Journal of Corporate Finance 52 (2018) 143–167 ContentslistsavailableatScienceDirect Journal of Corporate Finance journal homepage: www.elsevier.com/locate/jcorpfin Institutional trading and Abel Noser data T ⁎ Gang Hu , Koren M. Jo, Yi Alex Wang, Jing Xie HongKongPolytechnicUniversity,SchoolofAccountingandFinance,HungHom,Kowloon,HongKong ARTICLE INFO ABSTRACT Keywords: WesurveythegrowingacademicliteratureusingAbelNoserdata,including55publicationsthus InstitutionalInvestor far. We analyze publication patterns to explore how the availability of a specialized micro- Trading structuredatasetpropagatesacrossdifferentareaswithinfinanceandintootherdisciplinessuch AbelNoser as accounting. Of note, we identify corporate finance and accounting as the most under-re- ANcerno searchedareasthatofferpromisingopportunitiesforfutureacademicresearchusingthedata.To Accounting provideguidanceforresearchersinterestedinusingAbelNoserdata,weanalyzeinstitutional CorporateFinance trading using transaction-level data spanning more than 12years and covering 233 million Investments MarketMicrostructure transactions with $37 trillion traded. We provide background information on the origin and historyofthedata,offersuggestionsforcleaningandusingthedata,anddiscuss(dis)advantages JELclassification: ofAbelNosercomparedtootherdatasourcesforinstitutionaltrading.Wealsodocumenttwo G12 G14 simple facts: 1) institutional trade sizes decline dramatically over time, rendering trade size- G23 basedinferencesofinstitutionaltradesproblematic;2)weestimatethatAbelNoserdatacover M40 12%ofCRSPvolumeoveroursampleperiodand15%for1999–2005,significantlyhigherthan the estimate in Puckett and Yan (2011) for 1999–2005: 8%, a widely quoted number in the literature.Thisbackgroundshouldproveusefulforresearchersseekingtoaddressanumberofas yetunexploredissues,especiallyincorporatefinanceandaccountingresearch. 1. Introduction Institutionalinvestorsplayanincreasinglyimportantroleinallaspectsoffinancialmarkets.Inthispaper,wefocusonapro- prietarydataset ofinstitutional trading transactions: AbelNoserdata (also knownasAbel/NoserorANcernodata). Academic re- searchusingAbelNoserdatadatesbacktoBlume(1993).1Wesurveythegrowingacademicliterature,including47publishedpapers andeightforthcomingpaperssofar,usingAbelNoserdatatoaddressvariousresearchquestionsinmarketmicrostructure,corporate finance,investments,andaccounting. Weanalyzepublicationpatternsandshowhowtheavailabilityofaspecializedmicrostructuredatasetpropagatesacrossdifferent areas within finance and into other disciplines such as accounting. Based on our analysis of publication patterns, we discuss po- tentiallyfruitfuldirectionsforfutureresearch,andidentifycorporatefinanceandaccountingastwounder-researchedareasthatoffer themostpromisingopportunitiesforfutureresearchusingAbelNoserdata.WebelievethatthetrendoffinancestudiesusingAbel Noserdatawillremainstrongintheforeseeablefuture,asevidencedbytheten2018orforthcomingpublications.Withinfinance, corporatefinanceappearstobethemostunder-researchedareagiventhatitisalargefieldwithrichliteratureandvariousinteresting ⁎Correspondingauthor. E-mailaddresses:[email protected](G.Hu),[email protected](K.M.Jo),[email protected](Y.A.Wang), [email protected](J.Xie). 1Table5containsthelistofpublicationsusingAbelNoserdata.Anup-to-datelistofpublicationscanbefoundattheAbelNoser(ANcerno)Data Page:http://ganghu.org/an https://doi.org/10.1016/j.jcorpfin.2018.08.005 Received18December2017;Receivedinrevisedform8August2018;Accepted10August2018 Available online 16 August 2018 0929-1199/ © 2018 Elsevier B.V. All rights reserved. G.Huetal. Journal of Corporate Finance 52 (2018) 143–167 corporate events and contexts. However, only 11 out of the 55 publications so far are in corporate finance, even less than 15 in microstructure.Thismaymeanthatcorporatefinance,andsimilarlyaccounting,couldofferthebestpotentialforfutureresearch usingAbelNoserdata. Moreover,AbelNoserdataiswell-suitedforstudyingcorporatefinancetopics.OneofthemainadvantagesofAbelNoserdatais itshighfrequency.ThisfeaturemakesAbelNoseranidealsourceforin-depthexaminationsofinstitutionalinvestors' tradingbe- havior around various corporate events. An example of this line of academic inquiries is Bethel et al. (2009), one of the earliest publicationsusingAbelNoserdata,anditispublishedintheJournalofCorporateFinance.Theauthorsexamineinstitutionaltrading aroundmergersandshareholdervotingoutcomes,andfindevidenceforanactivemarketforvotingrightsaroundmergerevents.Ina recentworkingpaper,LiandSchwartz-Ziv(2018)examinehowshareholdervotesandtradesarerelatedinabroadercontextalso usingAbelNoserdata.Bothstudieshighlighttheadvantageofusingdetailedinstitutionaltradingrecordstogainfurtherinsightsinto importantcorporatefinanceissuesraisedinpriorstudies,suchasGillanandStarks(2000),andBethelandGillan(2002). Several other studies also highlight the fact that Abel Noser data are uniquely well-suited to tackle various corporate finance researchtopics,comparedtoalternativedatasourcessuchasSEC13Ffilings,whichareonlyquarterly.Chemmanuretal.(2009) explicitlyidentifySEO(seasonedequityoffering)allocationsusingAbelNoserinstitutionaltradingrecordsforthefirsttimeinthe literature. Ahern and Sosyura (2015) study sensationalism in media coverage amid merger rumors. They find that institutional investorsarenetsellersinthetargetfirmwithmergerumors,suggestingthatinstitutionsprovideliquiditytoindividualswhobuy targets upon merger rumors. Henry and Koski (2017) examine whether skilled institutions indeed exploit positive abnormal ex- dividendreturns,andfindthatinstitutionsconcentratetradingaroundcertainex-datesandarecapableofidentifyingex-dayevents withhighertradingprofit. ToprovideguidanceforresearchersinterestedinusingAbelNoserdata,wefirstprovidebackgroundinformationontheorigin andhistoryofAbelNoserdata.Wedescribethedataandanswerimportantquestionssuchaswhyinstitutionalinvestorsprovidetheir tradingdatatoAbelNoser,andwhyAbelNoserpr`ovidesinstitutionaltradingdatatoacademia.Wediscussvariousdataissuesand offersuggestionsforcleaningandusingthedata.WethendiscussadvantagesanddisadvantagesofAbelNoserdatacomparedto otherpotentialdatasourcesforinstitutionaltrading:Plexus,SEI,SEC13Ffilings,CRSP/Thomsonmutualfundholdings,TAQ,CAUD, TORQ,NASDAQclearingrecordsdata,andNASDAQPostData.ThemaindisadvantageofAbelNoserdatabaseisthatitcoverstrades fora subset of institutional investors. On the other hand, Abel Noser data offer clear advantages over the above alternative data sourcesforinstitutionaltrading.Themainadvantagesincludehighfrequency,longandcontinuoustimeseries,detailedandaccurate informationonspecifictransactionssuchasside(buyversussell),andtypeandidentitiesofsampleinstitutionsallowingforcross- sectionalandinstitution-specificanalyses. Wefurtheranalyzeinstitutionalinvestors'tradingbehaviorusingAbelNoserdata.Oursamplecontains232.6millioninstitutional trading transactions, 1.26 trillion shares and $37.5 trillion traded from January 1999 to September 2011. Abel Noser provides institutionaltradingdatafrom1997to2015.However,dataforthefirsttwoyearsareverysmallandafewvariableswereremoved after September 2011, including a key institution identifier. Section 3.1 provides further discussions about sample start and end. UsingAbelNoserdata,wedocumenttwosimplefacts.First,wedocumentthatinstitutionaltradesizesdeclinedramaticallyover time,consistentwiththefindingsinChordiaetal.(2011).Thissignificantdeclinerenderstradesize-basedinferencesofinstitutional tradesproblematic,supportingthefindingsinCreadyetal.(2014). Second,weputanupperboundandfourprogressivelytighterlowerboundsonAbelNoserdata'scoverageofCRSPvolume.The lowestlowerboundfollowsthesamemethodologyinPuckettandYan(2011),andweareabletoarriveatasimilarestimateasthat inPuckettandYan(2011).Ourotherthreelowerboundsmodifythemethodologyandofferhigher(tighter)estimates.Usingournew method,weestimatethatAbelNoserdatacover12.3%~12.6%ofCRSPvolumeovertheentiresampleperiodfromJanuary1999to September2011,and14.9%~15.3%for1999–2005.Theseestimatesaresignificantlyhigherthanthe8%estimateinPuckettand Yan(2011)for1999–2005,awidelyquotednumberintheacademicliterature(see,e.g.,Brownetal.(2014),Creadyetal.(2014), LjungqvistandQian(2016),andHenryandKoski(2017)). Overall,ourpapershouldproveusefulforresearchersseekingtoaddressanumberofunexploredissuesusingAbelNoserdata, especiallyincorporatefinanceandaccountingresearch.Therestofthepaperisorganizedasfollows.Section2describesAbelNoser dataandcomparesitwithvariousotherdatasourcesforinstitutionaltrading.Section3discussesdataissuesandpresentsempirical results.Section3.1.11presentsananalysisofpublicationpatternsusingAbelNoserdata.Section4containsabriefsurveyofthe growingacademicliteratureusingAbelNoserdata,including55publicationssofarandselectedworkingpapers.Section5concludes withadiscussionofdirectionsforfutureresearch. 2. Datasourcesforinstitutionaltrading Inthissection,wefirstdescribeAbelNoserinstitutionaltradingdata.Wethendiscusstheadvantagesanddisadvantagesofusing AbelNoserdatatostudyinstitutionaltradingcomparedtootherpotentialdatasourcessuchasPlexus,SEI,SEC13Ffilings,CRSP/ Thomsonmutualfundholdings,TAQ,CAUD,TORQ,NASDAQclearingrecordsdata,andNASDAQPostData. 2.1. AbelNoserdata Thedescriptionsanddiscussionsinthispaperarebasedonknowledgeaccumulatedthroughthefirstauthorspendingmorethan twoyearsworkinginsideFidelity'sGlobalEquityTradinggrouponsimilartradingdataanddirectlyinteractingwithAbelNoserasan outsideconsultingservice.ItisalsobasedonnumerouscompanyvisitsandconversationswithAbelNoseroveraperiodofmorethan 144 G.Huetal. Journal of Corporate Finance 52 (2018) 143–167 tenyearsasanacademicsubscriberofthedatalater. 2.1.1. WhoisAbelNoser?(Abel/Noser,ANcerno,andAbelNoser) LocatedinNewYorkCity,AbelNoserisabrokeragefirmthatalsoprovidestransactioncostanalysistoinstitutionalclients.The firm was co-founded by Stanley Abel and Gene Noser in 1975 with a goal of providing low cost trading to institutional clients. ConfusionoftenexistsregardingthetermsofAbel/Noser,ANcerno,andAbelNoser.ThefirmwasoriginallynamedAbel/NoserCorp. anditprovidesbothbrokerageservicesasasell-sidefirmandtradingcostmeasurementservicestobuy-sideinstitutionalinvestors. Someoftheirtransactioncostanalysisclientsraisedconcernsaboutconfidentialityoftheirtradingdataandpotentialmisuseoftheir databythebrokeragesideofAbelNoser.Inresponsetothisconcernandthegrowthoftransactioncostanalysisservices,thefirmset upAbelNoserHoldingsLLCastheparentcompany,andcreatedawholly-ownedsubsidiarynamedANcernoLtd.,separatefromits brokeragebusinesstospecializeintransactioncostanalysis(ANforAbelNoser,andcerno,Latinforexamineanddiscern).However, thisnamechangecausedconfusioninthemarketplaceintermsoftherelationshipbetweenANcernoandAbelNoser.SoANcerno changeditsnameagaintoAbelNoserSolutions,renderingANcernodefunct.AbelNoserSolutions,justlikeitspredecessorANcerno, isstillwholly-ownedbyAbelNoserHoldingsandseparatefromthebrokeragebusiness.TheaboveiswhywerefertothedataasAbel Noserdata. 2.1.2. WhydoinstitutionalinvestorsprovidetheirtradingdatatoAbelNoser? Theanswertothisquestionistwofold,differentforthetwomaintypesofinstitutionswhoprovidetheirtradingdatatoAbel Noser:investmentmanagersandplansponsors.InvestmentmanagersaremutualfundfamiliessuchasFidelityInvestments,Putnam Investments,andLazardAssetManagement.ExamplesofplansponsorsincludetheCaliforniaPublicEmployees'RetirementSystem (CalPERS),theCommonwealthofVirginia,andUnitedAirlines. Plan sponsors, who fall under the jurisdiction of the Department of Labor (DoL) rather than the Securities and Exchange Commission(SEC),aresubjecttotheEmploymentRetirementIncomeSecurityAct(ERISA),whichmandatesthatplansponsorsneed todemonstrate “bestexecution”fortheir trading transactions conducted onbehalf ofplanparticipants. Inorder to fulfillthis re- quirement,manyplansponsorssubscribetoanexternaltransactioncostanalysisservice,suchasAbelNoserorPlexus.Therefore,one mightcharacterizeplansponsors'presenceinAbelNoserdataas“semi-voluntary.” On the other hand, investment managers subscribe to Abel Noser's services on a voluntary basis. For each individual trade, transaction cost savings may appear to be small. On the other hand, total dollar trading costs, especially for large investment managers,canbesignificant.Inaddition,sinceitiswell-documentedthatinvestmentmanagers'abnormalreturnperformanceor alphaonaverageisminimalornon-existent,potentialtradingcostsavingsmaybecomemoreimportantrelativetoinvestmentalpha. So investment managers also subscribe to external transaction cost analysis service providers such as Abel Noser. Some large in- vestmentmanagers,suchasFidelityandStateStreet,evencreatedtheirowninternalgroupsdedicatedtoanalyzingandlowering trading costs. Forexample, Fidelity created aTrading Techniques &Measurement (TT&M)group around 2000,part ofits Global EquityTrading,whichhandlesallFidelitymutualfunds'equitytradingtransactions.Atitspeak,TT&Mhadmorethantenfull-time employees,includingseveralPh.D.’sandanex-MITstatisticsprofessor. 2.1.3. WhydoesAbelNoserprovideinstitutionaltradingdatatoacademia? WhyisAbelNoserfriendlytoacademiaandpositivelyinclinedtoprovidetheirproprietarydatatoacademicresearchers?Perhaps ithassomethingtodowithitsacademically-connectedroots.GeneNoser,oneoftheco-foundersandChairmanEmeritusofthefirm, isoneoftheauthorsofaJournalofFinancepublicationontradingcosts:Berkowitzetal.(1988). Being a consulting service provider, it is possible that Abel Noser values the credibility and publicity brought about by the association with academia. For example, Plexus, one of Abel Noser's main competitors of in the transaction cost analysis service providerspace,alsousedtoprovidedataforacademiaresearch.Inearlieryears,however,theprovisionofdataforacademicresearch wasquiteadhocandthesampleperiodsprovidedwereshortandsometimesscattered:afewweeksormonths'datasometimeswith breakswithinthesampleperiods,forexample,thethree-monthAbelNoserdatausedinBlume(1993). WhenandwhydidAbelNoserstartsupplyingcomprehensiveinstitutionaltradingdatatoacademicresearcherssystematically, andforcontinuousandlongsampleperiods?Thisislargelyduetotheeffortsbythefirstauthorofthispaper.During2000to2003, thefirstauthorwasanemployeeatFidelity'sTT&Mgroup,whowasthelargestclientofAbelNoser.Infact,Fidelity'sTT&Mgroup helpedAbelNosersettingupitsinstitutionaltradingdatastructureandtradingcostsmeasurementframework(“specs”),whichwere significantlydifferentfromtheircompetitor:Plexus'.WiththestrongsupportofTT&Mgroup'shead,whoholdsaPh.D.fromMIT himself,thefirstauthorsuccessfullyconvincedAbelNosertoprovide“all”theirdataforhisdoctoraldissertation,afterreplacing identities of sample institutions with numeric codes. This happened in 2002, after Abel Noser and the first author signed a con- fidentialityagreementthatyear.Allthreechaptersofthefirstauthor'sdissertationuseAbelNoserdata.Thedissertation,Hu(2005), becamepublicafterasuccessfuldefenseatBostonCollegein2005andwasthebasisforthreeeventualpublications:Huetal.(2008), Hu(2009),andChemmanuretal.(2010). It is worth noting that there were non-trivial initial costs involved for Abel Noser in providing its trading data for academic research, e.g., extracting, anonymizing, uploading, and updating the data, and providing additional information such as a “data dictionary” and cross-reference tables so that researchers can understand and make good use of the data. Having incurred these significant initial costs mainly at the urging by the first author, Abel Noser opened up and started providing the data to other academicresearchers. Unlikemostotherdatavendors,itisclearthatAbelNoser'smotivationinthisendeavorisnotfinancial–inearlyyears,thedata 145 G.Huetal. Journal of Corporate Finance 52 (2018) 143–167 Fig.1.Typicalinstitutionaltradingprocess.Thisfiguredepictsatypicalinstitutionaltradingprocess.ItisamodifiedreproductionofFig.3inHu (2009).Theportfoliomanagerandthetraderareinsidethesamebuy-sideinstitutionalinvestor.P ,VWAP,andP aremarketprices,whereasP pre post E istheinstitutionalinvestor'sownexecutionprice. wereprovidedfreeofchargewhenaskedbyanyacademicresearcher,onlyconditionalonsigningaconfidentialityagreement.Abel Nosersoonrealizedthereisahigherdemandthantheyexpected.Inordertocoveroverheadandothercosts,theystartedcharginga nominal$500annualsubscriptionfeewhichincludesallhistoricaldata.Laterthesubscriptionfeegraduallyincreasedovertheyears, butstillonlytocovercostsinvolved. 2.1.4. DescriptionofAbelNoserdata Foreachclienttradingtransaction,theAbelNoserdatabasecontains107differentvariables.Numbersofvariablesavailablevary slightlyovertimesinceAbelNoseraddedandremovedvariablesincertainyears.Inaddition,thereareabouttencross-referencefiles thatcontainadditionalinformationabouttheidentitiesofclient,manager,broker,andthestock.Forbrevity,wedonotlistall107 variablesandthesereferencefileshere.Wefocusourdiscussionsoncommonlyusedvariables. BeforewediscussvariablesprovidedbyAbelNoser,itisusefultoelaborateonthetradingprocesstobetterunderstandhowAbel Nosercollectsthesevariables.Fig.1depictsatypicalinstitutional tradingprocess.Thisprocessstartswiththeportfoliomanager (PM)makinginvestmentdecisions,whichstocktobuyorsell,andthequantitytobetraded.ThenthePMsendstheordertoatrader insidethesameinstitution.Withinputsfromthetrader,thePMalsodeterminesatradinghorizon,whichisoftenatradingday.The trading horizon can also be shorter than a trading day, or it can span multiple trading days. Fig. 1 and our description of the investmentandtradingprocessisamodifiedversionofFig.3andtheaccompanyingdescriptioninHu(2009),ascitedinHenryand Koski(2017).Tradingdataforinvestmentmanagerclientsarereceiveddirectlyfromtheseclients'OrderDeliverySystem.AbelNoser usesalognumbertoidentifyeachbatchoftradesreceivedfromclients.Tofacilitatetradingcostanalysisoftradesbyclients,Abel Noserprovidesinformationonvariousbenchmarkpricesandvolumescorrespondingtoeachtrade.ThisiswhyAbelNoserdatahave somanycolumnsorvariables. EachclienttradingexecutioncorrespondstooneobservationinAbelNoserdata,whichincludethreemaincategoriesofvariables: first,identitiesofmarketparticipantsincluding:clientcode,clienttypecode,clientmgrcode,clienttdrcode,andclientbkrcode.Theclientcode is a unique numeric ID for each of Abel Noser's institutional clients. The clienttypecode identifies the type of institutional clients: investmentmanagers(clienttypecode=2),plansponsors(clienttypecode=1),andbrokers(clienttypecode=3).AbelNoserdatadonot contain many broker clients and the data coverage tends to be sporadic. Thus, empirical analysis of institutional trading should normallyexcludeobservationswithclienttypecode=3andmissingclienttypecode.OthercodesarediscussedlaterinSection3.1.The secondcategoryofvariablescontainsspecificinformationforeachtransaction,includingthesymbol,CUSIP,side,price,volume,and commissionusd.SymbolandCUSIPidentifythestocktraded.Side,price,volume,andcommissionusdspecifywhetherthetradeisabuyor sell,theexecutionprice,thenumberofsharestraded,anddollarcommissionspaidonthetransaction.Thethirdcategoryofvariables containsreferenceandmarketbenchmarkinformation(marketpriceandmarketvolume)forvarioustimehorizonsandaggregation levelsforeachtransaction. 146 G.Huetal. Journal of Corporate Finance 52 (2018) 143–167 2.2. Otherdatasources Inthissub-section,wedescribevariousotherpotentialdatasourcesforinstitutionaltrading:Plexus,SEI,SEC13Ffilings,CRSP/ Thomsonmutual fundholdings, TAQ, CAUD, TORQ, NASDAQ clearingrecords data, andNASDAQ PostData. We alsodiscuss the advantagesanddisadvantagesofusingAbelNoserdatatostudyinstitutionaltradingcomparedtothesealternativedatasources. 2.2.1. PlexusandSEI SeveralearlymicrostructurestudiesuseinstitutionaltradingdataprovidedbyPlexus,forexample,KeimandMadhavan(1995, 1997)andConradetal.(2001,2003).Irvineetal.(2007)usePlexusdatainnovativelytostudytipping.Plexusdataareperhapsthe closestinnaturetoAbelNoserdata.Infact,AbelNoserandPlexuswerecompetitorsinthemarketplaceofprovidingtransactioncost analysisservices.Asmentionedbefore,themainadvantageofAbelNoserdataisthelongandcontinuoustimeserieswhichallowsfor analysesofmanyinterestingcorporatefinanceandinvestmentresearchtopics.Ontheotherhand,Plexusdataweretypicallypro- vided on a much more ad hoc basis and for much shorter and scattered sample periods. Importantly, Plexus has long stopped providingitsdatatoacademiasinceitsacquisitionbyInvestmentTechnologyGroup(ITG)in2005.ChanandLakonishok(1993, 1995)usedataprovidedbySEICorporation,whicharesimilartoPlexusandAbelNoserdataaswell,butitalsostoppedproviding datatoacademiaalongtimeago. 2.2.2. SEC13Ffilings Underthe1934SecuritiesAct,allinstitutionalinvestorswithmorethan$100millionin13(f)securities(mostlypubliclytraded equity,butalsoconvertiblebondsandoptions)mustfileSECForm13F.Thedisclosureofportfolioholdingsisatthemanagement companylevelonaquarterlybasis,e.g.,mutualfundmanagementcompaniesandhedgefunds.Afundmanagementcompany(e.g., FidelityandVanguard)managingmultipleindividualfundswillreportaggregatedholdingsbyalloftheseindividualfunds. The date when the Form 13F is filed with the SEC is referred to as the “filing date,” and the quarter-end date on which the portfolioisdisclosedasthe“quarter-endportfoliodate.”Normally,theSECrequiresthatthemaximumlagbetweenthetwodates shouldbe45calendardays.However,subjecttoapprovalbySEC,institutionscandelayorpreventdisclosureofcertainholdings, usuallyuptooneyear,fromthedaterequiredfortheoriginal13Ffilings.Such“hiding”ofholdingsisdisclosedinanamendmentto theoriginal13Ffilingafterarequestisdenied,oraftertheconfidentialityperiodexpires.Forfurtherdetaileddiscussionsofhiding holdingsby13Finvestors,refertoAgarwaletal.(2013)andAragonetal.(2013). TheadvantagesofAbelNoserdatacomparedto13FfilingsishighlightedinChemmanuretal.(2009)forinstitutionaltrading aroundcorporateeventssuchasseasonedequityofferings(SEOs):withdailytradingrecordsfromAbelNoser,theauthorsareableto identityallocations andtrading ofSEOsbyeach institution.The advantage ofAbelNoserisalsohighlighted byPuckett andYan (2011) for investments topics: they find that institutional investors earn significant abnormal returns on their trades within the tradingquarter(namelyinterimtrading),whichareundetectedby13Fdata.ThemaindisadvantageofAbelNoserdatabaseisthatit doesnotcoverallinstitutionalinvestorsinthemarket,whilethe13Fdatabasehasmorecompletecoverageofinstitutionalinvestors sincetheseinvestorsarerequiredtoreporttheirholdingsonaquarterlybasis. 2.2.3. CRSP/Thomsonmutualfundholdings TheSecuritiesExchangeActof1934andtheInvestmentCompanyActof1940mandatedmutualfundstoreporttheirholdingsto theSECofdates(“reportdates”).Thesedisclosuresmustincludeallofthefund'sportfoliopositions,including,butnotlimitedto commonequities,preferredequities,options,bonds,andshortpositions.PriortoMay2004,theSEConlyrequiredmutualfundsto filetheirportfolioholdingstwiceayearusingthesemi-annualN-30Dform.SinceMay2004,theInvestmentCompanyActof1940 mandatesthatindividualmutualfundsdisclosetheirportfolioholdingsquarterlyinFormsN-CSRandN-Qwithadelayofnolonger than60days.ThedatethisportfolioinformationisfiledwithEDGARisknownasthe“filedate,”andthedifferencebetweenthefile dateandreportdateisoftenknownasthe“reportingdelay.”Agarwaletal.(2015)andSchwarzandPotter(2016)providedetailed descriptionsofreportingrequirementsformutualfunds. The most widely used mutual fund holding data is the Thomson Mutual Fund Holdings (Thomson) database, which contains portfolio holdings since January 1979. This data has been used by majority of existing mutual fund research papers (e.g., Zheng (1999)andKacperczyketal.(2008)).PriortoitsownershipbyThomson,thisdatabasewasknownasCDAInvestmentTechnologies data(Danieletal.(1997)),aswellastheCDASpectrumholdingsdatabase(Wermers(1999)).Itcontainsmanymutualfundport- foliosreportedasofdatesnotmandatedbythe1940InvestmentCompanyAct.Startinginthesecondhalfof2003,CRSPMutual FundDatabase's(CRSP)portfoliosbecameavailable.TheCRSPMutualFundDatabase'scoverageisfromJanuary2001topresent. ThemainadvantageofAbelNoserdatacomparedtoCRSPorThomsonMutualFundHoldingsisitsdailyfrequencyofreporting. Withsemi-annualorquarterlyportfoliodisclosuresfromCRSPorThomsonMutualFundHoldings,researcherscannotobservethe interimtradingbetweentwoconsecutivereportdates.Kacperczyketal.(2008)conductathoroughanalysisofunobservedactionsof mutualfundsleadingtoreturngap—thedifferencebetweenthereportedmutualfundreturnandthereturnonaportfoliothatinvests inthepreviouslydisclosedfundholdings.ThemaindisadvantageofAbelNoserdatabaseisthatitdoesnotcoverallfundsinthe market,whileCRSPandThomsonMutualFundHoldingshavebettercoverageintermsofmutualfundssincethesefundsarerequired toreporttheirholdings.Inaddition,AbelNoser'sfund-levelidentifiersandinformationcanbeproblematicattimes,thoughthey havebeenusedinprioracademicstudies. 147 G.Huetal. Journal of Corporate Finance 52 (2018) 143–167 2.2.4. TAQ TheTradeandQuote(TAQ)databasecontainsintradaytransactionsdata(tradesandquotes)forallsecuritieslistedontheNew YorkStockExchange(NYSE),AmericanStockExchange(AMEX),aswellasNASDAQNationalMarketSystem(NMS)andSmallCap issues. ThemaindisadvantageofTAQcomparedwithAbelNoseristhatTAQdatabasedoesnotidentifythetraderanddoesnotclassify directionoftrades(buysversussells).PioneeredbyLeeandReady(1991),researchstudiesanalyzingthesedataapplyanalgorithm to assign the side ofthe trade depending on whether thetrade price is closer to bid orask. However,the Lee and Ready (1991) algorithmhasbecomeunreliableinmorerecentyearsduetosub-pennytradingandshallowdepthsatthequotedbidandask.Onthe otherhand,AbelNoserdatacontainaccurateinformationonwhethereachtransactionisabuyorasellbysampleinstitutions.Thus, noinferencealgorithmisneeded. When using TAQ, to proxy for investor type, researchers commonly use trades cutoffs by dollar size (Lee and Radhakrishna (2000)), block trades (Kraus and Stoll (1972) and Bozcuk and Lasfer (2005)), or a more sophisticated daily trades and quarterly holdingsmappingprocedureproposedbyCampbelletal.(2009).However,assuggestedbyCreadyetal.(2014),inferringinvestor typebased on tradesizeis notreliable. However,Abel Noserdata contain institutional trades with type andidentities ofsample institutions.ThemainadvantageofTAQcomparedwithAbelNoseristhatTAQdatacontainallmarkettrades,whileAbleNoserdata onlycovertradingbyasubsetofinstitutionalinvestors. 2.2.5. CAUDandTORQ TheNYSE'sConsolidatedEquityAuditTrailData(CAUD)containdetailedinformationonallordersexecutedontheexchange, bothelectronicandmanual(thosehandledbyfloorbrokers).Thisdatabaseincludesprogramtradingandindexarbitragetrading. One of the fields associated with the buyer and seller of each order, Account Type, specifies whether the order comes from an institutionalinvestor.TheAccountTypedesignationofindividualinvestorordershasitsoriginsintheaftermathofOctober1987 stockmarketcrash.Kanieletal.(2008),Kanieletal.(2012),andHendershottetal.(2015)containdetaileddiscussionsandanalyses ofCAUDdata. Thetrades,orders,reports,andquotes(TORQ)databasebytheNewYorkStockExchange(NYSE)containsdetailedinformation ontrades,orders,quotes,andauditreportsassociatedwithtradesforasize-stratifiedsampleof144NYSE-tradedequitysecurities fromNovember1,1990,toJanuary31,1991.Thereareapproximatelyfifteenfirmsrandomlyselectedfromwithineachcapitali- zationdecile.Thedatabaseidentifiesthepartyinitiatingthetrade(individualversusinstitution,forexample)andthedirectionofthe trade(buyversussell).Thisallowsthepreciseidentificationofthesevariableswithoutrelyingonalgorithmsintendedtoinfertrade directionandtraderidentity.SeeSiasandStarks(1997),Kavajecz(1999),LeeandRadhakrishna(2000),andChakravarty(2001)for furtherdescriptionsoftheTORQdatabase. ThemainadvantagesofAbelNoserdatacomparedtoCAUDandTORQisthatAbelNosercoversstocksfromallstockexchanges inU.S.andcontainsidentities andtypesofsample institutional investors,allowing forinstitution-specificempirical analysis. The disadvantageofAbelNoserdatabaseisthatitdoesnotcoveralltradesortradersinthemarket,whileCAUDandTORQhavebetter coverageintermsoftraderssincethesedataaredirectlyfromtheexchange. 2.2.6. NASDAQclearingrecordsdataandNASDAQPostData NASDAQclearingrecordsbasedtradingdataconsistoftradingbybrokeragehousesinallNASDAQ-listedfirmsfromJanuary2, 1997,toDecember31,2002.Thedataincludethedate,time,tickersymbol,tradesize,andpriceofeachtransactionforeachstock. These clearing records also include market maker IDs from the settlement process allowing trading volume to be assigned to in- vestmentbanks.Thedatacanidentifythedirectionofeachtrade(buyorsell).Thedataalsocontainseparateprincipal/agentflagsto identifywhetherthepartiesaretradingfortheirownaccountorforaclient.Thedataincludebothtradesreported“tothetape”(tape report)andunreportedNASDAQclearingrecords(nontapereport).ThemainadvantageofAbelNoserdatacomparedtoNASDAQ clearingrecordsbasedtradingdataisthatresearcherscanseparatelytracktradingrecordsofeachsampleinstitutioninAbelNoser, butnotinthelatter.ThemaindisadvantageofAbelNoserisitscoverageofonlyasubsetofinstitutionalinvestorsandhencemarket dollartradingvolume.AccordingtoGriffinetal.(2012)whouseNASDAQclearingrecordsdata,thedatacover77.8%ofNASDAQ tradingvolume.PleaseseeSection3.1.8belowforourresultsonAbelNoserdata'scoverageofCRSPtradingvolume. NASDAQPostDatacontaintradedate,tickersymbol,marketmakerIDandtype(includingacodeforECNs),numberofshares traded,dollarvolumeoftrade,numberoftrades,andaveragetradesizeforallNASDAQmarketmakers.Eachtradeisdividedinto buy,sell,andcrossedtrades.PostDataareattributedtoparticularmarketmakers.JuergensandLindsey(2009)use136daysofthe datafor3874NASDAQ-tradedstocksforallquotingmarketmakers.SinceNASDAQPostDataisabouttradingbymarketmakers,itis quitedifferentfromthesetofinvestorscoveredbyAbelNoserdata,whicharemainlyeitherinvestmentmanagersorplansponsors. Tosummarize,AbelNoserdata,thoughonlycontaintradesforasubsetofinstitutionalinvestors,offerclearadvantagesoverthe abovelonglistofalternativedatasources.Themainadvantagesincludehighfrequency(atleastdaily),longandcontinuoustime series,detailedandaccurateinformationonspecifictransactionssuchasside(buyversussell),andtypeandidentitiesofsample institutionsallowingforcross-sectionalandinstitution-specificanalyses. 3. Dataandresults Inthissection,wediscussvariousAbelNoserdataissues(Section3.1)andpresentresultsofourempiricalanalysisoninstitutional tradesizesandAbelNoserdata'scoverageofCRSP(Section3.1.8). 148 G.Huetal. Journal of Corporate Finance 52 (2018) 143–167 3.1. Dataissues 3.1.1. Samplestartandend Asmentionedearlier,AbelNoserprovidesinstitutionaltradingdatafrom1997to2015.However,dataforthefirsttwoyearsare verysmallcomparedtolateryearsandtheremightbedataqualityissuesasmentionedbyAbelNoserduringthosetwoyears.Sowe startoursampleperiodinJanuary1999.AbelNoserprovidesdataonaquarterlybasiswithatimelagaroundoneyear.Sometimein 2017,AbelNosercompletelystoppedprovidingdataforacademicresearch.Sothedataendedaround2015.Moreimportantly,Abel Noserremovedclientcode inthedata afterSeptember2011 along withseveral othervariables. Initially,AbelNoseralsoremoved clienttypecode. After pleading directly to upper management by the first author of this paper, Abel Noser agreed to add back cli- enttypecode,butnotclientcode,fordataafterSeptember2011. Clientcode is a key variable that separately identifies trades from different institutions. As discussed earlier, one of the main advantages of Abel Noser data is the ability to separately identify and track trades for different institutions allowing for cross- sectional and institution-specific analyses. Therefore, Abel Noser data after September 2011 are much less useful for academic researchers,especiallyformostcorporatefinance,investments,andaccountingtopics,whereseparatelytrackingtradesfordifferent institutions enables much more thorough and interesting investigations of relevant research questions. Abel Noser data after September2011maystillbeusefulforcertainmarketmicrostructureandinvestmentsstudiesthatonlyaimtogenerallyexamine institutionaltrades,forexample,astudyofinstitutionaltradingcoststhatdoesnotrelyonknowingsomethingaboutthetrader's characteristics. Thoughstilluseful,AbelNoserdata afterSeptember2011 arelessunique comparedtoalternative sources forin- stitutionaltradingsuchasNYSECAUDdiscussedearlier.Table5listssampleperiodsforall55publicationstodateusingAbelNoser data.Notsurprisingly,sampleperiodsforalmostallpublications,includingforthcomingpapers,fallwithinthesampleperiodweuse: January1999toSeptember2011(12yearsand9months). 3.1.2. Potentialsamplebiases SinceAbelNoserprovidestradingcostanalysisforclients,presumably,theseinstitutionscaremoreabouttheirtradingexecution costs in general. Therefore, sample selection biases, if any, should mostly concern microstructure studies. On the other hand, for researchquestionsincorporatefinance,investments,andaccounting,wecannotthinkofobvioussampleselectionbiases.Appendices ofPuckettandYan(2011),Anandetal.(2012),andJame(2018)containdiscussionsofissuesrelatedtopotentialsurvivorshipand selectionbiasesofAbelNoserdata.ThesepapersshowthatAbelNoserinstitutionsonaveragedonotdifferfrom13Finstitutionsin stockholdings,returncharacteristics,andstocktrades,althoughtheyarelargerinsize. 3.1.3. MatchingwithCRSP Abel Noser data contain three variables that identify each stock: symbol, CUSIP, and stockkey. Both symbol and CUSIP are as providedbyAbelNoserinstitutionalclients.Complicatingthings,differentinstitutionsmayhavedifferentvariationsforthesame stock's symbol and CUSIP, e.g., the number of characters in CUSIP may vary and symbol may be different for the same stock for differentinstitutions.StockkeyisAbelNoser'sownstockidentifier.However,wehaveobservedthatstockkeymaycontainmatching errorsandmayinfactbereusedovertimefordifferentstocks,thoughwehaveobservedthatthequalityofstockkeyhasimproved overtheyears.InordertomatchwithCRSPPERMNO,wethereforerecommendfirstcleanupsymbolandCUSIPprovidedbyAbel Noser,andthenusethemto matchwith CRSP.Thismatchingprocess isnon-trivial andmayinvolve partialmanualmatchingto ensurematchingquality. 3.1.4. Datarepetitionandlognumber WhenAbelNoserreceivesabatchoftradingdatafromaclient,typicallymonthly,itassignsauniquelognumberforeachbatchof datareceived.Sometimesclientsmaysend“corrections”forearlierbatchesoftradingdata.Inotherwords,AbelNoserdatamay containrepetitionsoftradingdataforthesameclientinstitutionoverthesametimeperiod.Tocounterthisproblem,researchers usingAbelNoserdatawillneedtoremovethesedatarepetitionsbymakinguseofthelognumber,asitisuniqueforeachbatchof clienttradingdatareceivedbyAbelNoser. 3.1.5. Intradaytimestamps AbelNoserdatacontainseveralintradaytimestampsmarkingthetimesatdifferentpointsinthetradingprocessasdepictedin Fig.1:orderentry(whentheportfoliomanagerenterstheorder),orderplacement(whentheinstitutionaltraderplacestheorder withanexternalbroker),andorderexecution(whenthetradeorderisexecuted).Wheninstitutionalclientsdonotprovidethesetime stamps,AbelNosersetsentryandplacementtimestothemarketopen(9:30am),andexecutiontimestothemarketclose(4:00pm). MostacademicstudiesusingAbelNoserdatasofardonotmakeuseofintradaytimestamps.Onereasonisthatthesetimestamps default to market open or close quite frequently, especially during earlier years. For example, Choi et al. (2017) state that “a significantfractionoftradesarerecordedasoccurringattheopeningoftrading”(footnote6).Anotherpossiblecomplicationthat mayaddfurthernoiseinintradaytimestampsisthesplittingandpackagingoftradeorders.However,itdoesnotmeanthatintraday timestampscouldnotbeusefuljustbecausetheymightbenoisy. In a recent paper, Huang et al. (2018a) make an important contribution by carefully analyzing the patterns of intraday time stampsinAbelNoserdata.Theauthorspresentconvincingevidencethattheseintradaytimestamps,thoughnotwithoutlimitations andcouldbenoisy,arelikelytobeauthenticandvalid.Huangetal.(2018a)firstshowthatthereareindeedalargepercentageof placementtimesatthemarketopenandexecutiontimesatthemarketclose,thoughthesepercentagesdeclineoverthesampleperiod 149 G.Huetal. Journal of Corporate Finance 52 (2018) 143–167 significantly.Theyreportthatforplacementtimes,thepercentagestartsatover80%atthebeginningofthesample,butdeclinesto about40%attheend,andthefullsamplepercentageoftradesplacedatthemarketopenis52%.ThisisconsistentwithAbelNoser's institutionalclientsprovidingintradaytimestampstoagreaterdegreeovertime.Importantly,Huangetal.(2018a)findthatwhen placementtimesarenotatthemarketopen,thepatternofplacementtimesduringthetradingdayappearstobeveryrealisticand reasonable:hightradingvolumeafterthemarketopen,smoothtradingvolumeduringthetradingdayexceptforsmallhourlyspikes, andincreasedtradingvolumeasthemarketcloseapproaches.TheirfindingssuggestthatthoughintradaytimestampsinAbelNoser dataarefrequently atthemarketopen orclose,whenthey arenotatthemarketopen orclose,theyarelikely tocontain useful information.2 3.1.6. Identitiesofsampleinstitutions Thisisanimportantdataissue,sinceifarmedwithidentitiesofsampleinstitutions,researcherscanthenmatchAbelNoserdata withotherpubliclyavailabledatasourcessuchasSEC13Ffilingtogainmanymorevariablesandadditionalcharacteristicsofsample institutions.Theoriginaldatawereanonymous,thatis,thoughthereisaclientcodethatseparatelyidentifieseachsampleinstitution, noinstitutionidentitiesinformationwereprovided.However,bycumulatingtradingbyAbelNosersampleinstitutionsforeachstock and comparing trading patterns with quarterly portfolio holdings changes from public 13F filings, one may be able to “reverse engineer”anduncoveridentitiesofAbelNoserinstitutions.Huetal.(2009),anearlyworkingpaperversionofHuetal.(2018),was thefirsttoimplementsuchanon-trivialalgorithm,whichwaslaterusedinChemmanuretal.(2010).TheInternetAppendixofHu etal.(2018)describesthismatchingalgorithmindetail.Notethatthesepapersonlyusetheinferredidentifyinformationtoclassify institutions(e.g.,transientinstitutions)withoutrevealinganyinformationonanyspecificsampleinstitution. Ontheotherhand,sometimeduring2010–2011,AbelNoserdataincludedaMasterManagerXreffilecontainingcross-reference identityinformationforsampleinstitutions. Thisfilewasonlyavailableduringthisperiodandnotfordatasubscribersbeforeor after.Theabovetimeperiodreferstotradingdataperiod,andsinceAbelNoserprovidestradingdatatoacademicresearchwitha ninetotwelvemonths'timelag,oneneedstobeasubscriberofAbelNoserdatasometimeduring2011–2012tohavegainedaccessto thiscrucialpieceofinformation.Withthiscross-referencefile,thereverseengineeringalgorithmimplementedinHuetal.(2009, 2018)isnolongernecessary,andresearcherscanmatchAbelNoserdailytradingdatawith13Fquarterlyholdingsdata,see,e.g., Choietal.(2017). However,therevelation ofAbelNoserinstitution identities mayindeedbe oneofthemainreasons whyAbelNoserremoved clientcodeinthedataafterSeptember2011.Asdiscussedpreviously,sincethemotivationforAbelNosertoprovidedataforacademic researchisnotfinancialgainstobeginwith,thecostforthefirmtostopprovidingdatatoacademiaissmallandintangible.In2017, AbelNosercompletelystoppedprovidingdataforacademicresearch.Asaresult,fornewresearcherstogainaccesstoAbelNoser data,onesolutionmightbetoworkwithresearcherswhohaveusedthedatabefore.Table5containsalistofauthorswhohave publishedacademicstudiesusingAbelNoserdatasofar. 3.1.7. Clientmgrcode,Clienttdrcode,andClientbkrcode Forinvestmentmanagers,clientmgrcodeidentifiesfunds,fundmanagers,orseparatelymanagedaccounts.However,itmaychange over time for the same fund and is not very reliable, though it has been used in prior studies. For plan sponsors, clientmgrcode identifiestheinvestmentmanagerorfundmanagingplansponsorclients'assets.Jame(2018)providesagoodexampleofusageof this information to identify hedge fund trades in Abel Noser data. The clienttdrcode identifies the trader inside the institutional investorhandlingthetradingtransaction(seeFig.1),anditmaybeusefulforcertainmicrostructurestudies.Theclientbkrcodeallows researcherstoidentifythebrokerwhoexecutedthetradingtransaction.Anandetal.(2012)andChemmanuretal.(2015)aregood examplesthatmakeuseofbrokerinformationinAbelNoserdata. 3.2. Results Table1presentssummarystatisticsoftheAbelNosersample.FollowingPuckettandYan(2011),afterusingCUSIP,symbol,and stockkeyprovidedbyAbelNosertomatchwithCRSPPERMNO,weonlykeepstockswithCRSPSHRCDequaltoeither10or11,i.e., U.S.ordinarycommonshares.Wealsoonlykeeptransactionsbyeitherinvestmentmanagers(clienttypecode=2)orplansponsors (clienttypecode=1),andremovetransactionsbybrokers(clienttypecode=3)andtransactionswithmissingclienttypecode.Notsur- prisingly,therearemoreplansponsors(740)thaninvestmentmanagers(399).Asdiscussedearlier,plansponsorsarethecoreAbel Noserclientsintermsofnumbers,andhencetherearemoreplansponsorsthaninvestmentmanagersinthesample.Thenumberof plansponsorsdropsfairlysteadilyoverthesampleperiod,withapeakof344in2002andalowof138in2011.Thenumberof sampleinvestmentmanagersfirstincreasesprettysteadilyandsignificantlyfrom37in1999toapeakof157in2006and2007,and thendropssteadilybutrelativelylesssignificantlyto121in2011.Wedonotknowtheexactreasonsforsuchfluctuationsinthe numberofAbelNoserinstitutionalclients.Ourconjectureisthatdecimalization,andespeciallytheincreasingprevalenceofalgo- rithmtradingwhereinstitutionssplittradesintotinypiecesanduseautomatedprogramsfortradingexecutionmayhaveresultedin lesservalue-addedbyanexternalconsultantsuchasAbelNoser.Ifinstitutionsbreakupallormostoftheirtradesintoverysmall piecesandspreadthemthroughouttheday,itwouldbeveryhardforanoutsideconsultanttoofferanyadditionalhelpinimproving tradingexecutionstrategyandlowertradingcosts.Italsobecomeslessimportantforinstitutionstorelyonanoutsideconsultantto 2WethanktherefereefordeepeningourunderstandingofthereliabilityandusefulnessofintradaytimestampsinAbelNoserdata. 150 G.Huetal. Journal of Corporate Finance 52 (2018) 143–167 Table1 Summarystatistics. Year Investment Plan #oftrades Sharestraded $Traded Commissions Sharesper $pertrade managers sponsors (millions) (billions) ($billion) ($million) trade 1999 37 342 5.1 46.2 $2060 $1589 8985 $400,401 2000 43 328 6.5 62.6 $2762 $1941 9671 $426,574 2001 64 334 8.1 89.0 $2699 $2555 10,964 $332,446 2002 81 344 10.5 112.2 $2708 $4488 10,700 $258,287 2003 84 316 10.4 94.3 $2350 $3707 9052 $225,607 2004 117 285 12.7 91.5 $2615 $3444 7199 $205,662 2005 132 244 16.8 98.8 $3059 $3132 5869 $181,774 2006 157 242 28.4 120.0 $3860 $2990 4231 $136,098 2007 157 220 36.0 117.8 $4159 $2647 3269 $115,455 2008 151 182 30.3 138.4 $3960 $2898 4576 $130,915 2009 143 173 24.5 131.8 $2839 $2695 5389 $116,054 2010 139 168 24.9 98.8 $2619 $2140 3971 $105,314 1–9/2011 121 138 18.4 57.7 $1776 $1273 3136 $96,495 Overall 399 740 232.6 1259.2 $37,467 $35,499 6693 $210,083 ThistablereportssummarystatisticsofAbelNoserdatafromJanuary1999toSeptember2011.Overallnumbersforinvestmentmanagersandplan sponsorsarethetotaluniquenumbersofinstitutionsoverthewholesample.FollowingPuckettandYan(2011),wematchAbelNoserdatawith CRSPdailystockfileandonlykeepthosestockswithSHRCDequaltoeither10or11(i.e.,U.S.ordinarycommonshares).Thedollarvalueofeach tradeequalstheproductofthetransactionpriceandthenumberofsharesboughtorsoldbytheinstitution.Commissionsandsharestradedare directlyfromAbelNoserdataandsummedacrosstradesexecutedwithineachcalendaryear.Thelasttwocolumnsreporttheaverageofshares (dollars)pertrade. measuretheirtradingcosts.Wefurtherdiscusstheprevalenceofalgorithmtradingandtheresultingdramaticdeclineininstitutional tradesizelaterinthissection. Afterapplyingfiltersmentionedabove,AbelNoserdatacontain232.6milliontransactions, with1.3trillionsharesand$37.5 trilliontradedovertheperiodfromJanuary1999toSeptember2011.Sampleinstitutionscollectivelypaid$35.5billioninbrokerage commissions.Thistranslatesinto2.8centspershareand9.5basispointsperdollartraded.Theseestimatesareinlinewithprior studiesoninstitutionaltrading.Forexample,bothusingAbelNoserdata,Hu(2009)estimatesinstitutionalbrokeragecommissionsto be11to12basispointsperdollartraded(Table2onpage430)foranearlierandshortersampleperiod,andAnandetal.(2012) estimatecommissionspaidbyinstitutionstobealsoexactly2.8centspersharefortheirsampleperiodof1999to2008(Table1on page565).Thesepershareorperdollarcommissionestimatescouldbebiaseddownwardsbecausebrokersmayactasmarketmakers thereby profiting from bid-ask spreads and charge zero commission for certain NASDAQ trades. On the other hand, Anand et al. (2012)notethatthereductioninspreadsthataccompanieddecimalizationin2001madetheNASDAQzerocommissionbusiness modeluntenable,andinstitutionsbeganpayingcommissionsonNASDAQtrades(footnote8onpage566). Table2reportsstatisticsofAbelNoserdataseparatelyforinvestmentmanagers(PanelA)andplansponsors(PanelB).Though therearemoreplansponsorsthaninvestmentmanagers,thequantityandthesizeofinvestmentmanagers'tradestendtobelarger. Specifically,investmentmanagersaccountfor191.1milliontransactions,with1.1trillionshares($31.5trillion)traded,and$30.2 billion in brokerage commissions paid; whereas plan sponsors only account for 41.4 million transactions, with 0.2 trillion shares ($6.0trillion)traded,and$5.3billionpaidforbrokeragecommissions. 3.2.1. Institutionaltradesizes Fig. 2 plots institutional trade size over time, measured as average shares per trade and average $ per trade, for all sample institutions (Panel A), investment managers (Panel B), and plan sponsors (Panel C), respectively. The data plotted in Fig. 2 are presented inthelast two columns inTables 1 and2.Across all threepanels in Fig. 2,there isa clear declining trend of average institutionaltradesizeovertime.Forinstance,lookingat$pertradeinPanelA,averagetradesizedeclinedfrom$400thousandin 1999to$96thousandin2011,a75%reduction.Forinvestmentmanagers,averagetradesizedeclinedfrom$493thousandin1999 to$113thousandin2011.Similarlyforplansponsors,averagetradesizedroppedfrom$214thousandin1999to$57thousandin 2011. Lookingataveragetradesizealone,thoughinformative,maynottellthewholestory,asthedistributionoftradesizecouldbe highlyskewed,withasmallfractionoflargetradescontributingdisproportionallytothesamplemean.Thus,wefurtherexamine percentilesofinstitutionaltradesizeinTable3.Someratherstrikingpatternsemerge.First,thedistributionoftradesizeappearsto be highly skewed, with average trade size being much higher than median trade sizes. For example, the median $ traded for all institutionsoverthewholesampleis$9222(Table3PanelA),whilethecorrespondingaverageis$210,083pertrade(Table1),more than23timeslarger.Infact,theaverageismuchhigherthanthe75thpercentile–$52,602(Table3PanelA). From 1999 to 2011, the median dollars (shares) traded declined from $58,900 (1600 shares) to $4708 (135 shares) for all institutions, a 92.0% (91.6%) drop, and the median declined from $60,250 (1600 shares) to $9447 (295 shares) for investment managers, a 84.3% (81.6%) drop. The decline is much more dramatic for plan sponsors: from $56,700 (1700 shares) to $194 (5 shares), a 99.7% (99.7%) drop. One possibility is that, since plan sponsors' assets are typically managed by external investment managers, who trade on their behalf, it is possible that these trades were in fact fractions of larger trades executed by external 151 G.Huetal. Journal of Corporate Finance 52 (2018) 143–167 Table2 Investmentmanagersversusplansponsors. Year #oftrades(millions) Sharestraded(billions) $Traded($billion) Commissions($million) Sharespertrade $pertrade PanelA.Investmentmanagers 1999 3.4 36.9 $1694 $1276 10,741 $493,146 2000 4.5 51.6 $2321 $1611 11,462 $515,175 2001 5.7 67.2 $2055 $2084 11,883 $363,441 2002 7.5 89.7 $2158 $3600 11,894 $286,268 2003 8.1 79.5 $1991 $3173 9819 $245,925 2004 10.6 78.5 $2247 $3015 7373 $211,125 2005 15.1 86.5 $2686 $2815 5744 $178,373 2006 26.1 104.6 $3365 $2602 4013 $129,107 2007 32.5 96.7 $3389 $2260 2976 $104,359 2008 26.3 120.6 $3441 $2528 4586 $130,876 2009 20.3 115.5 $2472 $2363 5682 $121,653 2010 17.9 83.5 $2193 $1800 4650 $122,190 1–9/2011 13.1 47.9 $1472 $1069 3667 $112,563 Overall 191.1 1058.6 $31,484 $30,196 7268 $231,861 PanelB.Plansponsors 1999 1.7 9.3 $367 $313 5462 $214,291 2000 2.0 11.0 $441 $330 5577 $223,953 2001 2.5 21.8 $644 $471 8855 $261,282 2002 2.9 22.5 $550 $887 7644 $186,650 2003 2.3 14.8 $359 $534 6378 $154,755 2004 2.1 13.1 $368 $429 6304 $177,598 2005 1.8 12.3 $373 $317 6933 $210,686 2006 2.3 15.4 $496 $388 6693 $215,216 2007 3.5 21.1 $769 $387 5961 $217,276 2008 4.0 17.8 $519 $369 4505 $131,173 2009 4.1 16.3 $367 $332 3951 $88,584 2010 6.9 15.3 $426 $339 2209 $61,551 1–9/2011 5.3 9.8 $304 $204 1833 $57,059 Overall 41.4 200.5 $5982 $5302 5562 $169,237 ThistablereportsstatisticsoftransactionsinAbelNoserdataseparatelyforinvestmentmanagers(PanelA)andplansponsors(PanelB)from January1999toSeptember2011. investmentmanagersonbehalfofplansponsors.However,thiscannotfullyexplainthedramaticdecliningtrendovertimeforplan sponsors and for the whole sample. Fig. 3 plots percentiles of $ principal traded over time for all sample institutions (Panel A), investmentmanagers(PanelB),andplansponsors(PanelC),respectively.3 Oneplausibleexplanationforthisdramaticdeclineininstitutionaltradesizeisperhapstheincreasingprevalenceofalgorithm tradingaspostulatedbyChordiaetal.(2011):“Algorithmictradingwasnonexistentintheearly1990sbutwasexpectedtorepresent about half of the trading volume in 2010” (footnote 49 on page 261). In general, the declining trend of institutional trade size documentedhereisconsistentwithandprovidesdirectsupportforthefindingsinChordiaetal.(2011),whofindthatmorefrequent smallertradeshaveprogressivelyformedalargerfractionoftradingvolumeovertime,andthatturnoverhasincreasedthemostfor stockswiththegreatestlevelofinstitutionalholdings. Thissignificantdeclineininstitutionaltradesizerenderssize-basedinferencesofinstitutionaltradesproblematic.Pioneeredby Cready(1988)andLee(1992),transactionsize-basedtechniquesarewidelyappliedintheacademicliterature:Creadyetal.(2014) identifythat“over30publishedpapersemployingtransactionsize-basedtechniqueswith10ofthemappearinginyear2010orlater (footnote1onpage878).”Less than$10,000 iscommonly usedasacutoffforsmall tradesdone bysmall (retail)investors.Our evidencesshowthatthiscutoffisnolongerreliableduetothedramaticdeclineininstitutionaltradesizeovertheyears.Infact,the median$tradedforoursampleinstitutionsis$9222overtheentiresampleperiod,whichmeansmorethanhalfoftheinstitutional tradeswouldhavebeenmisclassifiedifoneweretoapplya$10,000cutoff.This$10,000cutoffmaybelessproblematicinearlier years.Forexample,in1999,the25percentileforallAbelNosersampletradeswas$16,929.However,thenexttwelveyearssawa dramaticdeclineandthe25percentilein2011wasonly$482.Overall,ourfindingsoninstitutionaltradesizesareconsistentand supportiveofthefindingsinCreadyetal.(2014). 3.2.2. AbelNosercoverageofCRSP AbelNoserdata'scoverageofCRSPvolumeisanimportantstatisticthatauthorsandrefereescareabout.PuckettandYan(2011) statethat:“Onaverage,thistradingactivityaccountsforapproximately8%ofthedollarvalueofCRSPtradingvolumeduringthe 1999to2005sampleperiod.Assumingthatinstitutionalinvestors,inaggregate,areresponsiblefor80%ofCRSPtradingvolume,we estimate that ANcerno institutions account for 10% of all institutional trading volume” (2nd paragraph on page 606, underlines 3Thepatternforsharestradeissimilar,andthefigureforsharestradedisomittedforbrevity. 152
Description: