Astronomy&Astrophysicsmanuscriptno. tmfdjb (cid:13)cESO2013 January30,2013 r o LettertotheEditor it d E INTEGRAL observations of ScoX-1: evidence e h for Comptonization up to 200keV t o T.Maiolino,F.D’Amico,andJ.Braga t r e InstitutoNacionaldePesquisasEspaciais–INPEAvenidadosAstronautas1758, t t 12227-010,SãoJosédosCampos-SP,Brazil e e-mail:[email protected];[email protected];[email protected] L 3 ABSTRACT 1 0 Wehaveanalyzedalong-termdatabaseforScoX-1obtainedwiththetelescopeIBISonboardtheINTEGRALsatelliteinorderto 2 studythehardX-raybehaviorofScoX-1from20upto200keV.BesidesthedatausedforproducingoftheINTEGRALcatalogof n sources,thisisthelongest(412ks)databaseofIBISonScoX-1uptodate. TheproductionofhardX-raytailsinlow-massX-ray a binaries is still a matter of debate. Since most of the fits to the high-energy part of the spectra are done with powerlaw models, J thephysicalmechanismforthehardX-raytailproductionisunclear. Thepurposeofthisstudyistobetterconstrainthosepossible mechanisms. OurmainresultshowsastrongcorrelationbetweenthefluxesinthethermalandnonthermalpartofScoX-1spectra. 9 WethussuggestthatComptonizationoflowerenergyphotonsisthemechanismforproducinghardX-raytailsinScoX-1. 2 Key words. Radiation mechanisms: non-thermal – Radiation mechanisms: thermal – Techniques : image processing – Stars : ] neutron–X-rays:binaries E H . h1. Introduction of (softer) photons up to energies ∼200keV. This is one of the p fewproofstodateofComptonizationatE ∼> 50keVforScoX-1. - INTEGRAL (Winkler et al. 2003) has played a key role in the o robservationsofcosmicXandγ-raysourcesoverthepastdecade. 2. Dataselectionandanalysis tOur study here is a long time-span (∼7 years) observation of s aScoX-1(Giacconietal.1962). INTEGRALhasthemaximum ThedatapresentedherewerecollectedbytheIBIS(Imageron [sensitivity for observing ScoX-1 in energies above ∼30keV. BoardtheIntegralSatellite)telescope(Ubertinietal.2003)on- 1 Our database was chosen to maximize the sensitivity in our boardINTEGRAL.ItisnoteworthythattheJEM-X(JointEuro- vtimespan, and it is the longest sample of IBIS/INTEGRAL ob- peanMonitorforX-rays,Lundetal.2003)countrateissaturated 0servationsofScoX-1,besidesthe4thINTEGRALcatalog(Bird (inalmosteverypracticalsituation)byScoX-1. Inthisway,not 6etal.2010). Suchahomogeneousdatabasehasbeenimportant having coverage in the low-energy X-ray band of JEM-X, we 0forreducinganysystematicerrordueto(e.g.) differentfluxnor- losttheabilitytotrackScoX-1movementalongtheZdiagram. 7malization factors when comparing data from two different in- Such a movement might be driven by the mass accretion rate 1.struments. (e.g. vanderKlisetal.1996). Followingtherecommendations 0 oftheIBIScookbook,weadopteda2%systematicerrorinthe ScoX-1 is a Z source. The Z sources are low-mass X-ray 3 IBIS data. This work made use of the version 9.0 of the IN- binaries (LMXBs) fed by accretion onto a neutron star with a 1 TEGRAL/OSAsoftware(e.g.,Goldwurmetal.2003). Wetook low magnetic field (see, e.g, van der Klis 2006). In these sys- : intoaccount, asstressedbyIBIScookbook, theneedtoextract vtems an accretion disk is always present, making the Zs per- Xisistent sources at the hard X-ray domain (E ∼> 20keV) up to tthaneesopuescltyratooafvaollidthpeosssoiubrlceeasniynstohuerficeesldofofervrioerws.(OFOnlVy)sosiumrcuels- 40keV. The spectra of the Zs can be divided into two distinct r with a signal-to-noise ratio (S/N) greater than ∼6 in the FOV acomponents: a thermal one, which dominates the emission up needed to be included for the (time-consuming) spectrum ex- to ∼40–50keV, and a nonthermal, highly variable component, traction. Takingaconservativeapproachandconsideringtothe whichdominatesthespectrumathigherenergies. Theoriginof relative emptiness of the FOV around ScoX-1, we included all thishighlyvariablecomponentabove∼50keVisstillamatterof thesourceswithS/N>2fortheextractionprocess. debate.HardX-rayspectraofZsourceshavealreadybeenexten- Datawereselectedbasedontwoprimarygoals:(1)selectthe sivelyreported(e.g.,DiSalvoetal.2000; DiSalvoetal.2001; longestobservationstomaximizeIBISsensitivity;and(2)select D’Amico et al. 2001a; D’Amico et al. 2001c; Iaria et al. 2004; (public) observations from 2003 to 2010, creating a long-term Lavagettoetal.2004).ScoX-1playsakeyroleinunderstanding database. Our spectral analysis in XSPEC clearly indicates the thesesources, anditwasobservedwellwithINTEGRAL(e.g., need for a two-component model. For the first component (re- DiSalvoetal.2006;Paizisetal.2006). ferred to here as the thermal component), we used the comptt Inthiswork,basedinalong-termsampleofScoX-1INTE- model in XSPEC. It may sound unusual to use a model that is GRAL observations, we show evidence of the Comptonization based on the Comptonization of (seed) blackbody Wien’s pho- Articlenumber,page1of4 8 5.0 ttertotheEditor −9−10−2−1ux in [ 10 (circles) | 10 (squares) ] erg cm s 1234567 −10−2−1Flux (50−200 keV) in 10 erg cm s 1234....0000 INTEGRAL/IBIS e Fl L 2852.008 2863,709 2864.008 2864.137 2865.010 3051.100 3245.377 3442.603 3633.054 3788.124 3789.041 3815.102 5236.060 5237.176 2.5 3.0 3.5Flux (240.0−50 k4e.V5) in 105−.09 erg c5m.5−2 s−16.0 6.5 7.0 Fig. 1: The INTEGRAL/ISGRI thermal (20-50keV: circles) and Fig. 2: The powerlaw (solid lines) and comptt (dashed lines) 50– powerlaw (20-200keV: squares) fluxes for ScoX-1 plotted against 200keV components plotted against the thermal component (20– MJD−50000 (as derived from OSA software). Data span of 7 years 50keV)using the results displayed in Table (1). As in Figure (1) the ofobservations(from2003to2010). Thearrowisa3σupperlimitof arrow denotes a 3σ upper limit of ∼ 5 × 10−12 ergcm−2s−1 to the ∼ 5 × 10−12inthe50to200keVflux. powerlawflux. tons (Titarchuk 1994) and to call it thermal. We just want to From the results shown in Table(1), the average fluxes are emphasize that this part of the ScoX-1 spectra can be adjusted Fthermal = 4.87 ±0.81 × 10−9ergcm−2s−1andFpowerlaw = bythermalmodelsandthatthecompttusesathermalseedfor 20-50keV 50-200keV photons. 1.76 ±0.84 × 10−10ergcm−2s−1. Usingthe2.8kpcdistanceto Actually, fits with a simple blackbody also provide ade- ScoX-1(Fomalontetal.2001),wehaveLthermal = 4.6 ±0.8 × quatefitstothethermalpartofourspectra(20–50 keV).Inour 1036ergs−1 and Lpowerlaw = 1.6 ±0.8 × 1035ergs−1. For database, nevertheless, there is a subset that was analyzed (Di comparison, the thermal flux given by D’Amico et al. (2001c) Salvo et al. 2006) using the comptt model. In such a way, to wasFth,HEXTE = 7.1 ±1.8 × 10−9ergcm−2s−1. characterizing 20-50keV maintainuniformitywithinourstudyandtomakecomparisons ahighdegreeofvariabilityinthethermalcomponent. with other observations, we decided to use the comptt model. InTable(1)wealsolistthefluxesinthe50–200keVderived Thisthermalcomponentofthespectrumextendstoenergiesup from the comptt + comptt model. For our database the av- to∼40–50keV.Theneedforincludingofasecondcomponent erage plasma temperature of the second comptt was found to inthespectrumcanbeeasilyverifiedby(1)theresidualsofthe be 60.4±1.1 keV, as would be expected to extend the fit up to fitusingonlythethermalpartandby(2)thesignificantS/Nof ∼200keV(Farinellietal.2008). Itisalsoimportanttohighlight thechannelsfrom∼50–200keV. thatthetemperatureoftheseed(Wien)photonsforthis(second) For this second component, a simple pegpw model in Comptonizationareonorderof1keV,againaswewouldexpect. XSPEC adjusts the spectra very well . It is interesting, how- Although variability can be noticed from the results dis- ever, to note that this second part of the spectrum can also be played in Table (2), it is noteworthy that, taking only INTE- fittedasasecondComptonizationinthespectrum. Accordingly, GRAL observations into account (columns 4–8 in the Table2) we performed the fits for the spectra in our database with two the degree of variability is not extreme (exception to this is the models: (1) comptt + pegpw and (2) comptt+comptt, both total20–40keVflux).WhencomparedtoRXTE/HEXTEresults ofthemprovidingadequatefits. Wenoticedthat,ingeneralthe (columns2–3),thisisnolongervalid. Ourobservationsdonot fitswithcomptt+pegpwarebetter,soweinterpretedourresults confirm the steep spectra measured by HEXTE in some occa- here,takingthismodelintoaccount. sions. Also,ourfluxesaremuchlowerthantheonesreportedby HEXTE. 3. Results Thanks to our long-term INTEGRAL/IBIS database on ScoX-1 we were able to track the behavior of its hard X-ray Table (1) summarizes key results of our data analysis. In Fig- emission (E > 50keV). As shown in Figure(2) the hard X- ure (1) a time history of the two fluxes (thermal and pow- rayemissionfrom50to200keVhasatightcorrelationwiththe erlaw) is shown for our database. Only on one occasion emission between 20 and 50keV. Up to this energy the spec- (MJD=53633.054)wasthepowerlawcomponentnotnecessary tral modeling of our data (as well of Di Salvo et al. 2006) is to achieve a good fit. This absence of the powerlaw compo- the Comptonization of seed photons of lower energies by a hot nent (only 1 out of 14 observations) for ScoX-1 represents a plasma. DuetothecompellingcorrelationofFigure(2)wethus variabilitytoalesserdegreethanobservedwithRXTE/HEXTE suggest that the physical mechanism responsible for the emis- (HighEnergyX-rayTimingExperiment)long-termobservations sionupto200keVinScoX-1isComptonization. (D’Amicoetal.2001a;D’Amicoetal.2001c).Itisunclearwhat causesthepowerlawcomponenttodisappear. Observations from the year 2000 up to now of ScoX-1 are 4. Discussion shown in Table (2). It can be seen that our database presented hereisthelongestoneforScousingINTEGRAL/IBIS,besides The INTEGRAL observations of Sco X-1 reported here show thefourthINTEGRALcatalogitself. thatanonthermalhardcomponentisalmostalwaysneededtofit Articlenumber,page2of4 T.Maiolino etal.: INTEGRALobservationsofScoX-1:evidenceforComptonizationupto200keV Table1:INTEGRAL/IBIS/ISGRIobservationsofScoX-1 r o compTT PEGPW t i Startofobservation Livetime(a) MJD KT (keV) Flux(b) Γ Flux(c) Flux(d) χ2 (e) d e red 31/07/2003 4.92 52852.008 2.86+0.04 5.43+0.13 2.62+0.29 3.11+0.45 3.01+0.43 0.6/0.8 E −0.04 −0.14 −0.26 −0.43 −0.42 11/08/2003 1.47 52863.709 3.06+0.05 6.91+0.18 2.63+0.38 3.92+0.78 3.79+0.84 0.8/0.6 e −0.05 −0.20 −0.34 −0.72 −0.80 h 12.008/08/2003 4.94 52864.008 2.81+0.05 3.38+0.11 2.90+0.44 1.86+0.42 1.75+0.39 0.5/0.7 t −0.05 −0.13 −0.38 −0.38 −0.37 o 12.137/08/2003 1.55 52864.137 2.85+0.04 5.80+0.12 1.87+0.58 2.82+0.89 2.93+1.22 0.6/0.6 −0.04 −0.13 −0.48 −0.83 −0.88 t 13/08/2003 4.38 52865.010 2.80+0.04 4.86+0.11 2.69+0.59 1.50+0.45 1.46+0.46 0.4/0.4 r −0.04 −0.13 −0.48 −0.40 −0.21 e 15/02/2004 9.42 53051.100 2.66+0.08 3.43+0.21 3.60+1.56 0.90+0.88 0.78+0.91 0.5/0.5 t −0.01 −0.44 −1.21 −0.51 −0.52 t e 27/08/2004 1.64 53245.377 2.71+0.06 5.49+0.17 2.78+0.50 2.92+0.78 2.75+0.77 1.4/1.7 L −0.07 −0.20 −0.42 −0.70 −0.67 12/03/2005 1.22 53442.603 2.60+0.08 2.96+0.36 4.75+1.06 0.58+0.45 0.50+0.43 1.0/0.9 −0.09 −0.52 −1.17 −0.25 −0.23 19/09/2005 1.21 53633.054 2.36+0.27 5.69+0.12 <0.05(f) 1.4(g) −0.03 −0.12 21/02/2006 3.80 53788.124 2.61+0.06 4.36+0.16 3.41+0.68 1.29+0.44 1.23+0.43 1.1/1.2 −0.07 −0.22 −0.56 −0.37 −0.41 22/02/2006 4.21 53789.041 2.48+0.07 4.75+0.13 2.83+0.43 2.02+0.50 1.92+0.50 1.6/1.8 −0.09 −0.14 −0.37 −0.45 −0.45 20/03/2006 3.76 53815.102 2.65+0.05 4.07+0.17 3.51+0.77 1.13+0.44 1.00+0.46 1.0/1.1 −0.06 −0.24 −0.64 −0.36 −0.35 08/02/2010 3.53 55236.060 2.73+0.07 4.24+0.13 2.20+0.72 1.84+0.69 1.79+0.72 1.6/1.6 −0.08 −0.15 −0.58 −0.63 −0.65 09/02/2010 3.60 55237.176 2.74+0.08 4.11+0.22 3.55+1.07 1.03+0.55 0.89+0.57 1.0/0.9 −0.09 −0.37 −0.86 −0.40 −0.42 Notes.Uncertaintiesat90%confidencelevelforthederivedparametersofthemodelapplied. (a) IBISlivetimeinunitsof104s.(b) Fluxofthethermalcomponentinthe20–50keVbandinunitsof10−9ergcm−2s−1. (c) Fluxofthenon- thermalcomponentthe50–200keVbandinunitsof10−10ergcm−2s−1. (d) Fluxofacompttmodelappliedatthe50–200keVbandinunitsof 10−10ergcm−2s−1. (e) model=comptt+pegpw/model=comptt+comptt(seetext).(f) 3σupperlimitonthe(pegpw)flux.(g) model=compttalone: 50–200keVcomponentisabsent(seetext). Table2:ModernobservationsofScoX-1 [HEXTE/RXTE] [SPI/INTEGRAL] [IBIS/INTEGRAL] 2001a(a) 2001b(b) 2003(c) 2006a(d) 2006b(e) 2010(f) Thisstudy ExposureTime(g) 1.04 2.03 9.58 2.66 3.72 63.0 4.12 F20-50keV(h) 7.82±0.68 7.82±62 4.71±0.28 Th F20-40keV)(i) 3.47±0.03 5.8(m) 6.1±0.2 4.46±0.15 4.69±0.28 total F40-200keV(j) 2.6±1.8 2.74±0.34 total F40-150keV(k) 2.2(m) 2.48±0.29 total F20-200keV(l) 10.7±1.6 10.0±1.2 6.27±0.35 5.57±0.47 PL averagedvalueofΓ 0.98±0.60 0.84±0.41 3.85+0.01 3.31+0.08 3.03±0.20 −0.08 −0.17 Notes.(a)D’Amicoetal.2001a(b)D’Amicoetal.2001c(c)Paizisetal.2003(d)Paizisetal.2006(e)DiSalvoetal.2006(f)Birdetal.2010(g)in 105 s.(h) fluxofthethermalcomponent,20–50keV,inunitsof10−9ergcm−2s−1.(i) 20to40keVflux,inunitsof10−9ergcm−2s−1.(j) 40to200 keVflux,inunitsof10−10ergcm−2s−1.(k)40to150keVflux,inunitsof10−10ergcm−2s−1.(l)fluxofthepowerlawcomponent,20to200keV,in unitsof10−9ergcm−2s−1.(m)quotedwithnoerrorsintheoriginalreference. theScoX-1X-rayspectra,contradictingearlierresultsbasedon bytheComptonizationofseedphotonsbya∼60keVplasma(a HEXTE/RXTEdata. second comptt). In this scenario the spectra up to 50keV can beinterpretedasComptonizationofseedphotonscomingfrom Themostimportantresultofthisworkisthetightcorrelation theneutronstaritself,bya∼2.71±0.04keVplasma(cloud),as between the thermal and nonthermal fluxes found in the IBIS derived from the values shown in Table(1). As we have high- data. Thisseemstoindicatethatthesamemechanismresponsi- lighted,apureblackbodymodelalsoprovidesanadequatefitto bleforthethermalcomponentisalsoatworkinthecaseofthe our ScoX-1 spectra up to 50keV. The second Comptonization nonthermal powerlaw component. We thus interpret the high- component (50 to 200keV) must be interpreted as originating energy component as a second Comptonization. As we have inanouterpartofthesystem, requiring(asexpected)an(elec- shownhere,seeFigure(2),thissecondcomponentcanbefitted Articlenumber,page3of4 the appearance of the hard X-ray tail. Our powerlaw indexes r Sco X-1 2010 Feb. 08 o 1e+06 PCA are fully compatible with the reported values for LMXBs. We it -1V1e+05 found no evidence of any states with Γ ∼ 0 reported before d ke in the literature. By analyzing a simultaneous PCA/RXTE and E -1unts s 101000000 pegpw ISGRI IthBeISth/IeNrmTEalGpRarAtLofotbhseesrpvaetcitornumoffrSocmoX5-t1o,5w0ekewVerweitahbalesitnogfilet e o c Comptonizationmodel. TheproductionofhardX-raytailsinZ h 100 sources is still a hot topic of debate, and the power and unique t 10 compTT capabilitiesofIBIS/INTEGRALisafundamentaltoolforbetter o 1.5 constrainingphysicalmodelsoftheirorigins. t ma 0 g r si-1.5 Acknowledgements. TM gratefully acknowledges CAPES-Brazil for financial e support. Wethankananonymousrefereeforcommentsthathelpedusinim- t 5 10 40 100 200 provingthequalityofourstudy. t Energy (keV) e L Fig.3:AjointPCA/RXTEandIBIS/INTEGRALobservationofScoX- 1. Thespectrumwasfittedbyamodelwithanormalizationconstant References (betweenPCAandIBIS),photoelectricabsorption, plusacompttand powerlawcomponents. BecausethePCAcannotconstraintheequiva- Bird,A.J.,Bazzano,A.,Bassani,L.,etal.2010,ApJS,186,1 lenthydrogencolumnfortheabsorption,itsvaluewasfixedatavalueof D’Amico,F.,Heindl,W.A.,Rothschild,R.E.,&Gruber,D.E.2001a,ApJ,547, 4. Theplasmatemperature(derivedfromcompttmodel)is2.90+0.02. L147 -0.01 D’Amico,F.,Heindl,W.A.,Rothschild,R.E.,&Gruber,D.E.2001b,inAmer- Thereducedχ2is1.3.Alsodisplayedinthefigurearetherelativecon- icanInstituteofPhysicsConferenceSeries,Vol.587,Gamma2001:Gamma- tributions(attheIBISpartofthefit)fromthecompttandpegpwcom- RayAstrophysics,ed.S.Ritz,N.Gehrels,&C.R.Shrader,44–48 ponents. D’Amico,F.,Heindl,W.A.,Rothschild,R.E.,etal.2001c,AdvancesinSpace Research,28,389 DiSalvo,T.,Goldoni,P.,Stella,L.,etal.2006,ApJ,649,L91 tron)temperatureontheorderof60keV.Butaswehaveshown DiSalvo,T.,Robba,N.R.,Iaria,R.,etal.2001,ApJ,554,49 DiSalvo,T.,Stella,L.,Robba,N.R.,etal.2000,ApJ,544,L119 here, the tight correlation between the fluxes of the two com- Farinelli,R.,Titarchuk,L.,Paizis,A.,&Frontera,F.2008,ApJ,680,602 ponentsisalsoheldwiththe50to200keVspectramodeledas Fomalont,E.B.,Geldzahler,B.J.,&Bradshaw,C.F.2001,ApJ,558,283 a simple powerlaw (see Figure2). Based on this correlation, it Giacconi,R.,Gursky,H.,Paolini,F.R.,&Rossi,B.B.1962,PhysicalReview is our suggestion that the flux of ScoX-1 up to 200keV is due Letters,9,439 to Comptonization. Beacause the fits from 50 to 200keV with Goldwurm,A.,David,P.,Foschini,L.,etal.2003,A&A,411,L223 Iaria,R.,DiSalvo,T.,Robba,N.R.,etal.2004,ApJ,600,358 a powerlaw model are slightly better (as we have shown, see Lavagetto,G.,Iaria,R.,diSalvo,T.,etal.2004,NuclearPhysicsBProceedings Table1),wearealsosuggestingthattheComptonizationinthis Supplements,132,616 partofthespectrumisnonthermalinorigin. Lund,N.,Budtz-Jørgensen,C.,Westergaard,N.J.,etal.2003,A&A,411,L231 Figure(3)showsasimultaneousRXTEandINTEGRALob- Paizis,A.,Beckmann,V.,Courvoisier,T.J.-L.,etal.2003,A&A,411,L363 Paizis,A.,Farinelli,R.,Titarchuk,L.,etal.2006,A&A,459,187 servation. The data from 5 to 50keV is well fitted by a sin- gle comptt component with a temperature of 2.90+0.02. This Titarchuk,L.1994,ApJ,434,570 −0.01 Ubertini,P.,Lebrun,F.,DiCocco,G.,etal.2003,A&A,411,L131 strengthens our interpretation for the Comptonization origin vanderKlis,M.2006,RapidX-rayVariability,ed.W.H.G.Lewin&M.van of the soft ScoX-1 spectra. As already mentioned, the aver- derKlis,39–112 age plasma temperature derived from the results of Table(1) is vanderKlis,M.,Swank,J.H.,Zhang,W.,etal.1996,ApJ,469,L1 Winkler,C.,Courvoisier,T.J.-L.,DiCocco,G.,etal.2003,A&A,411,L1 2.71±0.04keV,whichisinveryreasonableagreementwiththe jointfit. Inourdatabasetheaveragepowerlawindexis3.06±0.21,in agreement with values for LMXBs (e.g., Di Salvo et al. 2006). This result differs, however, from the reported values derived from long-term HEXTE/RXTE observations (D’Amico et al. 2001c). It is not clear what causes this discrepancy, but it may bethelong-termintrinsicvariabilityofthesource. Ourthermalluminositiesarewithin2.8–6.5×1036ergs−1.It hasbeenclaimedbefore(D’Amicoetal.2001b)thattheappear- anceofthepowerlawcomponentinZsourcesistiedtoathermal luminositygreaterthan4×1036ergs−1.Ourresultshere,aswell asothers(e.g.,DiSalvoetal.2006),contradictthisstatement. 5. Conclusions We shown evidence here of Comptonization up to 200keV in ScoX-1spectra, whichissupportedbyastrongcorrelationbe- tween the fluxes from 20 to 50keV and 50 to 200keV. This (second) Comptonization might be non-thermal in origin. We have analyzed aseven-year database of IBIS/INTEGRAL data, which turned out to be the longest IBIS database on ScoX-1 (besides the 4th source catalog). We found no evidence of any preferred luminosity state for the thermal component regarding Articlenumber,page4of4