ebook img

Instrumentation and Metrology in Oceanography PDF

399 Pages·2012·12.607 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Instrumentation and Metrology in Oceanography

Instrumentation and Metrology in Oceanography Instrumentation and Metrology in Oceanography Marc Le Menn First published 2012 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2012 The rights of Marc Le Menn to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. ____________________________________________________________________________________ Library of Congress Cataloging-in-Publication Data Le Menn, Marc. Instrumentation and metrology in oceanography / Marc Le Menn. p. cm. Includes bibliographical references and index. ISBN 978-1-84821-379-1 1. Oceanographic instruments. 2. Oceanography--Measurement. I. Title. GC41.L44 2012 551.46028'4--dc23 2012025490 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN: 978-1-84821-379-1 Printed and bound in Great Britain by CPI Group (UK) Ltd., Croydon, Surrey CR0 4YY Table of Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Chapter1.WhatWeMeasureandWhatWeProcess. . . . . . . . . . . . . . 1 1.1.Thequantitieswewanttoknow. . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1.Velocityanddensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2.Pressureanddepth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.3.Speedandmovement. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.4.Timeandspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.Linkingofessentialquantitiesinoceanography . . . . . . . . . . . . . . 10 1.2.1.Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.2.Pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.2.3.Conductivityandsalinity . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.2.4.Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.2.5.Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 1.3.Calculationofdensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 1.3.1.DensityandEOS-80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 1.3.2.Laboratorydensitometers . . . . . . . . . . . . . . . . . . . . . . . . . 45 1.3.3.Densityandabsolutesalinity . . . . . . . . . . . . . . . . . . . . . . . 46 1.4.Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 1.4.1.Quantitiesthatwewanttoknow. . . . . . . . . . . . . . . . . . . . . 48 1.4.2.Linkingofessentialquantitiesinoceanography. . . . . . . . . . . . 49 Chapter2.MeasurementSystemsinPractice. . . . . . . . . . . . . . . . . . . 55 2.1.Determiningtemperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.1.1.Principalinstruments. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.1.2.Sensortechnologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.1.3.Thermaltransfers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 2.1.4.Responsetimeoftemperaturesensors. . . . . . . . . . . . . . . . . . 83 vi Instrumentation and Metrology in Oceanography 2.1.5. Viscous heating of temperature sensors . . . . . . . . . . . . . . . . . 88 2.2. Determining conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 2.2.1. Principle instruments used . . . . . . . . . . . . . . . . . . . . . . . . 89 2.2.2. Sensors’ technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 2.2.3. Response time of conductivity sensors . . . . . . . . . . . . . . . . . 102 2.2.4. Aligning the response times of temperature and conductivity sensors and correcting thermal inertia . . . . . . . . . . . . . 105 2.2.5. Biofouling and protection of instruments . . . . . . . . . . . . . . . . 108 2.3. Determining pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 2.3.1. Piezoresistive pressure sensors . . . . . . . . . . . . . . . . . . . . . . 111 2.3.2. Piezoelectric pressure sensors . . . . . . . . . . . . . . . . . . . . . . 113 2.3.3. Errors in pressure sensor measurements . . . . . . . . . . . . . . . . 115 2.4. Determining velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 2.4.1. Principles of measurement . . . . . . . . . . . . . . . . . . . . . . . . 116 2.4.2. Instruments used at sea . . . . . . . . . . . . . . . . . . . . . . . . . . 123 2.5. Determining current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 2.5.1. Rotor current meters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 2.5.2. Doppler effect current meters . . . . . . . . . . . . . . . . . . . . . . . 129 2.5.3. Electromagnetic current meters. . . . . . . . . . . . . . . . . . . . . . 138 2.5.4. Doppler effect profilers . . . . . . . . . . . . . . . . . . . . . . . . . . 140 2.5.5. Directional referencing of current measurements . . . . . . . . . . . 151 2.5.6. Calibration of Doppler effect current meters . . . . . . . . . . . . . . 161 2.6. Determining time or measuring frequency . . . . . . . . . . . . . . . . . 163 2.6.1. The connection of clocks . . . . . . . . . . . . . . . . . . . . . . . . . 164 2.6.2. Time bases of instruments . . . . . . . . . . . . . . . . . . . . . . . . . 166 2.7. Determining position and movement . . . . . . . . . . . . . . . . . . . . . 171 2.7.1. The Argos system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 2.7.2. The global positioning system . . . . . . . . . . . . . . . . . . . . . . 178 2.8. Determining the height of water . . . . . . . . . . . . . . . . . . . . . . . . 190 2.8.1. Tide gauges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 2.8.2. Tide gauges with pressure sensors . . . . . . . . . . . . . . . . . . . . 199 2.8.3. Keying and uniting of tide gauges . . . . . . . . . . . . . . . . . . . . 202 2.9. Determining waves and swell characteristics . . . . . . . . . . . . . . . . 203 2.9.1. Factors relating to the origins and modeling of swell . . . . . . . . . 203 2.9.2. Instruments used to measure the state of the sea . . . . . . . . . . . . 207 2.10. Determining the turbidity or sea water’s optical properties . . . . . . . 220 2.10.1. Theoretical notions of the optical properties of sea water . . . . . 221 2.10.2. Measurement of apparent optical properties . . . . . . . . . . . . . 226 2.10.3. Transmissiometers and measurements of absorption . . . . . . . . 228 2.10.4. Nephelometers and turbidity sensors . . . . . . . . . . . . . . . . . . 232 2.10.5. Fluorimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 2.11. Determining various physicochemical properties . . . . . . . . . . . . . 245 2.11.1. Notions of the chemical parameters of sea water . . . . . . . . . . 245 TableofContents vii 2.11.2.Insitumeasurementofdissolvedoxygen. . . . . . . . . . . . . . . 254 2.11.3.Insitumeasurementofdissolvedcarbon . . . . . . . . . . . . . . . 264 2.11.4.Insitumeasurementofsomeothercomponents . . . . . . . . . . . 269 2.12.Bibliographyandfurtherreading . . . . . . . . . . . . . . . . . . . . . . 277 2.12.1.Measuringtemperature. . . . . . . . . . . . . . . . . . . . . . . . . . 277 2.12.2.Measuringconductivity . . . . . . . . . . . . . . . . . . . . . . . . . 279 2.12.3.Measuringpressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 2.12.4.Measuringvelocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 2.12.5.Measuringcurrent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 2.12.6.Measuringtimeandfrequencies . . . . . . . . . . . . . . . . . . . . 283 2.12.7.Measuringdistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 2.12.8.Measuringsealevel. . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 2.12.9.Measuringstateofsea . . . . . . . . . . . . . . . . . . . . . . . . . . 285 2.12.10.Measuringturbidityandopticalpropertiesofseawater. . . . . . 288 2.12.11.Measuringchemicalparameters. . . . . . . . . . . . . . . . . . . . 289 Chapter3.MeasurementsatSea. . . . . . . . . . . . . . . . . . . . . . . . . . . 295 3.1.Oceanographicvessels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 3.1.1.Waysoflaunchinginstrumentsintothewater. . . . . . . . . . . . . 296 3.1.2.Waysofpositioningandprobing. . . . . . . . . . . . . . . . . . . . . 298 3.1.3.Waystotransmitdata . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 3.1.4.Waystomakeoceanographicmeasurementsbyboat. . . . . . . . . 306 3.2.Moorings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 3.2.1.Constraintsofmooringimplementation. . . . . . . . . . . . . . . . . 309 3.2.2.Generalitiesontheimplementationofmoorings . . . . . . . . . . . 310 3.2.3.Deploymentandrecoveryofmoorings . . . . . . . . . . . . . . . . . 325 3.3.Drifters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 3.3.1.Historyandoperatingprinciples. . . . . . . . . . . . . . . . . . . . . 326 3.3.2.TheconceptandevolutionoftheArgoprogram . . . . . . . . . . . 328 3.3.3.Principlesforpositioningbyacousticsources. . . . . . . . . . . . . 332 3.3.4.Designandballastingofdrifters . . . . . . . . . . . . . . . . . . . . . 336 3.4.Instrumentedbuoysandunderwaterplatforms. . . . . . . . . . . . . . . 342 3.4.1.Instrumentedbuoys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 3.4.2.Underwaterplatforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 3.5.Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 3.5.1.Oceanographicvessels. . . . . . . . . . . . . . . . . . . . . . . . . . . 347 3.5.2.Mooringsandanchoredfloats . . . . . . . . . . . . . . . . . . . . . . 348 3.5.3.Driftingfloats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 3.5.4.Buoysandinstrumentedplatforms. . . . . . . . . . . . . . . . . . . . 351 Chapter4.EvolutionsandotherMeasurementConcepts . . . . . . . . . . . 353 4.1.Otherprocessesformeasuringsalinityanddensity . . . . . . . . . . . . 353 viii Instrumentation and Metrology in Oceanography 4.1.1. Relationship between density and refractive index . . . . . . . . . . 354 4.1.2. Measurement instruments of the refractive index . . . . . . . . . . . 357 4.2. Acoustic tomography of oceans and acoustic measurements . . . . . . . 362 4.2.1. General principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 4.2.2. The instrumentation used . . . . . . . . . . . . . . . . . . . . . . . . . 365 4.3. The unmanned underwater vehicle: a new means for ocean exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 4.3.1. Energetic autonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 4.3.2.ROV and AUV displacement and positioning . . . . . . . . . . . . . 371 4.3.3. Autonomy in decision-making and communication . . . . . . . . . . 373 4.3.4. Gliders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 4.4. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 4.4.1. Other processes for measuring salinity and density . . . . . . . . . . 377 4.4.2. Acoustic tomography of oceans and acoustic measurements . . . . 378 4.4.3. The UUV: new means for ocean exploration . . . . . . . . . . . . . . 379 Acronyms and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 Preface The ocean is generally defined as “a vast stretch of salt water that covers the greatest part of the globe”. However, the simplicity of this definition must not hide the complexity of this environment, which oceanography attempts to decrypt. More than just a stretch of salty water, it is a place with living rules, where study over takes the biology. Within the science of oceanography, there are fields of study focusingongeologyand chemistry, butitis the problems posedbythermal, optical anddynamicpropertiesthatphysicaloceanographersseektoanswer. Numerous models and theories attempt to describe and predict these properties. To initiate and reinforce these, some measurements are necessary. The complexity ofthisenvironmentanditshostilityaffectanotherfield:instrumentation.Inorderto examine the complexity of this environment, specific technological developments are necessary. These developments fall under the field of oceanographic instrumentation. This work mainly aims to describe the oceanographic instrumentation used to determine the physical properties of the ocean through in situ measurements. With thedevelopmentofspacesatellitetechnology,newsystemshaveappearedthathave enabledustodiscovertheseproperties,creatinganewfield(thatwewillnotdiscuss in this book): space oceanography. Space is a favored place from which we can observetheocean,asitpermitslarge-scalestudy. Theinstrumentsloadedonsatellitesusethepropertiesofelectromagneticwaves to measure the thermal, optical and dynamic characteristics of the ocean. Unfortunately, these waves are very rapidly absorbed or reflected by the oceanic environment, so if ocean-predicting models use “spatial” data, the collection of in situ observations remains an essential source of diagnostics to validate the models, and it is always necessary to develop complementary equipment that permits the studyofdeepwaterlayers. x InstrumentationandMetrologyinOceanography There are multiple fields of application for these studies. They concern the evolutionoffundamentalknowledgeonthemovementofwatermasses,thecreation of thermal or density anomalies, and the coupling between the ocean and the atmospherethatleadtoabetterunderstandingofclimatechange.Thesealsoinclude the development of acoustic technologies that have multiple civil and military applications. The ocean is a favored environment for these technologies; however thepropagationofacousticwavesisdependentonitsphysicalcharacteristics,sothe use of tools that permit emission and reception (sonar, echo sounders, Doppler current meters, etc.) must be optimized by measuring the properties of the environmentifwewanttoachieveultimateaccuracies. These accuracies cannot be achieved without the use of metrology. It is unusual to associate oceanography with metrology, but this is the other field that this book attempts to describe. Metrology is officially “the science of measurement and its applications”,butitis,aboveall,thesciencethatallowsthereferencingofmeasured data, and referencing is an essential part of oceanography when we want to ensure the accuracy and replicability of measurements. Oceanography is probably the area of physics where the requirements of the subject matter are greatest because the acquisitionandinterpretationsofvariablesareoftenatthelimitsofourknow-how. This book, first and foremost therefore, is for instrumentalists and metrologists who want to know more about measurements in oceanography. It is also for scientistswhowanttogatherinformationonoceanographicinstrumentation,andfor allthoseforwhichthisisanareaofinterest. All of the chapters of this book are enriched with practical and theoretical details. Sections include recent relationships for the calculation of the physical properties of sea water, the measurement of certain physicochemical properties (carbonates,fluorimetry,etc.),suspendedparticulatematter,waysofpositioningand probing in water, instrumented buoys, underwater platforms, etc. We also discuss theprocessesofcalibrationoftheseinstruments,withoutwhichthesemeasurements wouldnothaveallthelegitimacyweattachtothem. MarcLeMenn September2012 Chapter 1 What We Measure and What We Process 1.1. The quantities we want to know Measurements made in physical oceanography have two main aims: to improve our fundamental knowledge of the ocean and the functioning of our planet; and to optimize the use of acoustic tools, which also sometimes help us to gain knowledge of the ocean. The improvement of fundamental knowledge is integrated with the more general topic of climate change. A global research program was launched in 1979 to try and model this evolution: the World Climate Research Program (WCRP). The WCRP is funded by the World Meteorological Organization (WMO) and UNESCO. To maximize the efforts of different countries with regard to oceanographic measurements, in 1982 the American National Science Foundation launched another program called the World Ocean Circulation Experiment (WOCE). In 1989 it created the WOCE Hydro-graphic Program Office, whose aim was to coordinate, supervise and ensure the quality of measurements taken. To ensure the quality of data collected, it was requested that “the standards to approach in terms of accuracy and reproducibility for the one-time survey, are to be the highest possible under current measuring techniques”. With “repeat surveys, these standards must be approached sufficiently closely to achieve the appropriate regional goals”. Instrumentation and Metrology in Oceanography Marc Le Menn © 2012 ISTE Ltd. Published 2012 by ISTE Ltd.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.