Integral and Measure To my beloved wife Eugenija Series Editor Nikolaos Limnios Integral and Measure From Rather Simple to Rather Complex Vigirdas Mackevičius First published 2014 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2014 The rights of Vigirdas Mackevičius to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2014945514 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-84821-769-0 Contents PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix NOTE FOR THE TEACHER OR WHO IS BETTER, RIEMANN OR LEBESGUE? . . . . . . . . . . . . . . . . . . . . . . . . . . xi NOTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii PART 1. INTEGRATION OF ONE-VARIABLE FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 CHAPTER 1. FUNCTIONS WITHOUT SECOND-KIND DISCONTINUITIES . . . . . . . . . . . . . . . . . . . . . . . . 3 P.1. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 9 CHAPTER 2. INDEFINITE INTEGRAL . . . . . . . . . . . . . 11 P.2. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 16 CHAPTER 3. DEFINITE INTEGRAL . . . . . . . . . . . . . . 19 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 19 P.3. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 38 CHAPTER 4. APPLICATIONS OF THE INTEGRAL . . . . . . 43 4.1. Areaofacurvilineartrapezium. . . . . . . . . . . . . . 43 4.2. Ageneralschemeforapplyingtheintegrals . . . . . . 51 vi IntegralandMeasure 4.3. Areaofasurfaceofrevolution . . . . . . . . . . . . . . 52 4.4. Areaofcurvilinearsector . . . . . . . . . . . . . . . . . 53 4.5. Applicationsinmechanics . . . . . . . . . . . . . . . . 54 P.4. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 56 CHAPTER 5. OTHER DEFINITIONS: RIEMANN AND STIELTJES INTEGRALS . . . . . . . . . . . . . . . . . . . . . 59 5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 59 P.5. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 75 CHAPTER 6. IMPROPER INTEGRALS . . . . . . . . . . . . . 79 P.6. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 88 PART 2. INTEGRATION OF SEVERAL-VARIABLE FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 CHAPTER 7. ADDITIONAL PROPERTIES OF STEP FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.1. Thenotion“almosteverywhere” . . . . . . . . . . . . . 97 P.7. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 104 CHAPTER 8. LEBESGUE INTEGRAL . . . . . . . . . . . . . . 105 8.1. Proofofthecorrectnessofthedefinitionof integral. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 8.2. ProofoftheBeppoLevitheorem . . . . . . . . . . . . . 114 8.3. ProofoftheFatou–Lebesguetheorem . . . . . . . . . . 119 P.8. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 133 CHAPTER 9. FUBINI AND CHANGE-OF-VARIABLES THEOREMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 P.9. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 157 CHAPTER 10. APPLICATIONS OF MULTIPLE INTEGRALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 10.1.Calculationoftheareaofaplanefigure . . . . . . . . 161 10.2.Calculationofthevolumeofasolid . . . . . . . . . . . 162 Contents vii 10.3.Calculationoftheareaofasurface . . . . . . . . . . . 162 10.4.Calculationofthemassofabody . . . . . . . . . . . . 165 10.5.Thestaticmomentandmasscenterofabody . . . . . 166 CHAPTER 11. PARAMETER-DEPENDENT INTEGRALS . . . 169 11.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . 169 11.2.ImproperPDIs . . . . . . . . . . . . . . . . . . . . . . . 177 P.11.Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 187 PART 3. MEASURE AND INTEGRATION IN A MEASURE SPACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 CHAPTER 12. FAMILIES OF SETS . . . . . . . . . . . . . . . 193 12.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . 193 P.12.Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 197 CHAPTER 13. MEASURE SPACES . . . . . . . . . . . . . . . 199 P.13.Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 206 CHAPTER 14. EXTENSION OF MEASURE . . . . . . . . . . . 209 P.14.Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 220 CHAPTER 15. LEBESGUE–STIELTJES MEASURES ON THE REAL LINE AND DISTRIBUTION FUNCTIONS . . . . . . . . 223 P.15.Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 229 CHAPTER 16. MEASURABLE MAPPINGS AND REAL MEASURABLE FUNCTIONS . . . . . . . . . . . . . . . . . . . 233 P.16.Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 239 CHAPTER 17. CONVERGENCE ALMOST EVERYWHERE AND CONVERGENCE IN MEASURE . . . . . . . . . . . . . . 241 P.17.Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 246 CHAPTER 18. INTEGRAL . . . . . . . . . . . . . . . . . . . . 249 P.18.Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 263 viii IntegralandMeasure CHAPTER 19. PRODUCT OF TWO MEASURE SPACES . . . 267 P.19.Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 275 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . 277 INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 Preface This textbook is devoted to integration, an important part of calculus. In Part 1, the definition of the integral of a one-variable function is different (not essentially, but rather methodically) from traditional definitions of Riemann or Lebesgue integrals. Such an approachallowsus,ontheonehand,toquicklydeveloppracticalskills of integration and, on the other hand, later, in Part 2, to pass naturally tothemoregeneralLebesgueintegral.Basedonthelatter,inPart2,we develop a theory of integration for functions of several variables. In Part 3, within the same methodological scheme, we present the elements of theory of integration in an abstract space equipped with a measure; we cannot do without this in functional analysis, probability theory, etc. The majority of the chapters are complemented with problems,mostlyofthetheoreticaltype. Although the three parts of the book are methodically related to each other, they are somewhat independent. For example, any reader accustomed to the Riemann integral and wishing to get into the theory oftheLebesgueintegralisencouragedtobeginwithPart2.Thosewho feel they are lacking in the basics of general theory of measure and integrationshouldopenthebookfromPart3. The book is mainly devoted to students of mathematics and related specialities. However, Part 1 can be successfully used by any students asasimpleintroductiontointegrationcalculus. x IntegralandMeasure Weusethedoublenumberingofstatements(theorems,propositions, etc.):thefirstnumberdenotesthenumberofthechapter,andthesecond indicatesthenumberofthestatementwithinthechapter.Thoughalarge number of books and papers have influenced the contents of this book, theshortreferencelistincludesonlythosedirectlyusedbytheauthor. The book is essentially a revised translation of the author’s book Integral and Measure (TEV, Vilnius, 1998) from Lithuanian. The author would like to thank Vilijandas Bagdonavicˇius and a large number of students of the Faculty of Mathematics and Informatics of Vilnius University. Thanks to them, the book contains significantly fewermisprints. VigirdasMackevicˇius Vilnius,July2014