ebook img

Instructor Solution Manual to accompany Physical Chemistry PDF

479 Pages·2008·8.5 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Instructor Solution Manual to accompany Physical Chemistry

Part 1: Equilibrium 1 The properties of gases Solutions to exercises Discussion questions E1.1(b) Thepartialpressureofagasinamixtureofgasesisthepressurethegaswouldexertifitoccupied alonethesamecontainerasthemixtureatthesametemperature.Itisalimitinglawbecauseitholds exactlyonlyunderconditionswherethegaseshavenoeffectuponeachother.Thiscanonlybetrue inthelimitofzeropressurewherethemoleculesofthegasareveryfarapart.Hence,Dalton’slaw holdsexactlyonlyforamixtureofperfectgases;forrealgases,thelawisonlyanapproximation. E1.2(b) The critical constants represent the state of a system at which the distinction between the liquid and vapour phases disappears. We usually describe this situation by saying that above the critical temperaturetheliquidphasecannotbeproducedbytheapplicationofpressurealone.Theliquidand vapour phases can no longer coexist, though fluids in the so-called supercritical region have both liquidandvapourcharacteristics. (SeeBox6.1foramorethoroughdiscussionofthesupercritical state.) E1.3(b) The van der Waals equation is a cubic equation in the volume, V. Any cubic equation has certain properties, one of which is that there are some values of the coefficients of the variable where the number of real roots passes from three to one. In fact, any equation of state of odd degree higher than1caninprincipleaccountforcriticalbehaviorbecauseforequationsofodddegreeinV there are necessarily some values of temperature and pressure for which the number of real roots of V passes from n(odd) to 1. That is, the multiple values of V converge from n to 1 as T → T . This c mathematicalresultisconsistentwithpassingfromatwophaseregion(morethanonevolumefora givenT andp)toaonephaseregion(onlyoneV foragivenT andp andthiscorrespondstothe observedexperimentalresultasthecriticalpointisreached. Numerical exercises E1.4(b) Boyle’slawapplies. pV =constant so p V =pV f f i i pV (104kPa)×(2000cm3) p = i i = = 832kPa f V (250cm3) f E1.5(b) (a) Theperfectgaslawis pV =nRT implyingthatthepressurewouldbe nRT p = V Allquantitiesontherightaregiventousexceptn,whichcanbecomputedfromthegivenmass ofAr. 25g n= =0.626mol 39.95gmol−1 (0.626mol)×(8.31×10−2LbarK−1mol−1)×(30+273K) sop = = 10.5bar 1.5L not2.0bar. 4 INSTRUCTOR’SMANUAL (b) ThevanderWaalsequationis RT a p = − V −b V2 m m (8.31×10−2LbarK−1mol−1)×(30+273)K sop = (1.5L/0.626mol)−3.20×10−2Lmol−1 (1.337L2atmmol−2)×(1.013baratm−1) − = 10.4bar (1.5L/0.626¯mol)2 E1.6(b) (a) Boyle’slawapplies. pV =constant so p V =pV f f i i p V (1.48×103Torr)×(2.14dm3) andp = f f = = 8.04×102Torr i Vi (2.14+1.80)dm3 (b) Theoriginalpressureinbaris (cid:1) (cid:2) (cid:1) (cid:2) 1atm 1.013bar p =(8.04×102Torr)× × = 1.07bar i 760Torr 1atm E1.7(b) Charles’slawapplies. V V V ∝T so i = f T T i f V T (150cm3)×(35+273)K andT = f i = = 92.4K f V 500cm3 i E1.8(b) Therelationbetweenpressureandtemperatureatconstantvolumecanbederivedfromtheperfect gaslaw p p pV =nRT so p ∝T and i = f T T i f Thefinalpressure,then,oughttobe pT (125kPa)×(11+273)K p = i f = = 120kPa f T (23+273)K i E1.9(b) According to the perfect gas law, one can compute the amount of gas from pressure, temperature, andvolume.Oncethisisdone,themassofthegascanbecomputedfromtheamountandthemolar massusing pV =nRT pV (1.00atm)×(1.013×105Paatm−1)×(4.00×103m3) son= = =1.66×105mol RT (8.3145JK−1mol−1)×(20+273)K andm=(1.66×105mol)×(16.04gmol−1)=2.67×106g= 2.67×103kg E1.10(b) Allgasesareperfectinthelimitofzeropressure.ThereforetheextrapolatedvalueofpV /T will m givethebestvalueofR. THEPROPERTIESOFGASES 5 m ThemolarmassisobtainedfrompV =nRT = RT M mRT RT whichuponrearrangementgivesM = =ρ V p p The best value of M is obtained from an extrapolation of ρ/p versus p to p = 0; the intercept is M/RT. Drawupthefollowingtable p/atm (pV /T)/(LatmK−1mol−1) (ρ/p)/(gL−1atm−1) m 0.750000 0.0820014 1.42859 0.500000 0.0820227 1.42822 0.250000 0.0820414 1.42790 (cid:1) (cid:2) pV FromFig.1.1(a), m = 0.0820615LatmK−1mol−1 T p=0 (cid:1) (cid:2) ρ FromFig.1.1(b), =1.42755gL−1atm−1 p p=0 8.20615 8.206 8.204 8.202 m 8.200 0 0.25 0.50 0.75 1.0 Figure1.1(a) 1.4288 1.4286 1.4284 1.4282 1.4280 1.4278 1.4276 1.42755 1.4274 0 0.25 0.50 0.75 1.0 Figure1.1(b) 6 INSTRUCTOR’SMANUAL (cid:1) (cid:2) ρ M =RT = (0.0820615Latmmol−1K−1)×(273.15K)×(1.42755gL−1atm−1) p p=0 = 31.9987gmol−1 ThevalueobtainedforRdeviatesfromtheacceptedvalueby0.005percent.Theerrorresultsfrom thefactthatonlythreedatapointsareavailableandthatalinearextrapolationwasemployed. The molar mass, however, agrees exactly with the accepted value, probably because of compensating plottingerrors. E1.11(b) Themassdensityρ isrelatedtothemolarvolumeV by m M V = m ρ whereM isthemolarmass.Puttingthisrelationintotheperfectgaslawyields pM pV =RT so =RT m ρ RearrangingthisresultgivesanexpressionforM;onceweknowthemolarmass,wecandivideby themolarmassofphosphorusatomstodeterminethenumberofatomspergasmolecule M = RTρ = (62.364LTorrK−1mol−1)×[(100+273)K]×(0.6388gL−1) =124gmol−1. p 120Torr Thenumberofatomspermoleculeis 124gmol−1 =4.00 31.0gmol−1 suggestingaformulaof P 4 E1.12(b) Usetheperfectgasequationtocomputetheamount;thenconverttomass. pV pV =nRT so n= RT Weneedthepartialpressureofwater,whichis53percentoftheequilibriumvapourpressureatthe giventemperatureandstandardpressure. p =(0.53)×(2.69×103Pa)=1.43¯ ×103Pa (1.43×103Pa)×(250m3) son= =1.45×102mol (8.3145JK−1mol−1)×(23+273)K orm=(1.45×102mol)×(18.0gmol−1)=2.61×103g= 2.61kg E1.13(b) (a) Thevolumeoccupiedbyeachgasisthesame, sinceeachcompletelyfillsthecontainer. Thus solvingforV fromeqn14wehave(assumingaperfectgas) n RT 0.225g V = J n = pJ Ne 20.18gmol−1 =1.115×10−2mol, p =66.5Torr, T =300K Ne (1.115×10−2mol)×(62.36LTorrK−1mol−1)×(300K) V = =3.137L= 3.14L 66.5Torr THEPROPERTIESOFGASES 7 (b) Thetotalpressureisdeterminedfromthetotalamountofgas,n=n +n +n . CH4 Ar Ne n = 0.320g =1.995×10−2mol n = 0.175g =4.38×10−3mol CH4 16.04gmol−1 Ar 39.95gmol−1 n=(1.995+0.438+1.115)×10−2mol=3.548×10−2mol nRT (3.548×10−2mol)×(62.36LTorrK−1mol−1)×(300K) p = [1]= V 3.137L = 212Torr E1.14(b) ThisissimilartoExercise1.14(a)withtheexceptionthatthedensityisfirstcalculated. RT M =ρ [Exercise1.11(a)] p ρ = 33.5mg =0.1340gL−1, p =152Torr, T =298K 250mL M = (0.1340gL−1)×(62.36LTorrK−1mol−1)×(298K) = 16.4gmol−1 152Torr E1.15(b) This exercise is similar to Exercise 1.15(a) in that it uses the definition of absolute zero as that temperatureatwhichthevolumeofasampleofgaswouldbecomezeroifthesubstanceremaineda gasatlowtemperatures.Thesolutionusestheexperimentalfactthatthevolumeisalinearfunction oftheCelsiustemperature. ThusV =V +αV θ =V +bθ, b=αV 0 0 0 0 Atabsolutezero,V =0,or0=20.00L+0.0741L◦C−1×θ(abs.zero) θ(abs.zero)=− 20.00L = −270◦C 0.0741L◦C−1 whichisclosetotheacceptedvalueof−273◦C. nRT E1.16(b) (a) p = V n=1.0mol T =(i)273.15K; (ii)500K V =(i)22.414L; (ii)150cm3 (1.0mol)×(8.206×10−2LatmK−1mol−1)×(273.15K) (i) p = 22.414L = 1.0atm (1.0mol)×(8.206×10−2LatmK−1mol−1)×(500K) (ii) p = 0.150L = 270atm (2significantfigures) (b) FromTable(1.6)forH S 2 a =4.484L2atmmol−1 b=4.34×10−2Lmol−1 nRT an2 p = − V −nb V2 8 INSTRUCTOR’SMANUAL (1.0mol)×(8.206×10−2LatmK−1mol−1)×(273.15K) (i) p = 22.414L−(1.0mol)×(4.34×10−2Lmol−1) (4.484L2atmmol−1)×(1.0mol)2 − (22.414L)2 = 0.99atm (1.0mol)×(8.206×10−2LatmK−1mol−1)×(500K) (ii) p = 0.150L−(1.0mol)×(4.34×10−2Lmol−1) (4.484L2atmmol−1)×(1.0mol)2 − (0.150L)2 =185.6atm≈ 190atm (2significantfigures). E1.17(b) ThecriticalconstantsofavanderWaalsgasare V =3b=3(0.0436Lmol−1)= 0.131Lmol−1 c a 1.32atmL2mol−2 p = = = 25.7atm c 27b2 27(0.0436Lmol−1)2 8a 8(1.32atmL2mol−2) andT = = = 109K c 27Rb 27(0.08206LatmK−1mol−1)×(0.0436Lmol−1) E1.18(b) Thecompressionfactoris pV V Z = m = m RT V m,perfect (a) BecauseVm =Vm,perfect+0.12Vm,perfect =(1.12)Vm,perfect,wehaveZ = 1.12 Repulsive forcesdominate. (b) Themolarvolumeis (cid:1) (cid:2) RT V =(1.12)Vm,perfect =(1.12)× p (cid:3) (cid:4) V =(1.12)× (0.08206LatmK−1mol−1)×(350K) = 2.7Lmol−1 12atm RT (8.314JK−1mol−1)×(298.15K) E1.19(b) (a) Vo = = m p (200bar)×(105Pabar−1) =1.24×10−4m3mol−1 = 0.124Lmol−1 (b) The van der Waals equation is a cubic equation in V . The most direct way of obtaining the m molarvolumewouldbetosolvethecubicanalytically.However,thisapproachiscumbersome, soweproceedasinExample1.6.ThevanderWaalsequationisrearrangedtothecubicform (cid:1) (cid:2) (cid:1) (cid:2) (cid:1) (cid:2) (cid:1) (cid:2) RT a ab RT a ab V3 − b+ V2 + V − =0 or x3− b+ x2+ x− =0 m p m p m p p p p withx =V /(Lmol−1). m THEPROPERTIESOFGASES 9 Thecoefficientsintheequationareevaluatedas b+ RT =(3.183×10−2Lmol−1)+ (8.206×10−2LatmK−1mol−1)×(298.15K) p (200bar)×(1.013atmbar−1) =(3.183×10−2+0.1208)Lmol−1 =0.1526Lmol−1 a = 1.360L2atmmol−2 =6.71×10−3(Lmol−1)2 p (200bar)×(1.013atmbar−1) ab = (1.360L2atmmol−2)×(3.183×10−2Lmol−1) =2.137×10−4(Lmol−1)3 p (200bar)×(1.013atmbar−1) Thus,theequationtobesolvedisx3−0.1526x2+(6.71×10−3)x−(2.137×10−4)=0. Calculatorsandcomputersoftwareforthesolutionofpolynomialsarereadilyavailable.Inthiscase wefind x =0.112 or V = 0.112Lmol−1 m Thedifferenceisabout15percent. E1.20(b) (a) V = M = 18.015gmol−1 = 31.728Lmol−1 m ρ 0.5678gL−1 pV (1.00bar)×(31.728Lmol−1) Z = m = = 0.9963 RT (0.083145LbarK−1mol−1)×(383K) RT a (b) Usingp = − andsubstitutingintotheexpressionforZaboveweget V −b V2 m m V a Z = m − V −b V RT m m 31.728Lmol−1 = 31.728Lmol−1−0.03049Lmol−1 5.464L2atmmol−2 − (31.728Lmol−1)×(0.08206LatmK−1mol−1)×(383K) = 0.9954 Comment. BothvaluesofZ areveryclosetotheperfectgasvalueof1.000, indicatingthatwater vapourisessentiallyperfectat1.00barpressure. pV E1.21(b) ThemolarvolumeisobtainedbysolvingZ = m [1.20b],forV ,whichyields RT m V = ZRT = (0.86)×(0.08206LatmK−1mol−1)×(300K) =1.059Lmol−1 m p 20atm (a) Then,V =nV =(8.2×10−3mol)×(1.059Lmol−1)=8.7×10−3L= 8.7mL m 10 INSTRUCTOR’SMANUAL (b) AnapproximatevalueofB canbeobtainedfromeqn1.22bytruncationoftheseriesexpansion afterthesecondterm,B/V ,intheseries.Then, m (cid:1) (cid:2) pV B = V m −1 =V ×(Z−1) m RT m = (1.059Lmol−1)×(0.86−1)= −0.15Lmol−1 E1.22(b) (a) Molefractionsare n 2.5mol x = N = = 0.63 N n (2.5+1.5)mol total Similarly,x = 0.37 H (c) Accordingtotheperfectgaslaw p V =n RT total total n RT sop = total total V (4.0mol)×(0.08206Latmmol−1K−1)×(273.15K) = = 4.0atm 22.4L (b) Thepartialpressuresare p =x p =(0.63)×(4.0atm)= 2.5atm N N tot andp =(0.37)×(4.0atm)= 1.5atm H E1.23(b) ThecriticalvolumeofavanderWaalsgasis V =3b c sob= 1V = 1(148cm3mol−1)=49.3cm3mol−1 = 0.0493Lmol−1 3 c 3 Byinterpretingbastheexcludedvolumeofamoleofsphericalmolecules,wecanobtainanestimate of molecular size. The centres of spherical particles are excluded from a sphere whose radius is the diameter of those spherical particles (i.e., twice their radius); that volume times the Avogadro constantisthemolarexcludedvolumeb (cid:3) (cid:4) (cid:1) (cid:2) 4π(2r)3 1 3b 1/3 b=N so r = A 3 2 4πN A (cid:3) (cid:4) r = 1 3(49.3cm3mol−1) 1/3 =1.94×10−8cm= 1.94×10−10m 2 4π(6.022×1023mol−1) Thecriticalpressureis a p = c 27b2 soa =27p b2 =27(48.20atm)×(0.0493Lmol−1)2 = 3.16L2atmmol−2 c

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.