ebook img

Instructor solution manual for Digital signal processing PDF

431 Pages·2011·1.936 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Instructor solution manual for Digital signal processing

Chapter 1 1.1 (a) One dimensional, multichannel, discrete time, and digital. (b) Multi dimensional, single channel, continuous-time, analog. (c) One dimensional, single channel, continuous-time, analog. (d) One dimensional, single channel, continuous-time, analog. (e) One dimensional, multichannel, discrete-time, digital. 1.2 (a) f = 0.01π = 1 periodic with N = 200. 2π 200 ⇒ p (b) f = 30π( 1 )= 1 periodic with N = 7. 105 2π 7 ⇒ p (c) f = 3π = 3 periodic with N = 2. 2π 2 ⇒ p (d) f = 3 non-periodic. 2π ⇒ (e) f = 62π( 1 )= 31 periodic with N = 10. 10 2π 10 ⇒ p 1.3 (a) Periodic with period T = 2π. p 5 (b) f = 5 non-periodic. 2π ⇒ (c) f = 1 non-periodic. 12π ⇒ (d) cos(n) is non-periodic; cos(πn) is periodic; Their product is non-periodic. 8 8 (e) cos(πn) is periodic with period N =4 2 p sin(πn) is periodic with period N =16 8 p cos(πn + π) is periodic with period N =8 4 3 p Therefore, x(n) is periodic with period N =16. (16 is the least common multiple of 4,8,16). p 1.4 (a) w = 2πk implies that f = k. Let N N α= GCD of (k,N), i.e., k =k α,N =N α. ′ ′ Then, k ′ f = , which implies that N ′ N N = . ′ α 3 (b) N = 7 k = 01234567 GCD(k,N) = 71111117 N = 17777771 p (c) N = 16 k = 0123456789101112 ... 16 GCD(k,N) = 16121412181214 ... 16 N = 168164168162168164 ... 1 p 1.5 (a) Refer to fig 1.5-1 (b) 3 2 1 a(t) > x 0 − − − −1 −2 −3 0 5 10 15 20 25 30 −−−> t (ms) Figure 1.5-1: x(n) = x (nT) a = x (n/F ) a s = 3sin(πn/3) ⇒ 1 π f = ( ) 2π 3 1 = ,N =6 p 6 4 3 t (ms) 10 0 20 -3 Figure 1.5-2: (c)Refer to fig 1.5-2 x(n)= 0, 3 , 3 ,0, 3 , 3 ,N =6. √2 √2 −√2 −√2 p (d) Yes.n o 100π x(1)=3=3sin( ) F =200 samples/sec. s F ⇒ s 1.6 (a) x(n) = Acos(2πF n/F +θ) 0 s = Acos(2π(T/T )n+θ) p But T/T =f x(n) is periodic if f is rational. p ⇒ (b) If x(n) is periodic, then f=k/N where N is the period. Then, k T p T =( T)=k( )T =kT . d p f T Thus, it takes k periods (kT ) of the analog signal to make 1 period (T ) of the discrete signal. p d (c) T =kT NT =kT f =k/N =T/T f is rational x(n) is periodic. d p p p ⇒ ⇒ ⇒ ⇒ 1.7 (a) Fmax =10kHz Fs 2Fmax =20kHz. ⇒ ≥ (b) For F =8kHz,F =F /2=4kHz 5kHz will alias to 3kHz. s fold s ⇒ (c) F=9kHz will alias to 1kHz. 1.8 (a) Fmax =100kHz,Fs 2Fmax =200Hz. ≥ (b) F = Fs =125Hz. fold 2 5 1.9 (a) Fmax =360Hz,FN =2Fmax =720Hz. (b) F = Fs =300Hz. fold 2 (c) x(n) = x (nT) a = x (n/F ) a s = sin(480πn/600)+3sin(720πn/600) x(n) = sin(4πn/5) 3sin(4πn/5) − = 2sin(4πn/5). − Therefore, w =4π/5. (d) y (t)=x(F t)= 2sin(480πt). a s − 1.10 (a) Number of bits/sample = log 1024=10. 2 [10,000 bits/sec] F = s [10 bits/sample] = 1000 samples/sec. F = 500Hz. fold (b) 1800π Fmax = 2π = 900Hz FN = 2Fmax =1800Hz. (c) 600π 1 f = ( ) 1 2π F s = 0.3; 1800π 1 f = ( ) 2 2π F s = 0.9; But f = 0.9>0.5 f =0.1. 2 2 ⇒ Hence, x(n) = 3cos[(2π)(0.3)n]+2cos[(2π)(0.1)n] (d) = xmax−xmin = 5−(−5) = 10 . △ m 1 1023 1023 − 1.11 x(n) = x (nT) a 100πn 250πn = 3cos +2sin 200 200 (cid:18) (cid:19) (cid:18) (cid:19) 6 πn 3πn = 3cos 2sin 2 − 4 (cid:16) (cid:17) (cid:18) (cid:19) 1 T = y (t)=x(t/T ) ′ a ′ 1000 ⇒ π1000t 3π1000t = 3cos 2sin 2 − 4 (cid:18) (cid:19) (cid:18) (cid:19) y (t) = 3cos(500πt) 2sin(750πt) a − 1.12 (a) For F =300Hz, s πn πn x(n) = 3cos +10sin(πn) cos 6 − 3 (cid:16)πn(cid:17) πn (cid:16) (cid:17) = 3cos 3cos 6 − 3 (cid:16) (cid:17) (cid:16) (cid:17) (b) x (t)=3cos(10000πt/6) cos(10000πt/3) r − 1.13 (a) Range = xmax xmin =12.7. − range m = 1+ △ = 127+1=128 log (128) 2 ⇒ = 7 bits. (b) m=1+ 127 =636 log (636) 10 bit A/D. 0.02 ⇒ 2 ⇒ 1.14 samples bits R = (20 ) (8 ) sec × sample bits = 160 sec F F = s =10Hz. fold 2 1volt Resolution = 28 1 − = 0.004. 1.15 (a) Refer to fig 1.15-1. With a sampling frequency of 5kHz, the maximum frequency that can be represented is 2.5kHz. Therefore, a frequency of 4.5kHz is aliased to 500Hz and the frequency of 3kHz is aliased to 2kHz. 7 Fs = 5KHz, F0=500Hz Fs = 5KHz, F0=2000Hz 1 1 0.5 0.5 0 0 −0.5 −0.5 −1 −1 0 50 100 0 50 100 Fs = 5KHz, F0=3000Hz Fs = 5KHz, F0=4500Hz 1 1 0.5 0.5 0 0 −0.5 −0.5 −1 −1 0 50 100 0 50 100 Figure 1.15-1: (b) Refer to fig 1.15-2. y(n) is a sinusoidal signal. By taking the even numbered samples, the samplingfrequencyisreducedtohalfi.e.,25kHzwhichisstillgreaterthanthenyquistrate. The frequency of the downsampled signal is 2kHz. 1.16 (a) for levels = 64, using truncation refer to fig 1.16-1. for levels = 128, using truncation refer to fig 1.16-2. for levels = 256, using truncation refer to fig 1.16-3. 8 F0 = 2KHz, Fs=50kHz 1 0.5 0 −0.5 −1 0 10 20 30 40 50 60 70 80 90 100 F0 = 2KHz, Fs=25kHz 1 0.5 0 −0.5 −1 0 5 10 15 20 25 30 35 40 45 50 Figure 1.15-2: levels = 64, using truncation, SQNR = 31.3341dB 1 1 0.5 0.5 −−> x(n) 0 −−> xq(n) 0 −0.5 −0.5 −1 −1 0 50 100 150 200 0 50 100 150 200 −−> n −−> n 0 −0.01 n) > e(−0.02 − − −0.03 −0.04 0 50 100 150 200 −−> n Figure 1.16-1: 9 levels = 128, using truncation, SQNR = 37.359dB 1 1 0.5 0.5 −−> x(n) 0 −−> xq(n) 0 −0.5 −0.5 −1 −1 0 50 100 150 200 0 50 100 150 200 −−> n −−> n 0 −0.005 n) > e( −0.01 − − −0.015 −0.02 0 50 100 150 200 −−> n Figure 1.16-2: levels = 256, using truncation, SQNR=43.7739dB 1 1 0.5 0.5 −−> x(n) 0 −−> xq(n) 0 −0.5 −0.5 −1 −1 0 50 100 150 200 0 50 100 150 200 −−> n −−> n −3 x 10 0 −2 n) > e(−4 − − −6 −8 0 50 100 150 200 −−> n Figure 1.16-3: 10 (b) for levels = 64, using rounding refer to fig 1.16-4. for levels = 128, using rounding refer to fig 1.16-5. for levels = 256, using rounding refer to fig 1.16-6. levels = 64, using rounding, SQNR=32.754dB 1 1 0.5 0.5 −−> x(n) 0 −−> xq(n) 0 −0.5 −0.5 −1 −1 0 50 100 150 200 0 50 100 150 200 −−> n −−> n 0.04 0.02 n) > e( 0 − − −0.02 −0.04 0 50 100 150 200 −−> n Figure 1.16-4: 11 levels = 128, using rounding, SQNR=39.2008dB 1 1 0.5 0.5 −−> x(n) 0 −−> xq(n) 0 −0.5 −0.5 −1 −1 0 50 100 150 200 0 50 100 150 200 −−> n −−> n 0.02 0.01 n) > e( 0 − − −0.01 −0.02 0 50 100 150 200 −−> n Figure 1.16-5: levels = 256, using rounding, SQNR=44.0353dB 1 1 0.5 0.5 −−> x(n) 0 −−> xq(n) 0 −0.5 −0.5 −1 −1 0 50 100 150 200 0 50 100 150 200 −−> n −−> n 0.01 0.005 n) > e( 0 − − −0.005 −0.01 0 50 100 150 200 −−> n Figure 1.16-6: 12

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.