ebook img

Instructor's Solution Manual for Introduction to Optics PDF

165 Pages·01.505 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Instructor's Solution Manual for Introduction to Optics

Chapter 1 Nature of Light h h 6.63 10 34J s 1-1. a) (cid:21)= p= mv = (0.05(cid:2)kg) ((cid:0)20m/(cid:1)s) =6.63(cid:2) 10(cid:0)34 m h h 6.63 10 34J s b) (cid:21)= p= p2mE = [(2 9.11 10 31 kg(cid:2)) (10(cid:0) 1.60(cid:1)2 10 19J)]1/2 =3.88(cid:2) 10(cid:0)10m (cid:1) (cid:2) (cid:0) (cid:1) (cid:2) (cid:0) 1-2. P= Etniemrgey= nht (cid:23)= nth(cid:21)c = 100 6.63(1(cid:2)s1)0((cid:0)55304J(cid:1)1s0 93m(cid:2))108m/s =3.62(cid:2) 10(cid:0)17W (cid:0) (cid:2) (cid:1)(cid:0)(cid:0) (cid:1) 1-3. The energy ofa photon is given by E=h(cid:23)=hc/(cid:21) At(cid:21)=380nm: E= 6.63(cid:2) 10(cid:0)34J(cid:1) s 3(cid:2) 108m/s = 5.23 10 19J 1 eV =3.27eV 380 10 9m (cid:2) (cid:0) 1.60 10 19J At(cid:21)=770nm: E= (cid:0)6.63(cid:2) 10(cid:0)34(cid:2)J(cid:1) s(cid:1)(cid:0)(cid:0)3(cid:2) 108m/s(cid:1) =(cid:0)2.58 10 19J(cid:1) (cid:2)1 eV(cid:0) =1.61 eV 770 10 9m (cid:2) (cid:0) 1.60 10 19J (cid:0) (cid:2) (cid:1)(cid:0)(cid:0) (cid:1) (cid:2) (cid:0) (cid:0) (cid:1) h hc hc h 1-4. p=E/c=mc2/c=mc=2.73(cid:2) 10(cid:0)22kg(cid:1) m/s, (cid:21)= p= E = mc2 = mc =2.43(cid:2) 10(cid:0)12m 1-5. Ev=0=mc2= 9.109(cid:2) 10(cid:0)31 kg 2.998(cid:2) 108m/s 2= 8.187(cid:2) 10(cid:0)14J 1.6021 M1e0V 19J =:511 MeV (cid:2) (cid:0) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) 1-6. cp=pE2 m2c4; whereE=E +mc2=(1 +0.511))MeV: So cp=p1.5112 0.5112 MeV K (cid:0) (cid:0) That is, cp=1.422MeV and p=1.422MeV/c. hc 6.626 10(cid:0)34J s 2.998 108m/s 1 eV 1 ¯ 12; 400 1-7. (cid:21)= = (cid:2) (cid:1) (cid:2) = ¯ eV E E 1.602 10 19J 10 10m E (cid:1) (cid:0) (cid:1) (cid:0) (cid:1)(cid:18) (cid:2) (cid:0) (cid:19)(cid:18) (cid:0) (cid:19) (cid:0) (cid:1) 1-8. EK=mc2 1 1v2/c2 (cid:0) 1! =mc2 1 (cid:0) v2/c2 (cid:0)1/2(cid:0) 1 ’mc2 1 (cid:0) ( (cid:0) 1/2) v2/c2 (cid:0) 1 = 12mv2 (cid:0) h (cid:0) (cid:1) i (cid:2)(cid:0) (cid:1) (cid:3) p 1 1-9. The total energy ofthe proton is, E=EK+mpc2=2(cid:2) 109 1.60(cid:2)1 e1V0(cid:0)19J + 1.67(cid:2) 10(cid:0)27kg 3.00(cid:2) 108m/s 2=4.71 (cid:2) 10(cid:0)10J (cid:18) (cid:19) (cid:0) (cid:1) (cid:0) (cid:1) a) p= E2(cid:0) m2pc4 = 4.71 (cid:2) 10(cid:0)10J 2(cid:0) 1.67(cid:2) 10(cid:0)27kg 2 3.00(cid:2) 108m 2 (cid:0)1/2 q c h (cid:0) (cid:1) (cid:0) 3.00 108m/s(cid:1) (cid:0) (cid:1) i (cid:2) p=1.49 10 18kg m/s (cid:0) (cid:2) (cid:1) b) (cid:21)=h/p= 6.63 10 34J s / 1.49 10 18kg m/s =4.45 10 16m (cid:0) (cid:0) (cid:0) (cid:2) (cid:1) (cid:2) (cid:1) (cid:2) (cid:0) (cid:1) (cid:0) (cid:1) c) (cid:21) =h c/E= 6.63 10 34J s 3.00 108m/s / 4.71 10 10 =4.22 10 16m photon (cid:0) (cid:0) (cid:0) (cid:2) (cid:1) (cid:2) (cid:2) (cid:2) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) 1-10. n = Energy= Energy = 1000W/m2 10(cid:0)4 m2 =2.77 1017 photons h(cid:23) hc/(cid:21) (6.63 10 34J) (3.00 108m/s)/(550 10 9m) (cid:2) (cid:2) (cid:0)(cid:0) (cid:2) (cid:1) (cid:0) (cid:1) (cid:2) (cid:0) n E /h(cid:23) E (cid:21) /hc (cid:21) 1-11. 1 = e 1 = e 1 = 1 n E /h(cid:23) E (cid:21) /hc (cid:21) 2 e 2 e 2 2 1-12. The wavelength range is 380 nm to 770 nm. The corresponding frequencies are c 3.00 108m/s c 3.00 108m/s (cid:23)770= (cid:21) = 770(cid:2) 10 9m =3.89(cid:2) 1014Hz (cid:23)380= (cid:21) = 380(cid:2) 10 9m =7.89(cid:2) 1014Hz (cid:2) (cid:0) (cid:2) (cid:0) 1-13. The wavelength of the radio waves is (cid:21) = c/(cid:23) = 3.00 108 m/s / 100 106 Hz = 3 m. The length of the (cid:2) (cid:2) halfwave antenna is then (cid:21)/2=1.5m. (cid:0) (cid:1) (cid:0) (cid:1) 1-14. The wavelength is (cid:21) = c/(cid:23)= 3.0 108m/s / 90 106Hz = 3.33m. The length of each of the rods is then (cid:2) (cid:2) (cid:21)/4=0.83m. (cid:0) (cid:1) (cid:0) (cid:1) 1-15. a) t=Dl/c=(90 103/3.0 108 s=3.0 10(cid:0)4s. b) Ds=vst=(340) 3.0 10(cid:0)4 m=0.10m (cid:2) (cid:2) (cid:2) (cid:2) (cid:8) 500W (cid:1) (cid:8) 500W (cid:0) (cid:1) 1-16. a) I = e = =39.8W/sr b) M = e = =106W/m2 e (cid:1)! 4(cid:25)sr e A 5 10 4m2 (cid:2) (cid:0) (cid:8) (cid:8) 500W c) E = e = e = =9.95W/m2 e) (cid:8) =E A= 9.95W/m2 (cid:25)(0.025m)2=:0195W e A 4(cid:25)r2 4(cid:25)(2m)2 e e (cid:0) (cid:1) 1-17. a) The halfangle divergence (cid:18) can be found from the relation 1/2 r 0.0025m tan((cid:18) ) (cid:18) = spot = =1.67 10 4rad=:0096 1/2 (cid:25) 1/2 L 15m (cid:2) (cid:0) (cid:14) room A (cid:25)r2 (cid:25)(0.0025m)2 b) The solid angle is (cid:1)!= spot = spot = =8.73 10 8sr. L2 L2 (15m)2 (cid:2) (cid:0) room room (cid:8) (cid:8) 0.0015W c) The irradiance on the wall is E = e = e = =76.4W/m2. e Aspot (cid:25)rs2pot (cid:25)(0.0025m)2 d) The radiance is (approximating di(cid:27)erentials as increments) (cid:8) 0.0015W W L e = =8.75 1010 e(cid:25) (cid:1)!(cid:1)Alasercos(cid:18) (8.73(cid:2) 10(cid:0)8sr) (cid:25)(0.00025m)2 cos(0) (cid:2) m2(cid:1) sr (cid:0) (cid:1) 2 Chapter 2 Geometrical Optics 2-1. t= dop = i nixi c c P P 2-2. Referring to Figure 2 12 and with lengths in cm, n x2+ y2 1/2+n y2+ s +s x)2 1/2=n s +n s 0 i o i o o i i (cid:0) (1) x(cid:0)2+ y2 1(cid:1)/2+1.5 (cid:16)y2+((cid:0)30 x)2 1/2=(cid:1) 20+1.5(10) =35 (cid:0) (cid:0) 2.25(cid:1) y2+(30(cid:16) x)2 = 35 (cid:17) x2+ y2 1/2 2 (cid:0) (cid:0) 1.25 x(cid:16)2+ y2 +70 x2(cid:17)+ y(cid:16)2 1/2 (cid:0) 135x+(cid:1)800(cid:17)=0 (cid:0) Using a calculator to guess and ch(cid:0)eck or u(cid:1)sing a(cid:0)comput(cid:1)er algebra system, (like the free program Maxima, for example) one can numerically solve this equation for x for given y values. Doing so results in, x (cm) 20 20.2 20.4 20.8 21.6 22.4 23.2 24.0 24.8 25.6 26.4 27.2 y (cm) 0 1.0 1.40 1.96 2.69 3.20 3.58 3.85 4.04 4.14 4.18 4.13 (cid:6) (cid:6) (cid:6) (cid:6) (cid:6) (cid:6) (cid:6) (cid:6) (cid:6) (cid:6) (cid:6) 2-3. Refer to the (cid:28)gure for the relevant parameters. d=d0=p302+2.52 =30.104cm d t d0 Fermat: d+d =s+s t+mt 0 0 (cid:0) d+d =s+s +t(m 1) 0 0 (cid:0) 2(30.10399) =60=t(1.52 1) (cid:0) t=4mm n=1.52 s0=30cm s0=30cm 2-4. See the (cid:28)gure below. Let the height of the person be h=h +h . 1 2 h1 The person must be able to see the top of 2 his head and the bottom of his feet. From h1 the (cid:28)gure it is evident that the mirror height is: mirror h =h h /2 h /2=h/2 h2 mirror (cid:0) 1 (cid:0) 2 h2 The mirror must be half the height of the 2 person. So for a person of height six ft person, the mirror must be 3 ft high. 2-5. Refer to the (cid:28)gure. 45(cid:14) Top At Top: (1) sin45=p2 sin(cid:18) (cid:18) =30 0 0 30(cid:14) At Side: p2 sin60 =(1) sin(cid:18) ); sin(cid:18) =p1.5> 1 (cid:14) 0 0 Side Thustotalinternalre(cid:29)ectionoccurs. 60(cid:14) At Bottom: reverse of Top: (cid:18) =45 0 (cid:14) Bottom 45(cid:14) 3 2-6. The microscope (cid:28)rst focuses on the scratch using direct rays. Then it focuses on the image I formed in a 2 two step process: (1) re(cid:29)ection from the bottom to produce an intermediate image I and (2) refraction 1 through the top surface to produce an image I . Thus, I is at 2t from top surface, and I is at the 2 1 2 2t 2t 3 apparent depth for I ; servingastheobject: s = orn= = =1.60 1 0 n s 1.87 0 7.60/4 2-7. Refer to Figure 2 33 in the text. By geometry, tan(cid:18)c= 2.25 so (cid:18)c=40.18(cid:14) 1 Snell’s law: nsin(cid:18) =(1) sin90 n= =1.55 c (cid:14)) sin40.18 (cid:14) 2-8. Referring to the (cid:28)gure one can see that, t s=ABsin((cid:18) (cid:18) ) and AB= . Therefore, 1 (cid:0) 2 cos(cid:18) s= tsinc(o(cid:18)s1(cid:18)(cid:0)2 (cid:18)2). For t=n3cm; n22=11.50; (cid:18)1 =50(cid:14), (cid:18)1 A nn12 Snell’s law gives, sin(cid:18)2= n1 sin(cid:18)1 = 1.5 sin50(cid:14). t (cid:18)1(cid:0)(cid:18)2 2 (cid:18) 3sin(50 30.71 ) 2 Then, (cid:18)2=30.71(cid:14) and s= cos3(cid:14)0(cid:0).71 (cid:14) =1.153cm. (cid:14) B s 1 1 1 2-9. Imageofnearend: s=60cm, 60 = s = 40, s0(cid:0) 24cm 0 (cid:0) 1 1 1 Imageoffarend: s=60+100cm, + = , s = 32cm. So, L =(cid:1)s = 24 ( 32) =8cm 160 s 40 0 (cid:0) 0 0 (cid:0) (cid:0) (cid:0) 0 (cid:0) 2-10. (a) See Figure 2 34 in the text. Image due to rays directly from bubble through plane interface: n n 1.5 1 1 + 2 =0 or + =0 s = 3.33cm. s s s s ) 0 (cid:0) 0 0 (b) Image due to rays (cid:28)rst re(cid:29)ected in spherical mirror, then refracted through plane interface: 1 1 2 1 1 2 re(cid:29)ection: + = and + = s = 7.5cm 2 s10 (cid:0) R 2.5 s10 (cid:0) (cid:0) 7.5 10 (cid:0) n n 1.5 1 refraction: 1 + 2 =0 or + =0 s0 = 10cm s s20 15 s20 2 (cid:0) Thus the images are at 3.33 cm and 10 cm behind the interface. 2-11. There are 5 unknowns: s1 and s10 in position (1), s2 and s20 in position (2), and the focal length f of the mirror. The (cid:28)ve equations that, solved simultaneously, yield the results are: (1) linearmagni(cid:28)cation: s /s =2 (2) linearmagni(cid:28)cation: s /s =3 10 1 20 2 s s s s (3) focallengthfrommirrorequation: f= 1 10 (4) focallengthfrommirrorequation: f= 2 20 s +s s +s 1 10 2 20 (5) imagedistancerelation: s =s +75 20 10 One(cid:28)ndss =112.5cm; s =100cm; s =225cm; s =300cm; f=75cm 1 2 10 20 2-12. The object distance from the front surface is the diameter of the sphere, 5 cm. Then, n1 + n2 = n2(cid:0) n1 1.5 + 1 = 1 (cid:0) 1.5 s0= 10cm and, m= n1 s0 = (1.5) ( (cid:0) 10) =+3. s s0 R ) 5 s0 2.5 ) (cid:0) (cid:0) n2s (cid:0) (1) (5) (cid:0) n n n n 2-13. Generally, 1 + 2 = 2(cid:0) 1 s s0 R n n n n n R (a) f1 + 2 = 2(cid:0)R 1 or f= n 1 n (b) n2> n1: thenR> 0(convex), n2< n1: thenR< 0(concave) 2 1 1 (cid:0) 4 n n n n n s 2-14. (a) In this position the object distance is s=15cm. Then, using, 1 + 2 = 2(cid:0) 1 and m= 1 0, s s R (cid:0) n s 0 2 4 1 1 4/3 (4/3) ( 15) 3(15) + s0 = (cid:0)15 )s0=(cid:0) 15cm(center) and, m=(cid:0) (1) (1(cid:0)5) ) m=4/3. (cid:0) (b) Similarly, in this position s=7.5cm so that, 4 1 1 4/3 n s (4/3) ( 45/7) 3(15/2) + s = (cid:0)15 )s0=(cid:0) 6.4cm, m=(cid:0) n1 s0 =(cid:0) (1) (1(cid:0)5/2) =8/7. 0 (cid:0) 2 2-15. See Figure 2 35 in the text. Rays from the object are (a) refracted through the spherical window, (b) then re(cid:29)ected from the back plane mirror, (c) then refracted out again through the spherical window. Taking these in turn: n n n n 1 4 4/3 1 n s (1) (40) (a) s1 + s2 = 2(cid:0)R 1 ) 30 + 3s = 5(cid:0) )s0=40cm. Then, m= n1 s0 = (4/3) (30) =(cid:0) 1 0 0 2 (b) s=25 40= 15cm(virtualobject), s = s=15cm, m= s /s=1 0 0 (cid:0) (cid:0) (cid:0) (cid:0) 4/3 1 1 4/3 (4/3) ( 15) (c) 10 + s = (cid:0) 5 ) s0=(cid:0) 15cm. Then, m= (cid:0) (1) (10(cid:0)) =+2. 0 (cid:0) The overall magni(cid:28)cation is m = ( 1) ( + 1) ( + 2) = 2. Thus a virtual, inverted, double sized image (cid:0) (cid:0) appears 15 cm behind (right) the spherical window. 2-16. The plane side of the lens has R = . The radius of curvature R of the convex side is then found from 1 2 1 the lensmaker’s equation: 1 n n 1 1 1 1.52 1 1 1 f= 2n(cid:0) 1 R (cid:0) R ) 25 = 1(cid:0) (cid:0) R ) R2=(cid:0) 13cm 1 (cid:18) 1 2(cid:19) (cid:18) 1 2(cid:19) 1 n n 1 1 2-17. In general the lensmaker’s equation gives, = 2(cid:0) 1 f n R (cid:0) R 1 1 2 (cid:18) (cid:19) For the positive meniscus lens shown to the right, R =5cm and R =10cm. 1 2 1 1.50 1 1 1 R Then, = (cid:0) f=+20cm 1 f 1 5 (cid:0) 10 ) R2 (cid:18) (cid:19) For the negative meniscus lens shown to the right, R =10cm and R =5cm. 1 2 1 1.50 1 1 1 R1 For this case, = (cid:0) f= 20cm f 1 10 (cid:0) 5 ) (cid:0) R2 (cid:18) (cid:19) 2-18. The thin lens equation assumes identical, refractive indices on both sides. In this case we can modify the procedure, beginning with Eq. (2 23), to allow for three distinct media as shown. n n n n 20 cm s1 + s2 = 2R(cid:0) 1 ; leftlenssurface 1 10 1 n2 n2 + n3 = n3(cid:0) n2 ; rightlenssurface Fish Tank n1 n3 s2 s20 R2 n n n n n n For a thin lens, s2(cid:25)(cid:0) s10: Adding the equations, s11 + s203 = 2R(cid:0)1 1 + 3R(cid:0)2 2. Or, simply, n n n n n n 4 1 3/2 4/3 1 3/2 s1 + s3 = 2R(cid:0) 1 + 3R(cid:0) 2 ) 3(20) + s = 3(cid:0)0 + (cid:0)30 ; so thats0=(cid:0) 22.5cm. 0 1 2 0 (cid:0) n s n s The total magni(cid:28)cation is m =m m = 1 10 2 20 , where s = s . So, T 1 2 (cid:0) n s (cid:0) n s 2 (cid:0) 10 2 3 2 (cid:18) (cid:19)(cid:18) (cid:19) n s (4/3) ( 22.5) mT=(cid:0) n1 s0 =(cid:0) (1) ((cid:0)20) =1.50. 3 5 1 1 1 1 1 1 2-19. (a) Using = + as in Eq. (2 33), = + or f =6.67cm f f f f 5 20 eq eq 1 2 eq (cid:0) (b) A pair of separated lenses has a front and a back focal length. The front focal length is the object posi tion from the (cid:28)rst lens that leads to an image at in(cid:28)nity. The back focal length is the image position for an object at in(cid:28)nity. These cases are illustrated below. The drawings are generic and not to scale. LL L feq;f 11 22 1 2 feq;b 1 1 1 Working backwards, for the front focal length: Lens 2: + = ors = f ; s =L s ors =L f . s f 2 2 2 (cid:0) 10 10 (cid:0) 2 2 2 1 1 1 1 f (L f ) ( 5) (10 20) Lens 1: f + L f = f or feq;f= L 1 (f(cid:0)+ f2 ) = 10(cid:0) ( 5(cid:0)+20) cm=(cid:0) 10cm eq;f 2 1 1 2 (cid:0) (cid:0) (cid:0) (cid:0) For the back focal length: for lens 1: 1 1 1 1 1 1 + = + = s = f . Then s =L f , so that, for lens 2: s1 s10 f1 ) 1 s10 f1 ) 10 1 2 (cid:0) 1 1 1 1 1 1 1 f (L f ) (20) (10 ( 5)) s2 + s20 = f2 ) L(cid:0) f1 + feq;b = f2 ) feq;b= (L2(cid:0) f1(cid:0)) (cid:0)1f2 = (10(cid:0) ( (cid:0)(cid:0)5))(cid:0)(cid:0) 20 cm=(cid:0) 60cm 2-20. See Figure 2 36 in the text. Consider the three media as a sequence of three thin lenses. Each has a focal length given by the lensmaker’s equation, and the equivalent focal length is given Eq. (2 33) as, 1 1 1 1 1 1 1 = + + . Then, =(1.5 1) f =30cm, f f f f f (cid:0) (cid:0) 15 ) 1 eq 1 2 3 1 (cid:18) 1 (cid:0) (cid:19) 1 1 1 150 1 =(1.65 1) or f = cm, and =sameasforf : f =30cm: Then, f (cid:0) 15 (cid:0) 15 2 (cid:0) 13 f 1 3 2 (cid:18) (cid:0) (cid:19) 3 1 1 13 1 f = 30 + (cid:0)150 + 30 andso feq=(cid:0) 50cm. eq 2-21. (a) One can use the formula derived in problem 2 19b, or do the calculation at (cid:28)rst hand: 1 1 1 1 1 1 Second lens: + = or s = 20cm, First lens: + = or s = 3.33cm. The object should be s 20 2 s 4 20 1 2 1 1 (cid:0) placed 3.33 cm before the (cid:28)rst lens. (b) In the (cid:28)gure below the dashed arrow is the intermediate image that acts as the object for the second lens. Since the image is (cid:16)at in(cid:28)nity(cid:17) it is described by an angular magni(cid:28)cation. The image appears erect and magni(cid:28)ed. F 2 F1 F2 F1 To eye 1 2 6 2-22. Refer to Figure 2 37 in the text. 1 1 1 s 3f/5 (b) Lens heading towards mirror: 3 f/2 + s = f or s0=(cid:0) 3 f/5. m1 =(cid:0) s0 =(cid:0) (cid:0)3f/2 =2/5 Mirror: 0 (cid:0) 5 1 1 s s=3 f+3 f/5=18f/5 + = s =18f/13, m = 0 = (18f/13)/(18f/5) = 5/13 ) 18f s f) 0 2 (cid:0) s (cid:0) (cid:0) 0 Lens after re(cid:29)ection: 13 1 1 13 s=3 f 18f/13=21 f/13 + = or s =21 f/34; m = s /s= (21 f/34)/(21 f/13) = (cid:0) ) 21 f s f 0 3 (cid:0) 0 (cid:0) 34 0 (cid:0) 2 5 13 m = = 17. The image is inverted, (21/34) f behind (right of) lens, inverted, and T 5 (cid:0) 13 34 (cid:0) (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) 1/17 original size. 2-23. The arrangement of the object and lenses is shown below. 20 cm 30 cm 20 cm 1 2 3 (a) f =+10cm; f =+15cm; f =+20cm 1 2 3 1 1 1 1stlens: + = s =20 m = 20/20= 1 20 s 10 0 1 (cid:0) (cid:0) 0 1 1 1 2ndlens: + = s = 30 m = ( 30)/10=+3 10 s 15 0 (cid:0) 2 (cid:0) (cid:0) 0 1 1 1 3rdlens: + = s =100/3 m = 100/3(50) = 2/3 50 s 20 0 3 (cid:0) (cid:0) 0 m =m m m =+2 T 1 2 3 (b) f =+10cm; f = 15cm; f =+20cm 1 2 3 (cid:0) 1 1 1 1stlens: + = s =20 m = 20/20= 1 20 s 10 0 1 (cid:0) (cid:0) 0 1 1 1 2ndlens: + = s = 6 m = ( 6)/10=+0.6 10 s 15 0 (cid:0) 2 (cid:0) (cid:0) 1 10 (cid:0)1 10 3rdlens: + = s =520/6 m = 520/(6 26) = 26 s 20 0 3 (cid:0) (cid:2) (cid:0) 3 0 m =m m m =+2 T 1 2 3 (c) f = 10cm; f =+15cm; f = 20cm 1 2 3 (cid:0) (cid:0) 1 1 1 1 1stlens: + = s =20/3 m = ( 20)/3(20) = 20 s 10 0 1 (cid:0) (cid:0) 3 0 (cid:0) 3 1 1 (330) (3) 9 2ndlens: + = s =330/13 m = = 110 s 15 0 2 (cid:0) (13) (110) (cid:0) 13 0 13 1 1 (140) (13) 26 3rdlens: (cid:0)70 + s = 20 s0=140/19 m3=(cid:0) (19) ( 70) = 19 0 (cid:0) (cid:0) m =m m m = 6/19 T 1 2 3 (cid:0) 1 n n 1 1 2-24. Using the lensmaker’s formula, = 2(cid:0) 1 gives f n R (cid:0) R 1 (cid:18) 1 2(cid:19) 1 1.50 1 1 1 in air: = (cid:0) 30 1 R (cid:0) R (cid:18) 1 2(cid:19) 1 1.50 n 1 1 and in the liquid: = (cid:0) L . (cid:0) 188 n R (cid:0) R L 1 2 (cid:18) (cid:19) 188 0.5n Dividing the two equations gives, (cid:0)30 = 1.5 nL or nL=1.63. L (cid:0) 7 2-25. Use the lensmaker’s formula to (cid:28)nd the focal length of the lens, 1 n n 1 1 1.5 1 1 = 2(cid:0) 1 = (cid:0) 0+ f=120cm f n R (cid:0) R 1 60 ) 1 (cid:18) 1 2(cid:19) (cid:18) (cid:19) f x The Newtonian equations are, m= = 0. Form= 4; . (cid:0) x (cid:0) f (cid:0) f 120 4= = or x=30cm (cid:0) (cid:0) x (cid:0) x x x 4= 0 = 0 or x =480cm (cid:0) (cid:0) f (cid:0) 120 0 Thus, s=x+ f=30+120=150cm and s =x + f=480+120=600cm. 0 0 1 1 1 1 1 1 Check: + = + = = s s 150 600 120 f 0 1 1 1 2-26. (a) f =10cm P = =+10D, f =20cm P = =+5D, f = 40cm P = = 2.5D 1 ) 1 0.01 2 ) 2 0.2 3 (cid:0) ) 3 0.4 (cid:0) (cid:0) Then, P=P +P +P =10+5 2.5=+12.5D 1 2 3 (cid:0) 1 1 1 1 1 (b) + = , V+V0=P; whereV= = =+8.33D, s s f s 0.12 0 1 1 V0=4.167D or s0= V0 = 4.167 =0.24m=24cm 2-27. See Figure 2 38 in the text. The applicable relations are: 1 1 1 1 1 1 Lensequations: + = and + = , s s f s s f 1 10 2 20 Geometrical: L=s +s =s +s , D=s s =s s 1 10 2 20 2 1 10 20 (cid:0) (cid:0) Thus, s s s s s s s s f= 1 10 = 1 10 = 2 20 = 2 20 (1) s +s L s +s L 1 10 2 20 Because the lens equation can be satis(cid:28)ed the second time by simply interchanging object and image dis tances, s =s and s =s (2) 2 10 20 1 Adding and subtracting the equations L=s +s andD= s +s ; we get, 2 2 1 2 (cid:0) L D=2s andL+D=2s : Theirproductis by Eq. (1), L2 D2=4s s , or by Eq. (2), L2 D2=4fL. 2 1 2 (cid:0) L2 D2 (cid:0) (cid:0) Thus, f= (cid:0) . 4L 1 1 1 1 1 1 2-28. Lens equations: + = and + = . Then calculate, s s f s s f 1 10 2 20 1 1 s s s s s f s f s s = 1 + 2 = 1 + 2 = 2(cid:0) 1 (cid:0) = 2(cid:0) 1 M1 (cid:0) M2 (cid:0) s10 s20 (cid:0) s1 f/(s1 (cid:0) f) s2 f/(s2(cid:0) f) f (cid:0) f f Thus, s s f= 2(cid:0) 1 1/M 1/M 1 2 (cid:0) 2-29. Consider an arbitrary path from point A to point B by re(cid:29)ection from a mirror surface, The path distance D from A to B is D=pa2+x2 + b2+(d x)2 A (cid:0) B dD x (d x) p a (cid:18)i (cid:18)r a dx = pa2+x2 + b(cid:0)2+((cid:0)d x)2 =0 x (cid:0) sin(cid:18)i sin(cid:18)r=0 p(cid:18)i=(cid:18)r (cid:0) ) d 8 2-30. The two set ups are illustrated below, 1 n n 1 nR Refraction at curved side: + s = R(cid:0) ; s0(cid:0) n 1 1 0 nR (cid:0) Re(cid:29)ection at plane side: s = s= 0 (cid:0) (cid:0) n 1 n (cid:0) 1 1 n Refractionatcurvedside: nR/(n 1) + s = (cid:0)R or s0=R/2(n(cid:0) 1) (cid:0) (cid:0) 0 (cid:0) R Thus, f = 1 2(n 1) (cid:0) 1 1 2 R Re(cid:29)ection at curved face: + = ; s = s (cid:0) R 0 (cid:0) 2 1n 0 1 R Refraction at plane face: + =0; s = 0 R/2 s sn (cid:0) n 10 R Refraction at plane face: + =0; s = R/2 s 0 sn (cid:0) 0 Thus, f =R/2n 2 f R/2(n 1) n Therefore the ratio of the focal lengths is 1 = (cid:0) = . f R/2n n 1 2 (cid:0) fs 2-31. The distance between the object and the image is D=s+s0=s+ s f. This is minimized when, (cid:0) dD (s f) f fs =1 + (cid:0) (cid:0) =0 s(s 2 f) =0 s=0; 2 f. The minimum distance D occurs when s=2f ds (s f)2 ) (cid:0) ) (cid:0) f(2f) and has the value D=2f+ =4f. That is, in this con(cid:28)guration s=s =2f. 2f f 0 (cid:0) 2-32. Refer to Figure 2 39 in the text. (a) Let the angle with the normal to the interface in each region of index of refraction n be (cid:18) . Then i i applying Snell’s law sequentially at each interface leads to, n sin(cid:18) =n sin(cid:18) =n sin(cid:18) ... =n sin(cid:18) ... =n sin(cid:18) 0 0 1 1 2 2 i i f f That is, n sin(cid:18) =n sin(cid:18) 0 0 f f (b) In each medium the lateral displacement is t tan(cid:18) . The total lateral displacement y due to N media i i can be written as, n y= t tan(cid:18) i i i=1 where sin(cid:18) =(n /n ) sin(cid:18) . X i 0 i 0 2-33. At each surface use the relation, n n n n 1 + 2 = 2(cid:0) 1 s s R 0 For light incident (cid:28)rst on the plane side: 1.5 1 1 1.5 1stsurface(plane): nochange; 2ndsurface(curved): + s = (cid:0) 4 ors0=8cm: 1 0 (cid:0) For light incident (cid:28)rst on the curved side: 1 1.5 1.5 1 1stsurface(curved): + s = 4(cid:0) ors0=12cm. 1 0 1.5 1 1 1.5 2ndsurface(plane): objectdistance=4(cid:0) 12=(cid:0) 8cm(virtual), 8 + s = (cid:0) or s0=5.33cm (cid:0) 0 1 9 2-34. The focal length is the image position for incident parallel light rays (object at ). In all cases the fol 1 lowing relation is to be used n n n n n n n n n n n 1 + 2 = 2(cid:0) 1 1 + 2 = 2(cid:0) 1 2 = 2(cid:0) 1 s s R ) f R ) f R 0 1 For the situation in which the center of curvature in medium with n=4/3: 4/3 4/3 1 For light incident from the medium of index 1: = (cid:0) or f=+40cm f 10 1 1 4/3 For light incident from the medium of index 4/3: = (cid:0) or f=+30cm f 10 (cid:0) For the situation in which the center of curvature is in the medium with n=1, 4/3 1 1 4/3 For light incident from the medium of index 4/3: + = (cid:0) or f= 30cm f 10 (cid:0) 1 1 4/3 4/3 1 For light incident from the medium of index 1: + = (cid:0) or f= 40cm f 10 (cid:0) 1 (cid:0) s 1 f 6in 2-35. m = = = = ; sinces = f. So s=50; 000 6in=25; 000ft j j s 50; 000 s s 0 (cid:2) 0 2-36. Using, the lensmaker’s equation the focal power of the cylindrical lens is, 1 n n 1.60 1.0 = 2(cid:0) 1 = (cid:0) f=8.33cm f R 5cm ) The image distance is then found as, 1 1 1 1 1 = = s =18.73cm s f(cid:0) s 8.33cm (cid:0) 15cm ) 0 0 Then, Eq. (2 37) gives, s+s 15+18.73 AB= 0CL= 7cm=15.75cm s 15 The line image is real, 18.75 cm past the lens and 15.75 cm long. 2-37. Using, the lensmaker’s equation the focal power of the cylindrical lens is, 1 n n 1.52 1.0 = 2(cid:0) 1 = (cid:0) f=28.85cm f R 15cm ) 1 1 1 1 1 The image distance is then found as, = = s = 65.2cm s f(cid:0) s 28.85cm (cid:0) 20cm ) 0 (cid:0) 0 Then, Eq. (2 37) gives, s+s 20 65.2 AB= 0CL= (cid:0) 2.5cm= 5.65cm s 20 (cid:0) The line image is virtual, 65.2 cm from the lens on the object side of the lens and 5.65 cm long. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.