Lecture Notes in Computer Science 7801 CommencedPublicationin1973 FoundingandFormerSeriesEditors: GerhardGoos,JurisHartmanis,andJanvanLeeuwen EditorialBoard DavidHutchison LancasterUniversity,UK TakeoKanade CarnegieMellonUniversity,Pittsburgh,PA,USA JosefKittler UniversityofSurrey,Guildford,UK JonM.Kleinberg CornellUniversity,Ithaca,NY,USA AlfredKobsa UniversityofCalifornia,Irvine,CA,USA FriedemannMattern ETHZurich,Switzerland JohnC.Mitchell StanfordUniversity,CA,USA MoniNaor WeizmannInstituteofScience,Rehovot,Israel OscarNierstrasz UniversityofBern,Switzerland C.PanduRangan IndianInstituteofTechnology,Madras,India BernhardSteffen TUDortmundUniversity,Germany MadhuSudan MicrosoftResearch,Cambridge,MA,USA DemetriTerzopoulos UniversityofCalifornia,LosAngeles,CA,USA DougTygar UniversityofCalifornia,Berkeley,CA,USA GerhardWeikum MaxPlanckInstituteforInformatics,Saarbruecken,Germany Michel Goemans José Correa (Eds.) Integer Programming and Combinatorial Optimization 16th International Conference, IPCO 2013 Valparaíso, Chile, March 18-20, 2013 Proceedings 1 3 VolumeEditors MichelGoemans MassachusettsInstituteofTechnology DepartmentofMathematics 77MassachusettsAve. Cambridge,MA02139,USA E-mail:[email protected] JoséCorrea UniversidaddeChile DepartmentofIndustrialEngineering Republica701 Santiago,Chile E-mail:[email protected] ISSN0302-9743 e-ISSN1611-3349 ISBN978-3-642-36693-2 e-ISBN978-3-642-36694-9 DOI10.1007/978-3-642-36694-9 SpringerHeidelbergDordrechtLondonNewYork LibraryofCongressControlNumber:2013931229 CRSubjectClassification(1998):G.1.6,F.2.2,G.2.1-3 LNCSSublibrary:SL1–TheoreticalComputerScienceandGeneralIssues ©Springer-VerlagBerlinHeidelberg2013 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,re-useofillustrations,recitation,broadcasting, reproductiononmicrofilmsorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965, inistcurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsareliable toprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Typesetting:Camera-readybyauthor,dataconversionbyScientificPublishingServices,Chennai,India Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface This volume contains the 33 extended abstracts presented at IPCO 2013, the 16thConferenceonIntegerProgrammingandCombinatorialOptimization,held duringMarch18–20,2013,inValpara´ıso,Chile.IPCOconferencesaresponsored bytheMathematicalOptimizationSociety.ThefirstIPCOconferencetookplace attheUniversityofWaterlooinMay1990.Itisheldeveryyear,exceptforthose in which the International Symposium on Mathematical Programming is held. TheconferencehadaProgramCommitteeconsistingof14membersandwas chaired by Michel Goemans. In response to the Call for Papers, we received 98 extendedabstracts,ofwhichthree gotwithdrawnpriorto the decisionprogress. Each submission was reviewed by at least three Program Committee members. Once the reviews were available,the decisions were made in late November and early December through conference calls and electronic discussions using the EasyChair conference management system. We had many high-quality submis- sions and ended up selecting 33 extended abstracts. This number is dictated by thefactthattheconferencehasasingle-streamofnon-parallelsessions,asisthe tradition at IPCO. We expect the full versions of the papers contained in this volume to be submitted for publication in refereed journals. This year, IPCO was followed by a Summer School during March 21–23, 2013,withlecturesbySamuelFiorinionextendedformulationsincombinatorial optimization, and by Franc¸ois Margoton recent developments in cutting planes formixedintegerprogramming.Forthefirsttime,therewasalsoaPosterSession held on the first evening of the conference. We would like to thank: – All authors who submitted extended abstracts of their researchto IPCO – ThemembersoftheProgramCommittee,whograciouslygaveplentyoftheir time and energy to select the accepted extended abstracts – The reviewers whose expertise was instrumental in guiding our decisions – The members of the Local OrganizingCommittee (chaired by Jos´eCorrea), who made this conference possible. January 2013 Michel Goemans Jos´e Correa Organization Program Committee Chandra Chekuri University of Illinois, USA Bill Cook University of Pittsburgh, USA Jos´e Correa Universidad de Chile, Chile Jesu´s De Loera University of California, Davis, USA Michel Goemans MIT, USA Volker Kaibel University of Magdeburg, Germany Jon Lee University of Michigan, USA Franc¸ois Margot CMU, USA Thomas McCormick UBC, Canada Andreas Schulz MIT, USA David Shmoys Cornell University, USA Zolt´an Szigeti Grenoble INP, France Robert Weismantel ETH, Switzerland Giacomo Zambelli London School of Economics and Political Science, UK Additional Reviewers Aissi, Hassene Goyal, Vineet Andrews, Matthew Guin˜ez, Flavio Averkov,Gennadiy Gunluk, Oktay Baes, Michel Gusfield, Dan Bansal, Nikhil Harvey, Nick Bley, Andreas Hemmecke, Raymond Bonami, Pierre Homen-De-Mello, Tito Burer, Samuel Hosten, Serkan Bu¨sing, Christina Huh, Tim Cheriyan, Joseph Husfeldt, Thore Cheung, Wang Chi Im, Sungjin Chudnovsky, Maria Iwata, Satoru Dey, Santanu Kiraly, Tamas Ene, Alina Kiraly, Zoltan Felsner, Stefan Kleinberg, Bobby Fischetti, Matteo Kobayashi,Yusuke Fukunaga, Takuro Koenemann, Jochen Gaspers, Serge Kolliopoulos, Stavro Geelen, Jim Kucukyavuz, Simge Goundan, Pranava Laraki, Rida VIII Organization Luebbecke, Marco Rothvoss, Thomas Luedtke, James Segev, Danny Mastrolilli, Monaldo Sidiropoulos, Anastasios Mehta, Aranyak Singh, Mohit Mittal, Shashi Soto, Jose Mueller, Dirk Stier-Moses, Nicolas Nagarajan,Viswanath Sviridenko, Maxim Natarajan, Karthik Telha, Claudio Olver, Neil Tulsiani, Madhur Ordonez, Fernando Van Vyve, Mathieu Orlin, James van Zuylen, Anke Pap, Gyula Vegh, Laci Peis, Britta Vegh, Laszlo Pferschy, Ulrich Verschae, Jose Pfetsch, Marco Vygen, Jens Pruhs, Kirk Weismantel, Robert Pˆecher,Arnaud Woeginger, Gerhard J. Ravi, R. Zenklusen, Rico Richard, Jean-Philippe Zwick, Uri Romeijn, Zedwin Table of Contents On the Structure of Reduced Kernel Lattice Bases ................... 1 Karen Aardal and Frederik von Heymann All-or-Nothing Generalized Assignment with Application to Scheduling Advertising Campaigns ........................................... 13 Ron Adany, Moran Feldman, Elad Haramaty, Rohit Khandekar, Baruch Schieber, Roy Schwartz, Hadas Shachnai, and Tami Tamir Constant Integrality Gap LP Formulations of Unsplittable Flow on a Path....................................................... 25 Aris Anagnostopoulos, Fabrizio Grandoni, Stefano Leonardi, and Andreas Wiese Intersection Cuts for Mixed Integer Conic Quadratic Sets ............. 37 Kent Andersen and Anders Nedergaard Jensen Content Placement via the Exponential Potential Function Method .... 49 David Applegate, Aaron Archer, Vijay Gopalakrishnan, Seungjoon Lee, and K.K. Ramakrishnan Equivariant Perturbation in Gomory and Johnson’s Infinite Group Problem: II. The Unimodular Two-Dimensional Case ................. 62 Amitabh Basu, Robert Hildebrand, and Matthias K¨oppe Blocking Optimal Arborescences ................................... 74 Attila Bern´ath and Gyula Pap Minimum Clique Cover in Claw-Free Perfect Graphs and the Weak Edmonds-JohnsonProperty ....................................... 86 Flavia Bonomo, Gianpaolo Oriolo, Claudia Snels, and Gautier Stauffer A Complexity and Approximability Study of the Bilevel Knapsack Problem ........................................................ 98 Alberto Caprara, Margarida Carvalho, Andrea Lodi, and Gerhard J. Woeginger Matroid and Knapsack Center Problems ............................ 110 Danny Z. Chen, Jian Li, Hongyu Liang, and Haitao Wang Cut-Generating Functions......................................... 123 Michele Conforti, G´erard Cornu´ejols, Aris Daniilidis, Claude Lemar´echal, and J´eroˆme Malick X Table of Contents Reverse Chv´atal-Gomory Rank .................................... 133 Michele Conforti, Alberto Del Pia, Marco Di Summa, Yuri Faenza, and Roland Grappe On Some Generalizations of the Split Closure........................ 145 Sanjeeb Dash, Oktay Gu¨nlu¨k, and Diego Alejandro Mora´n Ramirez Packing Interdiction and Partial Covering Problems .................. 157 Michael Dinitz and Anupam Gupta On Valid Inequalities for Quadratic Programming with Continuous Variables and Binary Indicators.................................... 169 Hongbo Dong and Jeff Linderoth An Improved Integrality Gap for Asymmetric TSP Paths ............. 181 Zachary Friggstad, Anupam Gupta, and Mohit Singh SingleCommodity-FlowAlgorithmsforLiftsofGraphicandCo-graphic Matroids........................................................ 193 Bertrand Guenin and Leanne Stuive A Stochastic Probing Problem with Applications..................... 205 Anupam Gupta and Viswanath Nagarajan Thrifty Algorithms for Multistage Robust Optimization............... 217 Anupam Gupta, Viswanath Nagarajan, and Vijay V. Vazirani Shallow-Light Steiner Arborescences with Vertex Delays .............. 229 Stephan Held and Daniel Rotter Two Dimensional Optimal Mechanism Design for a Sequencing Problem ........................................................ 242 Ruben Hoeksma and Marc Uetz Advances on Matroid Secretary Problems: Free Order Model and Laminar Case ................................................... 254 Patrick Jaillet, Jos´e A. Soto, and Rico Zenklusen A Polynomial-Time Algorithm to Check Closedness of Simple Second Order Mixed-Integer Sets ......................................... 266 Diego Alejandro Mora´n Ram´ırez and Santanu S. Dey The Complexity of Scheduling for p-Norms of Flow and Stretch (Extended Abstract) ............................................. 278 Benjamin Moseley, Kirk Pruhs, and Cliff Stein The Euclidean k-Supplier Problem ................................. 290 Viswanath Nagarajan, Baruch Schieber, and Hadas Shachnai Table of Contents XI Facial Structure and Representation of Integer Hulls of Convex Sets .... 302 Vishnu Narayanan An Efficient Polynomial-Time Approximation Scheme for the Joint Replenishment Problem........................................... 314 Tim Nonner and Maxim Sviridenko Chain-Constrained Spanning Trees ................................. 324 Neil Olver and Rico Zenklusen A Simpler Proof for O(Congestion+Dilation) Packet Routing ......... 336 Thomas Rothvoß 0/1 Polytopes with Quadratic Chva´tal Rank ........................ 349 Thomas Rothvoß and Laura Sanit´a Eight-Fifth Approximation for the Path TSP ........................ 362 Andr´as Seb˝o Fast Deterministic Algorithms for Matrix Completion Problems........ 375 Tasuku Soma Approximating the Configuration-LP for Minimizing Weighted Sum of Completion Times on Unrelated Machines ........................ 387 Maxim Sviridenko and Andreas Wiese Author Index.................................................. 399 On the Structure of Reduced Kernel Lattice Bases Karen Aardal1,2 and Frederik von Heymann1 1 Delft Instituteof Applied Mathematics, TU Delft, The Netherlands {k.i.aardal,f.j.vonheymann}@tudelft.nl 2 Centrum Wiskundeen Informatica, Amsterdam, The Netherlands Abstract. Lattice-based reformulation techniques have been used suc- cessfullyboththeoreticallyandcomputationally.Onesuchreformulation is obtained from the lattice kerZ(A) = {x ∈ Zn | Ax = 0}. Some of the hard instances in the literature that have been successfully tackled by lattice-based techniques, such as market split and certain classes of knapsack instances, have randomly generated input A. These instances havebeen posed to stimulate algorithmic research. Sincetheconsidered instances are very hard even in low dimension, less experience is avail- able for larger instances. Recently we have studied larger instances and observed that the LLL-reduced basis of kerZ(A) has a specific sparse structure. In particular, this translates into a map in which some of the original variables get a “rich” translation into a new variable space, whereassomevariablesareonlysubstitutedinthenewspace.Ifanorig- inal variable is important in the sense of branching or cutting planes, this variable should be translated in a non-trivial way. In this paper we partially explain theobtained structureof theLLL-reduced basis in the case that the input matrix A consists of one row a. Since the input is randomlygeneratedouranalysiswillbeprobabilistic.Thekeyingredient is a bound on the probability that the LLL algorithm will interchange two subsequent basis vectors. It is worth noticing that computational experiments indicate that the results of this analysis seem to apply in the same way also in the general case that A consists of multiple rows. Ouranalysishasyettobeextendedtothisgeneralcase.Alongwithour analysis we also present some computational indications that illustrate thattheprobabilisticanalysisconformswellwiththepracticalbehavior. 1 Introduction Consider the following integer program: max{cx|Ax=b, x≥0}, (1) where A is an integer m×n matrix of full row rank and b an integer m-vector. Starting with the well-known algorithm of Lenstra [13], several lattice-based approaches to reformulate the feasible region have been proposed, see, e.g., [1, 3, 5, 11, 16–18]. Here we will consider the reformulation as in [1]: x:=x0+Qλ, (2) M.GoemansandJ.Correa(Eds.):IPCO2013,LNCS7801,pp.1–12,2013. (cid:2)c Springer-VerlagBerlinHeidelberg2013