ebook img

Instructor's Solutions Manual to Calculus: Single and Multivariable PDF

1879 Pages·2012·23.701 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Instructor's Solutions Manual to Calculus: Single and Multivariable

1.1SOLUTIONS 1 CHAPTER ONE Solutions forSection1.1 Exercises 1. Sincetrepresentsthenumber of yearssince1970, weseethat f(35) representsthepopulation of thecityin2005. In 2005,thecity’spopulationwas12million. 2. SinceT = f(P),weseethatf(200)isthevalueofT whenP = 200;thatis,thethicknessofpelicaneggswhenthe concentrationofPCBsis200ppm. 3. Iftherearenoworkers,thereisnoproductivity,sothegraphgoesthroughtheorigin.Atfirst,asthenumberofworkers increases,productivityalsoincreases.Asaresult,thecurvegoesupinitially.Atacertainpointthecurvereachesitshighest level,afterwhichitgoesdownward;inotherwords,asthenumberofworkersincreasesbeyondthatpoint,productivity decreases.Thismight,forexample,bedueeithertotheinefficiencyinherentinlargeorganizationsorsimplytoworkers gettingineachother’swayastoomanyarecrammedonthesameline.Manyotherreasonsarepossible. 4. Theslopeis(1 0)/(1 0)=1.Sotheequationofthelineisy=x. − − 5. Theslopeis(3 2)/(2 0)=1/2.Sotheequationofthelineisy=(1/2)x+2. − − 6. Usingthepoints( 2,1)and(2,3),wehave − 3 1 2 1 Slope = − = = . 2 ( 2) 4 2 − − Nowweknowthaty = (1/2)x+b.Usingthepoint( 2,1),wehave1 = 2/2+b,whichyieldsb = 2.Thus,the − − equationofthelineisy=(1/2)x+2. 6 0 7. Slope= − =2sotheequationisy 6=2(x 2)ory=2x+2. 2 ( 1) − − − − 5 5 8. Rewritingtheequationasy= x+4showsthattheslopeis andtheverticalinterceptis4. −2 −2 9. Rewritingtheequationas 12 2 y= x+ − 7 7 showsthatthelinehasslope 12/7andverticalintercept2/7. − 10. Rewritingtheequationofthelineas 2 y = − x 2 − 4 − 1 y = x+2, 2 weseethelinehasslope1/2andverticalintercept2. 11. Rewritingtheequationofthelineas 12 4 y = x 6 − 6 2 y =2x , − 3 weseethatthelinehasslope2andverticalintercept 2/3. − 12. (a) is(V),becauseslopeispositive,verticalinterceptisnegative (b) is(IV),becauseslopeisnegative,verticalinterceptispositive (c) is(I),becauseslopeis0,verticalinterceptispositive (d) is(VI),becauseslopeandverticalinterceptarebothnegative (e) is(II),becauseslopeandverticalinterceptarebothpositive (f) is(III),becauseslopeispositive,verticalinterceptis0 2 ChapterOne /SOLUTIONS 13. (a) is(V),becauseslopeisnegative,verticalinterceptis0 (b) is(VI),becauseslopeandverticalinterceptarebothpositive (c) is(I),becauseslopeisnegative,verticalinterceptispositive (d) is(IV),becauseslopeispositive,verticalinterceptisnegative (e) is(III),becauseslopeandverticalinterceptarebothnegative (f) is(II),becauseslopeispositive,verticalinterceptis0 14. Theinterceptsappeartobe(0,3)and(7.5,0),giving 3 6 2 Slope = − = = . 7.5 −15 −5 They-interceptisat(0,3),soapossibleequationforthelineis 2 y= x+3. −5 (Answersmayvary.) 15. y c=m(x a) − − 16. Giventhatthefunctionislinear,chooseanytwopoints,forexample(5.2,27.8)and(5.3,29.2).Then 29.2 27.8 1.4 Slope= − = =14. 5.3 5.2 0.1 − Usingthepoint-slopeformula,withthepoint(5.2,27.8),wegettheequation y 27.8=14(x 5.2) − − whichisequivalentto y=14x 45. − 17. y=5x 3.Sincetheslopeofthislineis5,wewantalinewithslope 1 passingthroughthepoint(2,1).Theequation − −5 is(y 1)= 1(x 2),ory= 1x+ 7. − −5 − −5 5 18. The line y +4x = 7 has slope 4. Therefore the parallel line has slope 4 and equation y 5 = 4(x 1) or − − − − − y= 4x+9.Theperpendicularlinehasslope −1 = 1 andequationy 5= 1(x 1)ory=0.25x+4.75. − (−4) 4 − 4 − 19. Thelineparalleltoy=mx+calsohasslopem,soitsequationis y=m(x a)+b. − Thelineperpendiculartoy=mx+chasslope 1/m,soitsequationwillbe − 1 y= (x a)+b. −m − 20. Sincethefunctiongoesfromx=0tox=4andbetweeny =0andy =2,thedomainis0 x 4andtherangeis ≤ ≤ 0 y 2. ≤ ≤ 21. Sincexgoesfrom1to5andygoesfrom1to6,thedomainis1 x 5andtherangeis1 y 6. ≤ ≤ ≤ ≤ 22. Sincethefunctiongoesfromx= 2tox=2andfromy = 2toy =2,thedomainis 2 x 2andtherangeis − − − ≤ ≤ 2 y 2. − ≤ ≤ 23. Sincethefunctiongoesfromx=0tox=5andbetweeny =0andy =4,thedomainis0 x 5andtherangeis ≤ ≤ 0 y 4. ≤ ≤ 24. Thedomainisallnumbers.Therangeisallnumbers 2,sincex2 0forallx. ≥ ≥ 1 25. Thedomainisallx-values,asthedenominatorisneverzero.Therangeis0<y . ≤ 2 26. Thevalueoff(t)isrealprovidedt2 16 0ort2 16.Thisoccurswheneithert 4,ort 4.Solvingf(t)=3, − ≥ ≥ ≥ ≤− wehave t2 16=3 − t2 16=9 p − t2 =25 1.1SOLUTIONS 3 so t= 5. ± 4 27. WehaveV =kr3.YoumayknowthatV = πr3. 3 d 28. Ifdistanceisd,thenv= . t 29. Forsomeconstantk,wehaveS =kh2. 30. WeknowthatEisproportionaltov3,soE =kv3,forsomeconstantk. 31. WeknowthatN isproportionalto1/l2,so k N = , forsomeconstantk. l2 Problems 32. Theyear1983was25yearsbefore2008so1983correspondstot=25.Thus,anexpressionthatrepresentsthestatement is: f(25)=7.019 33. Theyear2008was0yearsbefore2008so2008correspondstot=0.Thus,anexpressionthatrepresentsthestatement is: f(0)meters. 34. Theyear1965was2008 1865 = 143yearsbefore2008so1965correspondstot = 143.Similarly,weseethatthe − year1911correspondstot=97.Thus,anexpressionthatrepresentsthestatementis: f(143)=f(97) 35. Since t = 1 means one year before 2008, thent = 1 corresponds totheyear 2007. Similarly, t = 0 corresponds to theyear2008. Thus,f(1)andf(0)aretheaverageannual sealevelvalues,inmeters,in2007and2008, respectively. Because1millimeteristhesameas0.001meters,anexpressionthatrepresentsthestatementis: f(0)=f(1)+0.001. Notethatthereareotherpossibleequivalentexpressions,suchas:f(1) f(0)=0.001. − 36. (a) Eachdate,t,hasauniquedailysnowfall,S,associatedwithit.Sosnowfallisafunctionofdate. (b) OnDecember12,thesnowfallwasapproximately5inches. (c) OnDecember11,thesnowfallwasabove10inches. (d) LookingatthegraphweseethatthelargestincreaseinthesnowfallwasbetweenDecember10toDecember11. 37. (a) Whenthecaris5yearsold,itisworth$6000. (b) Sincethevalueofthecardecreasesasthecargetsolder,thisisadecreasingfunction.ApossiblegraphisinFigure1.1: V (thousanddollars) (5,6) a(years Figure1.1 (c) TheverticalinterceptisthevalueofV whena = 0,orthevalueofthecarwhenitisnew.Thehorizontalintercept isthevalueofawhenV =0,ortheageofthecarwhenitisworthnothing. 4 ChapterOne /SOLUTIONS 38. (a) Thestoryin(a)matchesGraph(IV),inwhichthepersonforgotherbooksandhadtoreturnhome. (b) Thestoryin(b)matchesGraph(II),theflattirestory.Notethelongperiodoftimeduringwhichthedistancefrom homedidnotchange(thehorizontalpart). (c) Thestoryin(c)matchesGraph(III),inwhichthepersonstartedcalmlybutspeduplater. Thefirstgraph(I)doesnotmatchanyofthegivenstories.Inthispicture,thepersonkeepsgoingawayfromhome, buthisspeeddecreasesastimepasses.Soastoryforthismightbe:Istartedwalkingtoschoolatagoodpace,butsinceI stayedupallnightstudyingcalculus,IgotmoreandmoretiredthefartherIwalked. 39. (a) f(30)=10meansthatthevalueoff att=30was10.Inotherwords,thetemperatureattimet=30minuteswas 10◦C.So,30minutesaftertheobjectwasplacedoutside,ithadcooledto10◦C. (b) Theinterceptameasuresthevalueoff(t)whent = 0.Inotherwords,whentheobjectwasinitiallyputoutside, ithadatemperatureofa◦C.Theinterceptbmeasuresthevalueoftwhenf(t) = 0.Inotherwords,attimebthe object’stemperatureis0◦C. 40. (a) Theheightoftherockdecreasesastimepasses,sothegraphfallsasyoumovefromlefttoright.Onepossibilityis showninFigure1.2. s(meters) t(sec) Figure1.2 (b) Thestatementf(7)=12tellsusthat7secondsaftertherockisdropped,itis12metersabovetheground. (c) Theverticalinterceptisthevalueofswhent=0;thatis,theheightfromwhichtherockisdropped.Thehorizontal interceptisthevalueoftwhens=0;thatis,thetimeittakesfortherocktohittheground. 41. (a) WefindtheslopemandinterceptbinthelinearequationC =b+mw.Tofindtheslopem,weuse ∆C 12.32 8 m= = − =0.12dollarspergallon. ∆w 68 32 − Wesubstitutetofindb: C =b+mw 8=b+(0.12)(32) b=4.16dollars. ThelinearformulaisC =4.16+0.12w. (b) Theslopeis0.12dollarspergallon.Eachadditionalgallonofwastecollectedcosts12cents. (c) Theinterceptis$4.16.Theflatmonthlyfeetosubscribetothewastecollectionserviceis$4.16.Thisistheamount chargedevenifthereisnowaste. 42. Wearelookingforalinearfunctiony =f(x)that,givenatimexinyears,givesavalueyindollarsforthevalueofthe refrigerator.Weknowthatwhenx=0,thatis,whentherefrigeratorisnew,y =950,andwhenx=7,therefrigerator isworthless,soy=0.Thus(0,950)and(7,0)areonthelinethatwearelookingfor.Theslopeisthengivenby 950 m= 7 − Itisnegative,indicatingthatthevaluedecreasesastimepasses.Havingfoundtheslope,wecantakethepoint(7,0)and usethepoint-slopeformula: y y =m(x x ). 1 1 − − So, 950 y 0= (x 7) − − 7 − 950 y = x+950. − 7 1.1SOLUTIONS 5 43. (a) Thefirstcompany’spriceforaday’srentalwithmmilesonitisC (m)=40+0.15m.Itscompetitor’spricefora 1 day’srentalwithmmilesonitisC (m)=50+0.10m. 2 (b) SeeFigure1.3. C(costindollars) 150 C1(m)=40+0.15m 100 50 C2(m)=50+0.10m 0 m(miles) 200 400 600 800 Figure1.3 (c) Tofindwhichcompanyischeaper,weneedtodeterminewherethetwolinesintersect.WeletC =C ,andthus 1 2 40+0.15m =50+0.10m 0.05m =10 m=200. Ifyouaregoingmorethan200milesaday,thecompetitorischeaper.Ifyouaregoinglessthan200milesaday,the firstcompanyischeaper. ∆$ 55 40 44. (a) Chargepercubicfoot= = − =$0.025/cu.ft. ∆cu.ft. 1600 1000 Alternatively, ifweletc = cost,w =cub−ic feetof water, b =fixedcharge, and m = cost/cubicfeet,weobtain c=b+mw.Substitutingtheinformationgivenintheproblem,wehave 40=b+1000m 55=b+1600m. Subtractingthefirstequationfromthesecondyields15=600m,som=0.025. (b) The equation is c = b+0.025w, so 40 = b+0.025(1000), which yields b = 15. Thus the equation is c = 15+0.025w. (c) Weneedtosolvetheequation100=15+0.025w,whichyieldsw =3400.Itcosts$100touse3400cubicfeetof water. 45. SeeFigure1.4. drivingspeed time Figure1.4 46. SeeFigure1.5. distancedriven time Figure1.5 6 ChapterOne /SOLUTIONS 47. SeeFigure1.6. distancefromexit time Figure1.6 48. SeeFigure1.7. distancebetweencars distancedriven Figure1.7 49. (a) (i) f(1985)=13 (ii) f(1990)=99 (b) Theaverageyearlyincreaseistherateofchange. f(1990) f(1985) 99 13 Yearlyincrease = − = − =17.2billionairesperyear. 1990 1985 5 − (c) Sinceweassumetherateofincreaseremainsconstant,weusealinearfunctionwithslope17.2billionairesperyear. Theequationis f(t)=b+17.2t wheref(1985)=13,so 13=b+17.2(1985) b= 34,129. − Thus,f(t)=17.2t 34,129. − 50. (a) Thelargesttimeintervalwas2008–2009sincethepercentagegrowthrateincreasedfrom 11.7to7.3from2008to − 2009.ThismeanstheUSconsumptionofbiofuelsgrewrelativelymorefrom2008to2009thanfrom2007to2008. (Notethatthepercentagegrowthratewasadecreasingfunctionoftimeover2005–2007.) (b) The largest time interval was 2005–2007 since the percentage growth rates were positive for each of these three consecutive years.Thismeansthattheamount ofbiofuelsconsumed intheUSsteadilyincreasedduringthethree yearspanfrom2005to2007,thendecreasedin2008. 51. (a) Thelargesttimeintervalwas2005–2007sincethepercentagegrowthratedecreasedfrom 1.9in2005to 45.4in − − 2007.Thismeansthatfrom2005to2007theUSconsumptionofhydroelectricpowershrunkrelativelymorewith eachsuccessiveyear. (b) The largest time interval was 2004–2007 since the percentage growth rates were negative for each of these four consecutiveyears.ThismeansthattheamountofhydroelectricpowerconsumedbytheUSindustrialsectorsteadily decreasedduringthefouryearspanfrom2004to2007,thenincreasedin2008. 52. (a) Thelargesttimeinterval was2004–2006 sincethepercentage growthrateincreasedfrom 5.7 in2004 to9.7 in − 2006. Thismeans that from 2004 to 2006 the US price per watt of a solar panel grew relatively more with each successiveyear. (b) The largest time interval was 2005–2006 since the percentage growth rates were positive for each of these two consecutiveyears.ThismeansthattheUSpriceperwattofasolarpanelsteadilyincreasedduringthetwoyearspan from2005to2006,thendecreasedin2007. 1.1SOLUTIONS 7 53. (a) Since2008correspondstot=0,theaverageannualsealevelinAberdeenin2008was7.094meters. (b) Lookingatthetable,weseethattheaverageannualsealevelwas7.019fiftyyearsbefore2008,orintheyear1958. Similarreasoningshowsthattheaveragesealevelwas6.957meters125yearsbefore2008,orin1883. (c) Because125yearsbefore2008theyearwas1883,weseethatthesealevelvaluecorrespondingtotheyear1883is 6.957(thisisthesealevelvaluecorrespondingtot=125).Similarreasoningyieldsthetable: Year 1883 1908 1933 1958 1983 2008 S 6.957 6.938 6.965 6.992 7.019 7.094 54. (a) WefindtheslopemandinterceptbinthelinearequationS =b+mt.Tofindtheslopem,weuse ∆S 66 113 m= = − = 0.94. ∆t 50 0 − − Whent=0,wehaveS =113,sotheinterceptbis113.Thelinearformulais S =113 0.94t. − (b) WeusetheformulaS = 113 0.94t.WhenS = 20,wehave20 = 113 0.94tandsot = 98.9.Ifthislinear − − modelwerecorrect,theaveragemalespermcountwoulddropbelowthefertilitylevelduringtheyear2038. 55. (a) Thiscouldbealinearfunctionbecausewincreasesby5ashincreasesby1. (b) Wefindtheslopemandtheinterceptbinthelinearequationw =b+mh.Wefirstfindtheslopemusingthefirst twopointsinthetable.Sincewewantwtobeafunctionofh,wetake ∆w 171 166 m= = − =5. ∆h 69 68 − Substitutingthefirstpointandtheslopem=5intothelinearequationw =b+mh,wehave166=b+(5)(68), sob= 174.Thelinearfunctionis − w=5h 174. − Theslope,m=5,isinunitsofpoundsperinch. (c) Wefindtheslopeandinterceptinthelinearfunctionh=b+mwusingm=∆h/∆wtoobtainthelinearfunction h=0.2w+34.8. Alternatively,wecouldsolvethelinearequationfoundinpart(b)forh.Theslope,m = 0.2,hasunitsinchesper pound. 56. Wewilllet T = amountoffuelfortake-off, L= amountoffuelforlanding, P = amountoffuelpermileintheair, m= thelengthofthetripinmiles. ThenQ,thetotalamountoffuelneeded,isgivenby Q(m)=T +L+Pm. 57. (a) Thevariablecostsforxacresare$200x,or0.2xthousanddollars.Thetotalcost,C(againinthousandsofdollars), ofplantingxacresis: C =f(x)=10+0.2x. Thisisalinearfunction.SeeFigure1.8.SinceC = f(x)increaseswithx,f isanincreasingfunctionofx.Look atthevaluesofC showninthetable;youwillseethateachtimexincreasesby1,C increasesby0.2.BecauseC increasesataconstantrateasxincreases,thegraphofCagainstxisaline. 8 ChapterOne /SOLUTIONS (b) SeeFigure1.8andTable1.1. Table1.1 Costof planting C(thosand$) seed 10 C=10+0.2x x C 0 10 2 10.4 5 3 10.6 4 10.8 x(acres) 5 11 2 4 6 6 11.2 Figure1.8 (c) Theverticalinterceptof10correspondstothefixedcosts.ForC =f(x)=10+0.2x,theinterceptonthevertical axisis10becauseC = f(0) = 10+0.2(0) = 10.Since10isthevalueofC whenx = 0,werecognizeitasthe initialoutlayforequipment,orthefixedcost. Theslope0.2correspondstothevariablecosts.Theslopeistellingusthatforeveryadditionalacreplanted,the costsgoupby0.2thousanddollars.Therateatwhichthecostisincreasingis0.2thousanddollarsperacre.Thusthe variablecostsarerepresentedbytheslopeofthelinef(x)=10+0.2x. 58. SeeFigure1.9. Distancefrom Kalamazoo 155 120 Time startin arrivein arrivein Chicago Kalamazoo Detroit Figure1.9 59. (a) Thelinegivenby(0,2)and(1,1)hasslopem= 2−1 = 1andy-intercept2,soitsequationis −1 − y= x+2. − Thepointsofintersectionofthislinewiththeparabolay=x2aregivenby x2 = x+2 − x2+x 2=0 − (x+2)(x 1)=0. − The solution x = 1 corresponds to the point we are already given, so the other solution, x = 2, gives the x- − coordinateofC.Whenwesubstitutebackintoeitherequationtogety,wegetthecoordinatesforC,( 2,4). − (b) Thelinegivenby(0,b)and(1,1)hasslopem= b−1 =1 b,andy-interceptat(0,b),sowecanwritetheequation −1 − forthelineaswedidinpart(a): y=(1 b)x+b. − Wethensolveforthepointsofintersectionwithy=x2thesameway: x2 =(1 b)x+b − x2 (1 b)x b=0 − − − x2+(b 1)x b=0 − − (x+b)(x 1)=0 − Again,wehavethesolutionatthegivenpoint(1,1),andanewsolutionatx= b,correspondingtotheotherpoint − ofintersectionC.Substitutingbackintoeitherequation,wecanfindthey-coordinateforCisb2,andthusCisgiven by( b,b2).Thisresultagreeswiththeparticularcaseofpart(a)whereb=2. − 1.2SOLUTIONS 9 60. Looking atthegivendata,itseemsthatGalileo’shypothesiswasincorrect.Thefirsttablesuggeststhatvelocityisnot a linear function of distance, since the increases in velocity for each foot of distance are themselves getting smaller. Moreover, the second table suggests that velocity is instead proportional to time, since for each second of time, the velocityincreasesby32ft/sec. StrengthenYourUnderstanding 61. Theliney=0.5 3xhasanegativeslopeandisthereforeadecreasingfunction. − 62. If y is directly proportional to x we have y = kx. Adding the constant 1 to give y = 2x+1 means that y is not proportionaltox. 63. Onepossibleanswerisf(x)=2x+3. 8 64. Onepossibleanswerisq= . p1/3 65. False. A line can be put through any two points in the plane. However, if the line is vertical, it is not the graph of a function. 66. True.Supposewestartatx =x andincreasexby1unittox +1.Ify =b+mx,thecorrespondingvaluesofyare 1 1 b+mx andb+m(x +1).Thusyincreasesby 1 1 ∆y=b+m(x +1) (b+mx )=m. 1 1 − 67. False.Forexample,lety=x+1.Thenthepoints(1,2)and(2,3)areontheline.Howevertheratios 2 3 =2 and =1.5 1 2 aredifferent.Theratioy/xisconstantforlinearfunctionsoftheformy =mx,butnotingeneral.(Otherexamplesare possible.) 68. False.Forexample,ify=4x+1(som=4)andx=1,theny=5.Increasingxby2unitsgives3,soy=4(3)+1= 13.Thus,yhasincreasedby8units,not4+2=6.(Otherexamplesarepossible.) 69. (b)and(c).Forg(x)=√x,thedomainandrangeareallnonnegativenumbers,andforh(x)=x3,thedomainandrange areallrealnumbers. Solutions forSection1.2 Exercises 1. Thegraphshowsaconcaveupfunction. 2. Thegraphshowsaconcavedownfunction. 3. Thisgraphisneitherconcaveupordown. 4. Thegraphisconcaveup. 5. Initialquantity=5;growthrate=0.07=7%. 6. Initialquantity=7.7;growthrate= 0.08= 8%(decay). − − 7. Initialquantity=3.2;growthrate=0.03=3%(continuous). 8. Initialquantity=15;growthrate= 0.06= 6%(continuousdecay). − − 9. Sincee0.25t = e0.25 t (1.2840)t,wehaveP =15(1.2840)t.Thisisexponentialgrowthsince0.25ispositive.We ≈ canalsoseethatthisisgrowthbecause1.2840>1. (cid:0) (cid:1) 10. Sincee−0.5t = (e−0.5)t (0.6065)t,wehaveP = 2(0.6065)t.Thisisexponentialdecaysince 0.5isnegative.We ≈ − canalsoseethatthisisdecaybecause0.6065<1. 11. P =P (e0.2)t =P (1.2214)t.Exponentialgrowthbecause0.2>0or1.2214>1. 0 0 12. P =7(e−π)t =7(0.0432)t.Exponentialdecaybecause π<0or0.0432<1. − 10 ChapterOne /SOLUTIONS 13. (a) LetQ=Q at.ThenQ a5 =75.94andQ a7 =170.86.So 0 0 0 Q a7 170.86 0 = =2.25=a2. Q a5 75.94 0 Soa=1.5. (b) Sincea=1.5,thegrowthrateisr=0.5=50%. 14. (a) LetQ=Q at.ThenQ a0.02 =25.02andQ a0.05 =25.06.So 0 0 0 Q a0.05 25.06 0 = =1.001=a0.03. Q a0.02 25.02 0 So 100 a=(1.001) 3 =1.05. (b) Sincea=1.05,thegrowthrateisr=0.05=5%. 15. (a) Thefunctionislinearwithinitialpopulationof1000andslopeof50,soP =1000+50t. (b) Thisfunctionisexponentialwithinitialpopulationof1000andgrowthrateof5%,soP =1000(1.05)t. 16. (a) Thisisalinearfunctionwithslope 2gramsperdayandintercept30grams.ThefunctionisQ=30 2t,andthe − − graphisshowninFigure1.10. Q(grams) Q(grams) 30 30 Q=30 2t − Q=30(0.88)t t(days) t(days) 15 15 Figure1.10 Figure1.11 (b) Sincethequantityisdecreasingbyaconstantpercentchange,thisisanexponentialfunctionwithbase1 0.12 = 0.88.ThefunctionisQ=30(0.88)t,andthegraphisshowninFigure1.11. − 17. ThefunctionisincreasingandconcaveupbetweenDandE,andbetweenH andI.Itisincreasingandconcavedown between AandB,andbetweenE andF.Itisdecreasing andconcave upbetweenC andD,and betweenGand H. Finally,itisdecreasingandconcavedownbetweenBandC,andbetweenF andG 18. (a) ItwasdecreasingfromMarch2toMarch5andincreasingfromMarch5toMarch9. (b) FromMarch5to8,theaveragetemperatureincreased,buttherateofincreasewentdown,from12◦betweenMarch 5and6to4◦betweenMarch6and7to2◦betweenMarch7and8. FromMarch7to9,theaveragetemperatureincreased,andtherateofincreasewentup,from2◦betweenMarch 7and8to9◦betweenMarch8and9. Problems 19. (a) Alinearfunctionmustchangebyexactlythesameamountwheneverxchangesbysomefixedquantity.Whileh(x) decreases by 3 whenever x increases by 1, f(x) and g(x) fail this test, since both change by different amounts betweenx = 2andx = 1andbetweenx = 1andx = 0.Sotheonlypossiblelinearfunctionish(x),soit − − − willbegivenbyaformulaofthetype:h(x) = mx+b.Asnoted,m = 3.Sincethey-interceptofhis31,the − formulaforh(x)ish(x)=31 3x. − (b) Anexponential functionmust growbyexactlythesamefactor whenever xchangesbysomefixedquantity. Here, g(x)increasesbyafactorof1.5wheneverxincreasesby1.Sincethey-interceptofg(x)is36,g(x)hastheformula g(x)=36(1.5)x.Theothertwofunctionsarenotexponential;h(x)isnotbecauseitisalinearfunction,andf(x) isnotbecauseitbothincreasesanddecreases. 20. TableAandTableBcouldrepresentlinearfunctionsofx.TableAcouldrepresenttheconstantlinearfunctiony = 2.2 becauseallyvaluesarethesame.TableBcouldrepresentalinearfunctionofxwithslopeequalto11/4.Thisisbecause xvaluesthatdifferby4havecorrespondingyvaluesthatdifferby11,andxvaluesthatdifferby8havecorrespondingy valuesthatdifferby22.InTableC,ydecreasesandthenincreasesasxincreases,sothetablecannotrepresentalinear function.TableDdoesnotshowaconstantrateofchange,soitcannotrepresentalinearfunction.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.