−1)i+ji!j!(ln2)m+k−i−j k m ζ j +2,{1} m+1 i j i−1 i=1 j=0 (cid:18) (cid:19)(cid:18) (cid:19) XX (cid:0) (cid:1) k m j − (−1)i+ji!l!(ln2)m+k−i−l k m j ζ l+2,{1} ;1 , (2.4) i j l i−1 2 i=1 j=0 l=0 (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) XXX k m j J(k,m)= (−1)i+jj!l!(ln2)m+k−j−l k i m ζ l+1,{1} ; 1 . (2.5) i l j j 2 i=0 j=0 l=0 (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) XXX Theorem 2.3 For integers m,k ∈ N, then the following identity holds: m+k (ln2)m ζ ¯1,{1} ,2,{1} =(−1)m ζ ¯2,{1} − ζ ¯2,{1} m−1 k−1 k m+k−1 m! k−1 (cid:18) (cid:19) (cid:0) (cid:1) m−1 (ln2)i (cid:0) (cid:1) (cid:0) (cid:1) − ζ ¯1,{1} ,2,{1} . (2.6) i! m−i−1 k−1 i=1 X (cid:0) (cid:1) 5 Theorem 2.4 For positive integers m and k, we have (−1)mζ ¯1,{1} ,3,{1} +(−1)kζ ¯1,{1} ,3,{1} m−1 k−1 k−1 m−1 = (−1)(cid:0)m+1(ln2)mζ ¯3,{1} (cid:1) + (−1)k(cid:0)+1(ln2)kζ ¯3,{1} (cid:1) +ζ ¯2,{1} ζ ¯2,{1} m! k−1 k! m−1 m−1 k−1 m−1(ln2)(cid:0)i (cid:1) (cid:0) k−1(cid:1)(ln2(cid:0))i (cid:1) (cid:0) (cid:1) +(−1)m+1 ζ ¯1,{1} ,3,{1} +(−1)k+1 ζ ¯1,{1} ,3,{1} . i! m−i−1 k−1 i! k−i−1 m−1 i=1 i=1 X (cid:0) (cid:1) X (cid:0) (cid:1) (2.7) We prove Theorem 2.1 in section 3, Theorem 2.2 in section 4, Theorem 2.3 and Theorem 2.4 in section 5. We will prove the Theorem 2.1-2.4 by the method of iterated integral representations of series. 3 Proof of Theorem 2.1 We now prove our Theorems. First, we need to prove the following lemmas. It will be useful in the development of the main theorems. Lemma 3.1 For integer k > 0 and x ∈ [−1,1), we have that ∞ xn lnk(1−x)= (−1)kk! n ζn−1 {1}k−1 , (3.1) n=1 X (cid:0) (cid:1) s(n,k)= (n−1)!ζn−1 {1}k−1 . (3.2) where s(n,k) is called (unsigned) Stirling number of t(cid:0)he first (cid:1)kind (see [21]). s(n,1) = (n−1)!, s(n,2) = (n−1)!Hn−1, (n−1)! 2 s(n,3) = 2 Hn−1−ζn−1(2) , (n−1)!(cid:2) 3 (cid:3) s(n,4) = 6 Hn−1−3Hn−1ζn−1(2)+2ζn−1(3) , (n−1)!(cid:2) 4 2 (cid:3) 2 s(n,5) = 24 Hn−1−6ζn−1(4)−6Hn−1ζn−1(2)+3ζn−1(2)+8Hn−1ζn−1(3) . (cid:2) (cid:3) The Stirling numbers s(n,k) of the first kind satisfy a recurrence relation in the form s(n,k) = s(n−1,k−1)+(n−1)s(n−1,k), n,k ∈N, with s(n,k)= 0,n < k,s(n,0) = s(0,k)= 0,s(0,0)= 1. Proof. To prove thefirstidentity weproceed by induction on k. Obviously, itis valid fork = 1. For k > 1 we use the equality x lnk(1−t) lnk+1(1−x)=−(k+1) dt 1−t Z0 6 and apply the induction hypothesis, by using Cauchy product of power series, we arrive at x lnk(1−t) lnk+1(1−x)=−(k+1) dt 1−t Z0 ∞ n = (−1)k+1(k+1)! 1 ζi−1 {1}k−1 xn+1 n+1 i n=1 i=1 (cid:0) (cid:1) X X ∞ ζ ({1} ) = (−1)k+1(k+1)! n k xn+1. n+1 n=1 X Nothing that ζ ({1} ) = 0 when n < k. By simple calculation, we can deduce (3.1). To prove n k the second identity of our lemma, we use the following equation ([21]) ∞ s(n,k) lnk(1−x) = (−1)kk! xn, −1 ≤ x < 1. (3.3) n! n=k X Thus, by comparing the coefficients of xn in (3.1) and (3.3), we obtain formula (3.2). The proof of lemma 3.1 is thus completed. (cid:3) Lemma 3.2 For integers m ≥0 and n ≥ 1, then the following integral identity holds: x m m (−1)l tn−1(lnt)mdt = l! (lnx)m−lxn, x ∈ (0,1). (3.4) l nl+1 Z0 Xl=0 (cid:18) (cid:19) Proof. The lemma is almost obvious. By using integration by parts, we may easily deduce the result. (cid:3) Putting x = 1 and 1/2 in (3.4), we obtain 1 (−1)m tn−1(lnt)mdt = m! , (3.5) nm+1 Z0 1/2 m m 1 tn−1(lnt)mdt = (−1)m l! (ln2)m−l , (3.6) l 2nnl+1 Z0 Xl=0 (cid:18) (cid:19) 1 tn−1(lnt)mdt = m!(−1)m +(−1)m−1 m l! m (ln2)m−l 1 . (3.7) nm+1 l 2nnl+1 1Z/2 Xl=0 (cid:18) (cid:19) Proof of Theorem 2.1. For integers m ≥ 1 and k ≥ 0, by using formula (3.1) and (3.5), we have 1 (lnx)klnm(1+x) I(k,m) = dx x Z0 1 ∞ =(−1)mm! ζn−1 {1}m−1 (−1)n xn−1lnkxdx n nX=1 (cid:0) (cid:1) Z0 7 ∞ =(−1)m+kk!m! ζn−1 {1}m−1 (−1)n nk+2 n=1 (cid:0) (cid:1) X =(−1)m+kk!m!ζ k+2,{1} . (3.8) m−1 Hence, by a direct calculation, we obtain (2(cid:0).1). To prove ((cid:1)2.2), applying the change of variable x = u−1−1 to the above integral, we get the identity 1−u 1 1 lnk lnm u u I(k,m)= (cid:18) (cid:19) (cid:18) (cid:19)du u(1−u) Z 1/2 1 (ln(1−u)−lnu)klnm(u) = (−1)m du u(1−u) Z 1/2 1 k k lnj(1−u)lnm+k−j(u) = (−1)m (−1)k−j du j u(1−u) j=0 (cid:18) (cid:19)Z X 1/2 1 k k lnj(1−u)lnm+k−j(u) lnj(1−u)lnm+k−j(u) = (−1)m (−1)k−j + du. j u 1−u ( ) Xj=0 (cid:18) (cid:19)1Z/2 (3.9) Substituting (3.1) and (3.7) into (3.9) yields the desired result. We complete the proof of Theorem 2.1. (cid:3) Putting x = −1 in (3.1), we get lnk2 ζ ¯1,{1} = (−1)k . k−1 k! (cid:0) (cid:1) Taking k = 0 and 1 in (2.1) and (2.2), we can give the following corollaries. Corollary 3.3 For integer m ≥ 1, we have (−1)m 1 ζ ¯2,{1}m−1 =(m+1)!lnm+12+(−1)m ζ(m+1)−Lim+1 2 (cid:18) (cid:18) (cid:19)(cid:19) (cid:0) (cid:1) m (ln2)m+1−j 1 −(−1)m Li . (3.10) j (m+1−j)! 2 j=1 (cid:18) (cid:19) X Corollary 3.4 For integer m ≥ 1, we obtain 2 (m+1) ζ ¯3,{1} = (−1)m+1 mζ(m+2)− (ln2)m+2−ζ(m+1,1) m−1 (m+2)! ( ) (cid:0) (cid:1) (−1)m+1 m m 1 + l! (ln2)m−lζ l+1,1; m! l 2 l=0 (cid:18) (cid:19) (cid:18) (cid:19) X (−1)m+1 m m 1 − (m−1)! l! l (ln2)m−lLil+2 2 . (3.11) l=0 (cid:18) (cid:19) (cid:18) (cid:19) X 8 4 Proof of Theorem 2.2 Proof of Theorem 2.2. To prove the first identity (2.3), we consider the following multiple integral 1 1 tm−1 1 tmlnk(1−tm+1) Mm(k):= dt1··· dt1 dtm+1. (4.1) 1+t1 1+tm 1+tm+1 Z0 Z0 Z0 By using power series expansion and formula (3.1), we deduce that M (k) =(−1)k+m+1k! ∞ (−1)n1+···+nm+1ζn1−1 ¯1,{1}k−1 m n1,n2,·X··,nm+1=1 (cid:0)n1 (cid:1) 1 tm−1 × t1nm+1−1dt1··· tnm1+n2−1dtm Z0 Z0 =(−1)k+m+1k! ∞ (−1)n1+···+nm+1 ζn1−1 ¯1,{1}k−1 n1,n2,·X··,nm+1=1 n1(n1+n2)··(cid:0)·(n1+···(cid:1)+nm+1) =(−1)k+m+1k! ∞ ζnm+1−1 ¯1,{1}k−1 (−1)n1 n1>···X>nm+1≥1 n1n2·(cid:0)··nm+1 (cid:1) =(−1)k+m+1k!ζ ¯1,{1} ,¯1,{1} . (4.2) m k−1 Hence, Mm−1(k)= (−1)k+m(cid:0)k!ζ ¯1,{1}m−1,¯1,{(cid:1)1}k−1 . On the other hand, by using integration by parts, we have (cid:0) (cid:1) ln(1+t1)lnk(1−tm−1) Mm−1(k)=ln2Mm−2(k)− dt1···dtm−1 (1+t1)(1+t2)···(1+tm−1) 0<tm−1<Z···<t1<1 1 2 =ln2Mm−2(k)− ln 2Mm−3(k) 2 1 ln2(1+t1)lnk(1−tm−1) − dt1···dtm−2 2 (1+t1)(1+t2)···(1+tm−2) 0<tm−2<Z···<t1<1 =··· 1 =m−1(−1)i−1(ln2)iMm−i−1(k)+ (−1)m−1 lnk(1−t1)lnm−1(1+t1)dt1. (4.3) i! (m−1)! 1+t1 Xi=1 Z0 Combining(4.2) with(4.3) yieldsthedesiredresult. Toprovethesecond identity (2.4), applying the change of variable t = 2u−1 to the integral J(k,m), then we easily obtain 1 lnk(2−2u)lnm(2u) J(k,m) = du u Z 1/2 1 = k m (ln2)k+m−i−j k m lni(1−u)lnj(u)du i j u i=1 j=0 (cid:18) (cid:19)(cid:18) (cid:19)Z XX 1/2 9 1 + m (ln2)k+m−j m lnj(u)du. (4.4) j u j=0 (cid:18) (cid:19)Z X 1/2 Substituting(3.1) and(3.7) into(4.4), weobtaintheresult. Similarly, toprovethethirdidentity (2.5), applying the change of variable t = 1−2x to the integral J(k,m), we have that 1/2 lnk(2x)lnm(2−2x) J(k,m)= dx 1−x Z0 1/2 = k m (ln2)m+k−i−j k m lni(x)lnj(1−x)dx. (4.5) i j 1−x Xi=0Xj=0 (cid:18) (cid:19)(cid:18) (cid:19)Z0 Combining (3.1), (3.7) and (4.5), we deduce (2.5). The proof of Theorem 2.2 is thus completed. (cid:3) Letting m =0 in (2.4), we get the recurrence relation k k 1 (−1)ii!(ln2)k−i ζ 2,{1} −ζ 2,{1} ; i i−1 i−1 2 i=1 (cid:18) (cid:19)(cid:26) (cid:18) (cid:19)(cid:27) X (cid:0) (cid:1) 1 = (−1)kk!Lik+1 −(ln2)k+1. (4.6) 2 (cid:18) (cid:19) On the other hand, the Aomoto-Drinfeld-Zagier formula reads [10] ∞ ∞ xn+yn−(x+y)n ζ m+1,{1} xmyn = 1−exp ζ(n) , (4.7) n−1 n ! n,m=1 n=2 X (cid:0) (cid:1) X whichimpliesthatforanym,n ∈N,themultiplezetavalueζ m+1,{1} canberepresented n−1 as a polynomial of zeta values with rational coefficients, and we have the duality formula (cid:0) (cid:1) ζ n+1,{1} = ζ m+1,{1} . m−1 n−1 In particular, we deduce that(cid:0) (cid:1) (cid:0) (cid:1) ζ(2,{1} ) = ζ(m+2), m m m+2 1 ζ(3,{1} ) = ζ(m+3)− ζ(k+1)ζ(m+2−k). m 2 2 k=1 X 1 Therefore,from(4.6)and(4.7),weknowthatthemultiplepolylogarithmicvaluesζ 2,{1} ; m 2 (cid:18) (cid:19) can be evaluated in terms of zeta values, polylogarithms and ln2. In particular, one can find explicit formulas for small weights. 2 1 ζ(2)−ln 2 1 1 1 3 ζ 2; = , ζ 2,1; = ζ(3)− ln 2, 2 2 2 8 6 (cid:18) (cid:19) (cid:18) (cid:19) 1 1 1 1 7 2 4 ζ 2,1,1; = ζ(4)+ ζ(2)ln 2−Li4 − ln 2− ln2ζ(3). 2 4 2 12 8 (cid:18) (cid:19) (cid:18) (cid:19) 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.