Integer Complexity, Addition Chains, and Well-Ordering by Harry J. Altman A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mathematics) in the University of Michigan 2014 Doctoral Committee: Professor Jeffrey C. Lagarias, Chair Professor Alexander Barvinok Professor Andreas R. Blass Associate Professor Kevin J. Compton Professor Martin J. Strauss For my grandparents ii Acknowledgments The author is grateful to Joshua Zelinsky, who originally suggested the subject of integer complexity, and together with whom much of the work in Chapter 2 was conducted. The author is grateful to Juan Arias de Reyna for much helpful discussion regard- ing integer complexity – improving notation, clarifying statements, and providing shorter proofs than the author’s of the lower bound in Proposition 3.6.3 and the k = 1 case of Lemma 2.4.5. The author is grateful to his advisor Jeffrey C. Lagarias, for suggesting the ad- ditional topic of addition chains, for pointing out the relations to computational complexity issues, and for much helpful discussion. The author thanks in addition the following people: J. Iraids and K. Podnieks for providing much helpful numerical data; Andreas Blass, Paul Pollack, and Mike Bennett for suggesting references; E. H. Brooks for discussion regarding some of the proofs in Chapter 5; J. Heidi Soderstrom for help translating references into English; and A. Mishchenko for providing his LATEX files for his dissertation, from which the formatting of this dissertation has largely been copied. WorkoftheauthorwassupportedbyNSFgrantsDMS-0943832andDMS-1101373. iii Preface A note to the reader: The bulk of this thesis, Chapters 2 through 5, were originally written as separate papers (the paper which became Chapter 2 was co-authored with J. Zelinsky). As such, each has its own individual abstract in addition to the over- all abstract, and the initial few sections of each chapter repeat much information from previous chapters. Appendix A was originally an appendix to Chapter 3, and Appendices B and C were originally appendices to Chapter 5. iv Contents Dedication ii Acknowledgments iii Preface iv List of Tables viii List of Figures ix List of Appendices x Abstract xi Chapter 1 Introduction 1 1.1 Notions of complexity for natural numbers . . . . . . . . . . . . . 1 1.2 Main results: Integer complexity . . . . . . . . . . . . . . . . . . . 8 1.3 Main results: Addition chains . . . . . . . . . . . . . . . . . . . . 12 1.4 Other notions of complexity . . . . . . . . . . . . . . . . . . . . . 15 1.5 Plan of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2 Numbers with Integer Complexity Close to the Lower Bound 19 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Properties of the defect . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3 Good factorizations and solid numbers . . . . . . . . . . . . . . . 29 2.4 The Classification Method . . . . . . . . . . . . . . . . . . . . . . 32 2.5 Determination of all elements of defect below a given bound r . . 38 2.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3 Integer Complexity and Well-Ordering 54 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.2 Properties of the defect . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3 Stable defects and stable complexity . . . . . . . . . . . . . . . . . 63 3.4 Low-defect polynomials . . . . . . . . . . . . . . . . . . . . . . . . 65 3.5 Facts from order theory and topology . . . . . . . . . . . . . . . . 74 3.6 Well-ordering of defects . . . . . . . . . . . . . . . . . . . . . . . . 78 v 3.7 Variants of the main theorem . . . . . . . . . . . . . . . . . . . . 82 4 Addition Chains and Well-Ordering 87 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2 Comparison of addition chain complexity and integer complexity . 95 4.3 The A-defect and A-stabilization . . . . . . . . . . . . . . . . . . . 97 4.4 Bit-counting in numbers of small defect . . . . . . . . . . . . . . . 101 4.5 Cutting and pasting well-ordered sets . . . . . . . . . . . . . . . . 103 4.6 Well-ordering of defects . . . . . . . . . . . . . . . . . . . . . . . . 105 4.7 Bounds on order type for small A-defect values . . . . . . . . . . 109 4.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 112 5 Integer Complexity: Computational Methods and Results 113 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.2 The defect, stability, and low-defect polynomials . . . . . . . . . . 123 5.3 Further notes on stabilization and stable complexity . . . . . . . . 132 5.4 Low-defect expressions, the nesting ordering, and structure of low- defect polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.5 The truncation operation . . . . . . . . . . . . . . . . . . . . . . . 149 5.6 Algorithms: Computing good coverings . . . . . . . . . . . . . . . 158 5.7 Algorithms: Computing stabilization length K(n) and stable com- plexity (cid:107)n(cid:107) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 st 5.8 Results of computation . . . . . . . . . . . . . . . . . . . . . . . . 174 6 Open problems and future research 177 6.1 Additional structure in the defect set . . . . . . . . . . . . . . . . 177 6.2 Generalization to addition-multiplication chains . . . . . . . . . . 180 6.3 Complexity based on a number other than 1 . . . . . . . . . . . . 180 6.4 Further stabilization hypotheses . . . . . . . . . . . . . . . . . . . 181 6.5 Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 6.6 Counting problems . . . . . . . . . . . . . . . . . . . . . . . . . . 184 6.7 Computability and complexity-theoretic problems . . . . . . . . . 185 6.8 Remaining computational problems . . . . . . . . . . . . . . . . . 186 Appendix A Conjectures of J. Arias de Reyna 187 B Good coverings of closed intervals 189 C Implementation notes 192 D Leaders with defect at most 1 195 vi References 196 vii List of Tables 5.1 Numbers that seem to have unusual drop patterns . . . . . . . . . . . 122 6.1 Numbers that seem to have unusual drop patterns . . . . . . . . . . . 183 D.1 Leaders of defect at most 1 . . . . . . . . . . . . . . . . . . . . . . . . 195 viii List of Figures Figure 1.1 A tree for n = 11 using 8 ones and of height 3 . . . . . . . . . . . 18 Figure 3.1 Illustration of substitution into a low-defect polynomial . . . . . 57 Figure 3.2 Illustration of substitution of 30 into a low-defect polynomial . . 69 Figure 5.1 Illustration of low-defect tree . . . . . . . . . . . . . . . . . . . . 135 Figure 5.2 Two different trees yielding the polynomial 4x+2 . . . . . . . . 139 Figure 5.3 Illustration of bijection between variables and non-root vertices . 140 ix List of Appendices Appendix A: Conjectures of J. Arias de Reyna . . . . . . . . . . . . . . . . . . 187 Appendix B: Good coverings of closed intervals . . . . . . . . . . . . . . . . . 189 Appendix C: Implementation notes . . . . . . . . . . . . . . . . . . . . . . . . 192 Appendix D: Leaders with defect at most 1 . . . . . . . . . . . . . . . . . . . 195 x
Description: