ebook img

Integral Equations and their Applications - mshdiau.ac.ir PDF

385 Pages·2007·2.01 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Integral Equations and their Applications - mshdiau.ac.ir

Integral Equations and their Applications WIT PRESS WIT Press publishes leading books in Science and Technology. Visit our website for the current list of titles. www.witpress.com WIT eLibrary Home of the Transactions of the Wessex Institute, the WIT electronic-library provides the international scientific community with immediate and permanent access to individual papers presented at WIT conferences. Visit the WIT eLibrary at http://library.witpress.com This page intentionally left blank Integral Equations and their Applications M. Rahman Dalhousie University, Canada Author: M. Rahman Dalhousie University, Canada Published by WIT Press Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK Tel: 44 (0) 238 029 3223; Fax: 44 (0) 238 029 2853 E-Mail: [email protected] http://www.witpress.com For USA, Canada and Mexico WIT Press 25 Bridge Street, Billerica, MA 01821, USA Tel: 978 667 5841; Fax: 978 667 7582 E-Mail: [email protected] http://www.witpress.com British Library Cataloguing-in-Publication Data A Catalogue record for this book is available from the British Library ISBN: 978-1-84564-101-6 Library of Congress Catalog Card Number: 2007922339 No responsibility is assumed by the Publisher, the Editors and Authors for any injury and/ or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. The Publisher does not necessarily endorse the ideas held, or views expressed by the Editors or Authors of the material contained in its publications. © WIT Press 2007 Printed in Great Britain by Athenaeum Press Ltd. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Publisher. MM-165 Prelims.tex 29/5/2007 16:38 Pagei Contents Preface ................................................................ix Acknowledgements....................................................xiii 1 Introduction 1 1.1 Preliminaryconceptoftheintegralequation....................... 1 1.2 Historicalbackgroundoftheintegralequation.............. ....... 2 1.3 Anillustrationfrommechanics................................... 4 1.4 Classificationofintegralequations................................ 5 1.4.1 Volterraintegralequations................................ 5 1.4.2 Fredholmintegralequations.............................. 6 1.4.3 Singularintegralequations............................... 7 1.4.4 Integro-differentialequations............................. 7 1.5 ConvertingVolterraequationtoODE.............................. 7 1.6 ConvertingIVPtoVolterraequations.............................. 8 1.7 ConvertingBVPtoFredholmintegralequations.................... 9 1.8 Typesofsolutiontechniques.....................................13 1.9 Exercises......................................................14 References ......................................................... 15 2 Volterraintegralequations 17 2.1 Introduction...................................................17 2.2 Themethodofsuccessiveapproximations ........................17 2.3 ThemethodofLaplacetransform................................21 2.4 Themethodofsuccessivesubstitutions...........................25 2.5 TheAdomiandecompositionmethod.............................28 2.6 Theseriessolutionmethod......................................31 2.7 Volterraequationofthefirstkind................................33 2.8 IntegralequationsoftheFaltungtype............................36 2.9 Volterraintegralequationandlineardifferentialequations..........40 2.10 Exercises......................................................43 References ......................................................... 45 MM-165 Prelims.tex 29/5/2007 16:38 Pageii 3 Fredholmintegralequations 47 3.1 Introduction...................................................47 3.2 VarioustypesofFredholmintegralequations......................48 3.3 Themethodofsuccessiveapproximations:Neumann’sseries.......49 3.4 Themethodofsuccessivesubstitutions...........................53 3.5 TheAdomiandecompositionmethod.............................55 3.6 Thedirectcomputationalmethod................................58 3.7 HomogeneousFredholmequations...............................59 3.8 Exercises......................................................62 References ......................................................... 63 4 Nonlinearintegralequations 65 4.1 Introduction...................................................65 4.2 Themethodofsuccessiveapproximations ........................66 4.3 Picard’smethodofsuccessiveapproximations.....................67 4.4 ExistencetheoremofPicard’smethod............................70 4.5 TheAdomiandecompositionmethod.............................73 4.6 Exercises......................................................94 References ......................................................... 96 5 Thesingularintegralequation 97 5.1 Introduction...................................................97 5.2 Abel’sproblem.................................................98 5.3 ThegeneralizedAbel’sintegralequationofthefirstkind...........99 5.4 Abel’sproblemofthesecondkindintegralequation...............100 5.5 Theweakly-singularVolterraequation...........................101 5.6 EquationswithCauchy’sprincipalvalueofanintegral andHilbert’stransformation....................................104 5.7 UseofHilberttransformsinsignalprocessing ...................114 5.8 TheFouriertransform .........................................116 5.9 TheHilberttransformviaFouriertransform......................118 5.10 TheHilberttransformviathe±π/2phaseshift...................119 5.11 PropertiesoftheHilberttransform..............................121 5.11.1 Linearity.............................................121 5.11.2 MultipleHilberttransformsandtheirinverses............121 5.11.3 DerivativesoftheHilberttransform.....................123 5.11.4 Orthogonalityproperties...............................123 5.11.5 EnergyaspectsoftheHilberttransform..................124 5.12 Analyticsignalintimedomain .................................125 5.13 Hermitianpolynomials ........................................125 5.14 ThefiniteHilberttransform....................................129 5.14.1 InversionformulaforthefiniteHilberttransform.........131 5.14.2 Trigonometricseriesform..............................132 5.14.3 Animportantformula..................................133 MM-165 Prelims.tex 29/5/2007 16:38 Pageiii 5.15 Sturm–Liouvilleproblems.....................................134 5.16 Principlesofvariations........................................142 5.17 Hamilton’sprinciples..........................................146 5.18 Hamilton’sequations..........................................151 5.19 Somepracticalproblems.......................................156 5.20 Exercises.....................................................161 References ........................................................ 164 6 Integro-differentialequations 165 6.1 Introduction..................................................165 6.2 Volterraintegro-differentialequations...........................166 6.2.1 Theseriessolutionmethod.............................166 6.2.2 Thedecompositionmethod.............................169 6.2.3 ConvertingtoVolterraintegralequations.................173 6.2.4 Convertingtoinitialvalueproblems.....................175 6.3 Fredholmintegro-differentialequations..........................177 6.3.1 Thedirectcomputationmethod.........................177 6.3.2 Thedecompositionmethod.............................179 6.3.3 ConvertingtoFredholmintegralequations...............182 6.4 TheLaplacetransformmethod .................................184 6.5 Exercises.....................................................187 References ........................................................ 187 7 Symmetrickernelsandorthogonalsystemsoffunctions 189 7.1 DevelopmentofGreen’sfunctioninone-dimension...............189 7.1.1 Adistributedloadofthestring..........................189 7.1.2 Aconcentratedloadofthestrings.......................190 7.1.3 PropertiesofGreen’sfunction..........................194 7.2 Green’sfunctionusingthevariationofparameters................200 7.3 Green’sfunctionintwo-dimensions.............................207 7.3.1 Two-dimensionalGreen’sfunction.......................208 7.3.2 MethodofGreen’sfunction.............................211 7.3.3 TheLaplaceoperator..................................211 7.3.4 TheHelmholtzoperator................................212 7.3.5 ToobtainGreen’sfunctionbythemethodofimages.......219 7.3.6 Methodofeigenfunctions..............................221 7.4 Green’sfunctioninthree-dimensions............................223 7.4.1 Green’sfunctionin3Dforphysicalproblems.............226 7.4.2 Application:hydrodynamicpressureforces...............231 7.4.3 DerivationofGreen’sfunction..........................232 7.5 Numericalformulation.........................................244 7.6 Remarksonsymmetrickernelandaprocess oforthogonalization...........................................249 7.7 Processoforthogonalization ...................................251 MM-165 Prelims.tex 29/5/2007 16:38 Pageiv 7.8 Theproblemofvibratingstring:waveequation...................254 7.9 Vibrationsofaheavyhangingcable.............................256 7.10 Themotionofarotatingcable..................................261 7.11 Exercises.....................................................264 References ........................................................ 266 8 Applications 269 8.1 Introduction..................................................269 8.2 Oceanwaves..................................................269 8.2.1 Introduction ..........................................270 8.2.2 Mathematicalformulation..............................270 8.3 Nonlinearwave–waveinteractions..............................273 8.4 Picard’smethodofsuccessiveapproximations....................274 8.4.1 Firstapproximation....................................274 8.4.2 Secondapproximation.................................275 8.4.3 Thirdapproximation...................................276 8.5 Adomiandecompositionmethod................................278 8.6 Fourth-orderRunge−Kuttamethod.............................282 8.7 Resultsanddiscussion.........................................284 8.8 Green’sfunctionmethodforwaves..............................288 8.8.1 Introduction ..........................................288 8.8.2 Mathematicalformulation..............................289 8.8.3 Integralequations.....................................292 8.8.4 Resultsanddiscussion.................................296 8.9 Seismicresponseofdams......................................299 8.9.1 Introduction ..........................................299 8.9.2 Mathematicalformulation..............................300 8.9.3 Solution..............................................302 8.10 Transverseoscillationsofabar.................................306 8.11 Flowofheatinametalbar.....................................309 8.12 Exercises.....................................................315 References ........................................................ 317 AppendixA Miscellaneousresults ................................... 319 AppendixB TableofLaplacetransforms............................. 327 AppendixC SpecializedLaplaceinverses............................. 341 Answerstosomeselectedexercises..................................... 345 Subjectindex......................................................... 355 Preface While scientists and engineers can already choose from a number of books on integral equations, this new book encompasses recent developments including some preliminary backgrounds of formulations of integral equations governing the physical situation of the problems. It also contains elegant analytical and numerical methods, and an important topic of the variational principles. This book is primarily intended for the senior undergraduate students and beginning graduate students of engineering and science courses. The students in mathematical and physical sciences will find many sections of divert relevance. The book contains eight chapters. The chapters in the book are pedagogically organized. This book is specially designed for those who wish to understand integral equations without having extensive mathematical background. Some knowledge of integral calculus, ordinary differential equations, partial differential equations, Laplace transforms, Fourier transforms, Hilbert transforms, analytic functions of complex variables and contour integrations are expected on the part of the reader. The book deals with linear integral equations, that is, equations involving an unknown function which appears under an integral sign. Such equations occur widely in diverse areas of applied mathematics and physics. They offer a powerful technique for solving a variety of practical problems. One obvious reason for using the integral equation rather than differential equations is that all of the conditions specifying the initial value problems or boundary value problems for a differential equation can often be condensed into a single integral equation. In the case of partial differential equations, the dimension of the problem is reduced in this process so that, for example, a boundary value problem for a partial differential equation in two independent variables transform into an integral equation involving an unknown function of only one variable. This reduction of what may represent a complicated mathematical model of a physical situation into a single equation is itself a significant step, but there are other advantages to be gained by replacing differentiation with integration. Some of these advantages arise because integration is a smooth process, a feature which has significant implications when approximate solutions are sought. Whether one is looking for an exact solution to a given problem or having to settle for an approximation to it, an integral equation formulation can often provide a useful way forward. For this reason integral equations have attracted attention for

Description:
Integral Equations and their Applications WITeLibrary Home of the Transactions of the Wessex Institute, the WIT electronic-library provides the international
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.