ebook img

Integral methods in science and engineering: Theoretical and practical aspects PDF

310 Pages·2005·2.624 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Integral methods in science and engineering: Theoretical and practical aspects

Integral Methods in Science and Engineering Theoretical and Practical Aspects C. Constanda Z. Nashed D. Rollins Editors Birkha¨user Boston • Basel • Berlin C.Constanda Z.Nashed UniversityofTulsa UniversityofCentralFlorida DepartmentofMathematical DepartmentofMathematics andComputerSciences 4000CentralFloridaBlvd. 600SouthCollegeAvenue Orlando,FL32816 Tulsa,OK74104 USA USA D.Rollins UniversityofCentralFlorida DepartmentofMathematics 4000CentralFloridaBlvd. Orlando,FL32816 USA CoverdesignbyAlexGerasev. AMSSubjectClassification:45-06,65-06,74-06,76-06 LibraryofCongressCataloging-in-PublicationData Integralmethodsinscienceandengineering:theoreticalandpracticalaspects/C. Constanda,Z.Nashed,D.Rollins(editors). p.cm. Includesbibliographicalreferencesandindex. ISBN0-8176-4377-X(alk.paper) 1.Integralequations–Numericalsolutions–Congresses.2.Mathematical analysis–Congresses.3.Science–Mathematics–Congresses.4.Engineering mathematics–Congresses.I.Constanda,C.(Christian)II.Nashed,Z.(Zuhair)III.Rollins, D.(David),1955- QA431.I492005 (cid:2) 518.66–dc22 2005053047 ISBN-10:0-8176-4377-X e-ISBN:0-8176-4450-4 Printedonacid-freepaper. ISBN-13:978-0-8176-4377-5 (cid:3)c2006Birkha¨userBoston Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewrit- tenpermissionofthepublisher(Birkha¨userBoston,c/oSpringerScience+BusinessMediaInc.,233 SpringStreet,NewYork,NY10013,USA)andtheauthor,exceptforbriefexcerptsinconnection withreviewsorscholarlyanalysis.Useinconnectionwithanyformofinformationstorageandre- trieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknown orhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarksandsimilarterms,evenifthey arenotidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyare subjecttoproprietaryrights. PrintedintheUnitedStatesofAmerica. (IBT) 987654321 www.birkhauser.com Contents Preface xi Contributors xiii 1 Newton-type Methods for Some Nonlinear Differential Problems Mario Ahues and Alain Largillier 1 1.1 The General Framework . . . . . . . . . . . . . . 1 1.2 Nonlinear Boundary Value Problems . . . . . . . . . 6 1.3 Spectral Differential Problems . . . . . . . . . . . . 9 1.4 Newton Method for the Matrix Eigenvalue Problem . . 13 References . . . . . . . . . . . . . . . . . . . . 14 2 Nodal and Laplace Transform Methods for Solving 2D Heat Conduction Ivanilda B. Aseka, Marco T. Vilhena, and Haroldo F. Campos Velho 17 2.1 Introduction . . . . . . . . . . . . . . . . . . . 17 2.2 Nodal Method in Multi-layer Heat Conduction . . . . 18 2.3 Numerical Results . . . . . . . . . . . . . . . . . 24 2.4 Final Remarks . . . . . . . . . . . . . . . . . . . 26 References . . . . . . . . . . . . . . . . . . . . 27 3 The Cauchy Problem in the Bending of Thermoelastic Plates Igor Chudinovich and Christian Constanda 29 3.1 Introduction . . . . . . . . . . . . . . . . . . . 29 3.2 Prerequisites . . . . . . . . . . . . . . . . . . . 29 3.3 Homogeneous System . . . . . . . . . . . . . . . . 32 3.4 Homogeneous Initial Data . . . . . . . . . . . . . . 33 References . . . . . . . . . . . . . . . . . . . . 35 4 Mixed Initial-boundary Value Problems for Thermoelastic Plates Igor Chudinovich and Christian Constanda 37 4.1 Introduction . . . . . . . . . . . . . . . . . . . 37 4.2 Prerequisites . . . . . . . . . . . . . . . . . . . 37 4.3 The Parameter-dependent Problems . . . . . . . . . 39 vi Contents 4.4 The Main Results . . . . . . . . . . . . . . . . . 43 References . . . . . . . . . . . . . . . . . . . . 45 5 On the Structure of the Eigenfunctions of a Vibrating Plate with a Concentrated Mass and Very Small Thickness Delfina Go´mez, Miguel Lobo, and Eugenia P´erez 47 5.1 Introduction and Statement of the Problem . . . . . . 47 5.2 Asymptotics in the Case r =1 . . . . . . . . . . . . 50 5.3 Asymptotics in the Case r >1 . . . . . . . . . . . . 56 References . . . . . . . . . . . . . . . . . . . . 58 6 A Finite-dimensional Stabilized Variational Method for Unbounded Operators Charles W. Groetsch 61 6.1 Introduction . . . . . . . . . . . . . . . . . . . 61 6.2 Background . . . . . . . . . . . . . . . . . . . . 63 6.3 The Tikhonov–Morozov Method . . . . . . . . . . . 64 6.4 An Abstract Finite Element Method . . . . . . . . . 65 References . . . . . . . . . . . . . . . . . . . . 70 7 A Converse Result for the Tikhonov–Morozov Method Charles W. Groetsch 71 7.1 Introduction . . . . . . . . . . . . . . . . . . . 71 7.2 The Tikhonov–Morozov Method . . . . . . . . . . . 73 7.3 Operators with Compact Resolvent . . . . . . . . . 74 7.4 The General Case . . . . . . . . . . . . . . . . . 76 References . . . . . . . . . . . . . . . . . . . . 77 8 A Weakly Singular Boundary Integral Formulation of the External Helmholtz Problem Valid for All Wavenumbers Paul J. Harris, Ke Chen, and Jin Cheng 79 8.1 Introduction . . . . . . . . . . . . . . . . . . . 79 8.2 Boundary Integral Formulation . . . . . . . . . . . 79 8.3 Numerical Methods . . . . . . . . . . . . . . . . 81 8.4 Numerical Results . . . . . . . . . . . . . . . . . 83 8.5 Conclusions . . . . . . . . . . . . . . . . . . . . 86 References . . . . . . . . . . . . . . . . . . . . 86 9 Cross-referencing for Determining Regularization Parameters in Ill-Posed Imaging Problems John W. Hilgers and Barbara S. Bertram 89 9.1 Introduction . . . . . . . . . . . . . . . . . . . 89 9.2 The Parameter Choice Problem . . . . . . . . . . . 90 9.3 Advantages of CREF . . . . . . . . . . . . . . . . 91 9.4 Examples . . . . . . . . . . . . . . . . . . . . . 92 9.5 Summary . . . . . . . . . . . . . . . . . . . . . 95 References . . . . . . . . . . . . . . . . . . . . 95 Contents vii 10 A Numerical Integration Method for Oscillatory Functions over an Infinite Interval by Substitution and Taylor Series Hiroshi Hirayama 99 10.1 Introduction . . . . . . . . . . . . . . . . . . . 99 10.2 Taylor Series . . . . . . . . . . . . . . . . . . . 100 10.3 Integrals of Oscillatory Type . . . . . . . . . . . . 101 10.4 Numerical Examples . . . . . . . . . . . . . . . . 103 10.5 Conclusion . . . . . . . . . . . . . . . . . . . . 104 References . . . . . . . . . . . . . . . . . . . . 104 11 On the Stability of Discrete Systems Alexander O. Ignatyev and Oleksiy A. Ignatyev 105 11.1 Introduction . . . . . . . . . . . . . . . . . . . 105 11.2 Main Definitions and Preliminaries . . . . . . . . . . 105 11.3 Stability of Periodic Systems . . . . . . . . . . . . 107 11.4 Stability of Almost Periodic Systems . . . . . . . . . 110 References . . . . . . . . . . . . . . . . . . . . 115 12 Parallel Domain Decomposition Boundary Element Method for Large-scale Heat Transfer Problems Alain J. Kassab and Eduardo A. Divo 117 12.1 Introduction . . . . . . . . . . . . . . . . . . . 117 12.2 Applications in Heat Transfer . . . . . . . . . . . . 118 12.3 Explicit Domain Decomposition . . . . . . . . . . . 125 12.4 Iterative Solution Algorithm . . . . . . . . . . . . . 127 12.5 Parallel Implementation on a PC Cluster . . . . . . . 130 12.6 Numerical Validation and Examples . . . . . . . . . 130 12.7 Conclusions . . . . . . . . . . . . . . . . . . . . 132 References . . . . . . . . . . . . . . . . . . . . 133 13 The Poisson Problem for the Lam´e System on Low-dimensional Lipschitz Domains Svitlana Mayboroda and Marius Mitrea 137 13.1 Introduction and Statement of the Main Results . . . . 137 13.2 Estimates for Singular Integral Operators . . . . . . . 141 13.3 Traces and Conormal Derivatives . . . . . . . . . . 146 13.4 Boundary Integral Operators and Proofs of the Main Results . . . . . . . . . . . . . . . . . . . . . . 152 13.5 Regularity of Green Potentials in Lipschitz Domains . . 153 13.6 The Two-dimensional Setting . . . . . . . . . . . . 158 References . . . . . . . . . . . . . . . . . . . . 159 14 Analysis of Boundary-domain Integral and Integro-differential Equations for a Dirichlet Problem with a Variable Coefficient Sergey E. Mikhailov 161 14.1 Introduction . . . . . . . . . . . . . . . . . . . 161 14.2 Formulation of the Boundary Value Problem . . . . . 162 viii Contents 14.3 Parametrix and Potential-type Operators . . . . . . . 163 14.4 Green Identities and Integral Relations . . . . . . . . 165 14.5 Segregated Boundary-domain Integral Equations . . . . 166 14.6 United Boundary-domain Integro-differential Equations and Problem . . . . . . . . . . . . . . . . . . . 171 14.7 Concluding Remarks . . . . . . . . . . . . . . . . 174 References . . . . . . . . . . . . . . . . . . . . 175 15 On the Regularity of the Harmonic Green Potential in Nonsmooth Domains Dorina Mitrea 177 15.1 Introduction . . . . . . . . . . . . . . . . . . . 177 15.2 Statement of the Main Result . . . . . . . . . . . . 181 15.3 Prerequisites . . . . . . . . . . . . . . . . . . . 183 15.4 Proof of Theorem 1 . . . . . . . . . . . . . . . . 184 References . . . . . . . . . . . . . . . . . . . . 188 16 Applications of Wavelets and Kernel Methods in Inverse Problems Zuhair Nashed 189 16.1 Introduction and Perspectives . . . . . . . . . . . . 189 16.2 Sampling Solutions of Integral Equations of the First Kind 192 16.3 Wavelet Sampling Solutions of Integral Equations of the First Kind . . . . . . . . . . . . . . . . . . . . 194 References . . . . . . . . . . . . . . . . . . . . 195 17 Zonal, Spectral Solutions for the Navier–Stokes Layer and Their Aerodynamical Applications Adriana Nastase 199 17.1 Introduction . . . . . . . . . . . . . . . . . . . 199 17.2 Qualitative Analysis of the Asymptotic Behavior of the NSL’s PDE . . . . . . . . . . . . . . . . . . . . 201 17.3 Determination of the Spectral Coefficients of the Density Function and Temperature . . . . . . . . . . . . . 204 17.4 Computation of the Friction Drag Coefficient of the Wedged Delta Wing . . . . . . . . . . . . . . . . 205 17.5 Conclusions . . . . . . . . . . . . . . . . . . . . 207 References . . . . . . . . . . . . . . . . . . . . 207 18 Hybrid Laplace and Poisson Solvers. Part III: Neumann BCs Fred R. Payne 209 18.1 Introduction . . . . . . . . . . . . . . . . . . . 209 18.2 Solution Techniques . . . . . . . . . . . . . . . . 209 18.3 Results for Five of Each of Laplace and Poisson Neumann BC Problems . . . . . . . . . . . . . . . . . . . 211 18.4 Discussion . . . . . . . . . . . . . . . . . . . . 212 18.5 Closure . . . . . . . . . . . . . . . . . . . . . . 214 References . . . . . . . . . . . . . . . . . . . . 216 Contents ix 19 Hybrid Laplace and Poisson Solvers. Part IV: Extensions Fred R. Payne 219 19.1 Introduction . . . . . . . . . . . . . . . . . . . 219 19.2 Solution Methodologies . . . . . . . . . . . . . . . 220 19.3 3D and 4D Laplace Dirichlet BVPs . . . . . . . . . 221 19.4 Linear and Nonlinear Helmholtz Dirichlet BVPs . . . . 223 19.5 Coding Considerations . . . . . . . . . . . . . . . 224 19.6 Some Remarks on DFI Methodology . . . . . . . . . 225 19.7 Discussion . . . . . . . . . . . . . . . . . . . . 226 19.8 Some DFI Advantages . . . . . . . . . . . . . . . 228 19.9 Closure . . . . . . . . . . . . . . . . . . . . . . 231 References . . . . . . . . . . . . . . . . . . . . 232 20 A Contact Problem for a Convection-diffusion Equation Shirley Pomeranz, Gilbert Lewis, and Christian Constanda 235 20.1 Introduction . . . . . . . . . . . . . . . . . . . 235 20.2 The Boundary Value Problem . . . . . . . . . . . . 235 20.3 Numerical Method . . . . . . . . . . . . . . . . . 237 20.4 Convergence . . . . . . . . . . . . . . . . . . . 239 20.5 Computational Results . . . . . . . . . . . . . . . 242 20.6 Conclusions . . . . . . . . . . . . . . . . . . . . 244 References . . . . . . . . . . . . . . . . . . . . 244 21 Integral Representation of the Solution of Torsion of an Elliptic Beam with Microstructure Stanislav Potapenko 245 21.1 Introduction . . . . . . . . . . . . . . . . . . . 245 21.2 Torsion of Micropolar Beams . . . . . . . . . . . . 245 21.3 Generalized Fourier Series . . . . . . . . . . . . . . 246 21.4 Example: Torsion of an Elliptic Beam . . . . . . . . 247 References . . . . . . . . . . . . . . . . . . . . 249 22 A Coupled Second-order Boundary Value Problem at Resonance Seppo Seikkala and Markku Hihnala 251 22.1 Introduction . . . . . . . . . . . . . . . . . . . 251 22.2 Results . . . . . . . . . . . . . . . . . . . . . . 253 References . . . . . . . . . . . . . . . . . . . . 256 23 Multiple Impact Dynamics of a Falling Rod and Its Numerical Solution Hua Shan, Jianzhong Su, Florin Badiu, Jiansen Zhu, and Leon Xu 257 23.1 Introduction . . . . . . . . . . . . . . . . . . . 257 23.2 Rigid-Body Dynamics Model . . . . . . . . . . . . 258 23.3 Continuous Contact Model . . . . . . . . . . . . . 260 23.4 Discrete Contact Model for a Falling Rod . . . . . . . 261 x Contents 23.5 Numerical Simulation of a Falling Rigid Rod . . . . . 263 23.6 Discussion and Conclusion . . . . . . . . . . . . . 268 References . . . . . . . . . . . . . . . . . . . . 269 24 On the Monotone Solutions of Some ODEs. I: Structure of the Solutions Tadie 271 24.1 Introduction . . . . . . . . . . . . . . . . . . . 271 24.2 Some Comparison Results . . . . . . . . . . . . . . 273 24.3 Problem (E1). Blow-up Solutions . . . . . . . . . . 275 References . . . . . . . . . . . . . . . . . . . . 277 25 On the Monotone Solutions of Some ODEs. II: Dead-core, Compact-support, and Blow-up Solutions Tadie 279 25.1 Introduction . . . . . . . . . . . . . . . . . . . 279 25.2 Compact-support Solutions . . . . . . . . . . . . . 280 25.3 Dead-core and Blow-up Solutions . . . . . . . . . . 284 References . . . . . . . . . . . . . . . . . . . . 288 26 A Spectral Method for the Fast Solution of Boundary Integral Formulations of Elliptic Problems Johannes Tausch 289 26.1 Introduction . . . . . . . . . . . . . . . . . . . 289 26.2 A Fast Algorithm for Smooth, Periodic Kernels . . . . 290 26.3 Extension to Singular Kernels . . . . . . . . . . . . 293 26.4 Numerical Example and Conclusions . . . . . . . . . 295 References . . . . . . . . . . . . . . . . . . . . 297 27 The GILTT Pollutant Simulation in a Stable Atmosphere Sergio Wortmann, Marco T. Vilhena, Haroldo F. Campos Velho, and Cynthia F. Segatto 299 27.1 Introduction . . . . . . . . . . . . . . . . . . . 299 27.2 GILTT Formulation . . . . . . . . . . . . . . . . 300 27.3 GILTT in Atmospheric Pollutant Dispersion . . . . . . 303 27.4 Final Remarks . . . . . . . . . . . . . . . . . . . 308 References . . . . . . . . . . . . . . . . . . . . 308 Index 309 Preface ThepurposeoftheinternationalconferencesonIntegralMethodsinScience and Engineering (IMSE) is to bring together researchers who make use of analytic or numerical integration methods as a major tool in their work. The first two such conferences, IMSE1985 and IMSE1990, were held at the University of Texas at Arlington under the chairmanship of Fred Payne. At the 1990 meeting, the IMSE consortium was created, charged with organizing these conferences under the guidance of an International Steering Committee. Thus, IMSE1993 took place at Tohoku University, Sendai, Japan, IMSE1996 at the University of Oulu, Finland, IMSE1998 at Michigan Technological University, Houghton, MI, USA, IMSE2000 in Banff, AB, Canada, IMSE2002 at the University of Saint-E´tienne, France, andIMSE2004attheUniversityofCentralFlorida,Orlando,FL,USA.The IMSEconferenceshavenowbecomeestablishedasaforumwherescientists andengineersworkingwithintegralmethodsdiscussanddisseminatetheir latest results concerning the development and applications of a powerful class of mathematical procedures. An additional, and quite rare, characteristic of all IMSE conferences is their very friendly and socially enjoyable professional atmosphere. As expected, IMSE2004, organized at the University of Central Florida in Orlando, FL, continued that tradition, for which the participants wish to express their thanks to the Local Organizing Committee: David Rollins, Chairman; Zuhair Nashed, Chairman of the Program Committee; Ziad Musslimani; Alain Kassab; Jamal Nayfeh. The organizers and the participants also wish to acknowledge the sup- port received from The Department of Mathematics, UCF, The College of Engineering, UCF, andtheUniversityofCentralFloridaitselffortheexcellentfacilitiesplaced at our disposal. The next IMSE conference will be held in July 2006 in Niagara Falls, Canada. Details concerning this event are posted on the conference web page, http://www.civil.uwaterloo.ca/imse2006. xii Preface This volume contains eight invited papers and nineteen contributed pa- pers accepted after peer review. The papers are arranged in alphabetical order by (first) author’s name. The editors would like to record their thanks to the referees for their willingness to review the papers, and to the staff at Birkha¨user Boston, who have handled the publication process with their customary patience and efficiency. Tulsa, Oklahoma, USA Christian Constanda, IMSE Chairman The International Steering Committee of IMSE: C. Constanda (University of Tulsa), Chairman M. Ahues (University of Saint-E´tienne) B. Bertram (Michigan Technological University) I. Chudinovich (University of Guanajuato) C. Corduneanu (University of Texas at Arlington) P. Harris (University of Brighton) A. Largillier (University of Saint-E´tienne) S. Mikhailov (Glasgow Caledonian University) A. Mioduchowski (University of Alberta, Edmonton) D. Mitrea (University of Missouri-Columbia) Z. Nashed (University of Central Florida) A. Nastase (Rhein.-Westf. Technische Hochschule, Aachen) F.R. Payne (University of Texas at Arlington) M.E. P´erez (University of Cantabria, Santander) S. Potapenko (University of Waterloo) K. Ruotsalainen (University of Oulu) P. Schiavone (University of Alberta, Edmonton) S. Seikkala (University of Oulu)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.