ebook img

Institute of Nuclear Physics Polish Academy of Sciences Institute of Nuclear Physics Polish PDF

263 Pages·2004·24.82 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Institute of Nuclear Physics Polish Academy of Sciences Institute of Nuclear Physics Polish

(cid:84)(cid:84)(cid:104)(cid:104)(cid:101)(cid:101)(cid:32)(cid:32)(cid:72)(cid:72)(cid:101)(cid:101)(cid:110)(cid:110)(cid:114)(cid:114)(cid:121)(cid:121)(cid:107)(cid:107)(cid:32)(cid:32)(cid:78)(cid:78)(cid:105)(cid:105)(cid:101)(cid:101)(cid:119)(cid:119)(cid:111)(cid:111)(cid:100)(cid:100)(cid:110)(cid:110)(cid:105)(cid:105)(cid:99)(cid:99)(cid:122)(cid:122)(cid:97)(cid:97)(cid:110)(cid:110)(cid:180)(cid:115)(cid:115)(cid:107)(cid:107)(cid:105)(cid:105) (cid:73)(cid:73)(cid:110)(cid:110)(cid:115)(cid:115)(cid:116)(cid:116)(cid:105)(cid:105)(cid:116)(cid:116)(cid:117)(cid:117)(cid:116)(cid:116)(cid:101)(cid:101)(cid:32)(cid:32)(cid:111)(cid:111)(cid:102)(cid:102) (cid:32)(cid:32)(cid:78)(cid:78)(cid:117)(cid:117)(cid:99)(cid:99)(cid:108)(cid:108)(cid:101)(cid:101)(cid:97)(cid:97)(cid:114)(cid:114)(cid:32)(cid:32)(cid:80)(cid:80)(cid:104)(cid:104)(cid:121)(cid:121)(cid:115)(cid:115)(cid:105)(cid:105)(cid:99)(cid:99)(cid:115)(cid:115) (cid:80)(cid:80)(cid:111)(cid:111)(cid:108)(cid:108)(cid:105)(cid:105)(cid:115)(cid:115)(cid:104)(cid:104)(cid:32)(cid:32)(cid:65)(cid:65)(cid:99)(cid:99)(cid:97)(cid:97)(cid:100)(cid:100)(cid:101)(cid:101)(cid:109)(cid:109)(cid:121)(cid:121)(cid:32)(cid:32)(cid:111)(cid:111)(cid:102)(cid:102)(cid:32)(cid:32)(cid:83)(cid:83)(cid:99)(cid:99)(cid:105)(cid:105)(cid:101)(cid:101)(cid:110)(cid:110)(cid:99)(cid:99)(cid:101)(cid:101)(cid:115)(cid:115) (cid:75)(cid:75)(cid:114)(cid:114)(cid:97)(cid:97)(cid:107)(cid:107)(cid:243)(cid:243)(cid:119)(cid:119)(cid:44)(cid:44)(cid:32)(cid:32)(cid:80)(cid:80)(cid:111)(cid:111)(cid:108)(cid:108)(cid:97)(cid:97)(cid:110)(cid:110)(cid:100)(cid:100) (cid:65)(cid:65)(cid:110)(cid:110)(cid:110)(cid:110)(cid:117)(cid:117)(cid:97)(cid:97)(cid:108)(cid:108) (cid:65)(cid:110)(cid:110)(cid:117)(cid:97)(cid:108) (cid:82)(cid:82)(cid:101)(cid:101)(cid:112)(cid:112)(cid:111)(cid:111)(cid:114)(cid:114)(cid:116)(cid:116) (cid:82)(cid:101)(cid:112)(cid:111)(cid:114)(cid:116) (cid:50)(cid:50)(cid:48)(cid:48)(cid:48)(cid:48)(cid:51)(cid:51) (cid:50)(cid:48)(cid:48)(cid:51) (cid:84)(cid:104)(cid:101)(cid:32)(cid:72)(cid:101)(cid:110)(cid:114)(cid:121)(cid:107)(cid:32)(cid:78)(cid:105)(cid:101)(cid:119)(cid:111)(cid:100)(cid:110)(cid:105)(cid:99)(cid:122)(cid:97)(cid:110)(cid:180)(cid:115)(cid:107)(cid:105) (cid:73)(cid:73)(cid:110)(cid:110)(cid:115)(cid:115)(cid:116)(cid:116)(cid:105)(cid:105)(cid:116)(cid:116)(cid:117)(cid:117)(cid:116)(cid:116)(cid:101)(cid:101)(cid:32)(cid:32)(cid:111)(cid:111)(cid:102)(cid:102)(cid:32)(cid:32)(cid:78)(cid:78)(cid:117)(cid:117)(cid:99)(cid:99)(cid:108)(cid:108)(cid:101)(cid:101)(cid:97)(cid:97)(cid:114)(cid:114)(cid:32)(cid:32)(cid:80)(cid:80)(cid:104)(cid:104)(cid:121)(cid:121)(cid:115)(cid:115)(cid:105)(cid:105)(cid:99)(cid:99)(cid:115)(cid:115) (cid:80)(cid:80)(cid:111)(cid:111)(cid:108)(cid:108)(cid:105)(cid:105)(cid:115)(cid:115)(cid:104)(cid:104)(cid:32)(cid:32)(cid:65)(cid:65)(cid:99)(cid:99)(cid:97)(cid:97)(cid:100)(cid:100)(cid:101)(cid:101)(cid:109)(cid:109)(cid:121)(cid:121)(cid:32)(cid:32)(cid:111)(cid:111)(cid:102)(cid:102)(cid:32)(cid:32)(cid:83)(cid:83)(cid:99)(cid:99)(cid:105)(cid:105)(cid:101)(cid:101)(cid:110)(cid:110)(cid:99)(cid:99)(cid:101)(cid:101)(cid:115)(cid:115) (cid:75)(cid:114)(cid:97)(cid:107)(cid:243)(cid:119)(cid:44)(cid:32)(cid:80)(cid:111)(cid:108)(cid:97)(cid:110)(cid:100) (cid:65)(cid:100)(cid:100)(cid:114)(cid:101)(cid:115)(cid:115)(cid:58) (cid:117)(cid:108)(cid:46)(cid:32)(cid:82)(cid:97)(cid:100)(cid:122)(cid:105)(cid:107)(cid:111)(cid:119)(cid:115)(cid:107)(cid:105)(cid:101)(cid:103)(cid:111)(cid:32)(cid:49)(cid:53)(cid:50)(cid:44) (cid:51)(cid:49)(cid:8211)(cid:51)(cid:52)(cid:50)(cid:32)(cid:75)(cid:114)(cid:97)(cid:107)(cid:243)(cid:119) (cid:116)(cid:101)(cid:108)(cid:46)(cid:58) (cid:40)(cid:52)(cid:56)(cid:32)(cid:49)(cid:50)(cid:41)(cid:32)(cid:54)(cid:54)(cid:50)(cid:45)(cid:48)(cid:48)(cid:45)(cid:48)(cid:48) (cid:102)(cid:97)(cid:120)(cid:58) (cid:40)(cid:52)(cid:56)(cid:32)(cid:49)(cid:50)(cid:41)(cid:32)(cid:54)(cid:54)(cid:50)(cid:45)(cid:56)(cid:52)(cid:45)(cid:53)(cid:56) (cid:69)(cid:45)(cid:109)(cid:97)(cid:105)(cid:108)(cid:58)(cid:32)(cid:100)(cid:121)(cid:114)(cid:101)(cid:107)(cid:116)(cid:111)(cid:114)(cid:64)(cid:105)(cid:102)(cid:106)(cid:46)(cid:101)(cid:100)(cid:117)(cid:46)(cid:112)(cid:108) (cid:65)(cid:65)(cid:110)(cid:110)(cid:110)(cid:110)(cid:117)(cid:117)(cid:97)(cid:97)(cid:108)(cid:108) (cid:65)(cid:110)(cid:110)(cid:117)(cid:97)(cid:108) (cid:82)(cid:82)(cid:101)(cid:101)(cid:112)(cid:112)(cid:111)(cid:111)(cid:114)(cid:114)(cid:116)(cid:116) (cid:82)(cid:101)(cid:112)(cid:111)(cid:114)(cid:116) (cid:50)(cid:50)(cid:48)(cid:48)(cid:48)(cid:48)(cid:51)(cid:51) (cid:50)(cid:48)(cid:48)(cid:51) ISSN 1425-3763 Report No 1944 PRINTED BY THE HENRYK NIEWODNICZAŃSKI INSTITUTE OF NUCLEAR PHYSICS Editorial Board: D. Erbel, M. Krygowska-Doniec, and W. Zając e-mail: [email protected] or [email protected] The Editors assume limited responsibility for the contents of materials supplied by the IFJ PAN departments and groups. Front cover: Experimental line of the nuclear proton microprobe at the 3MV Van de Graaff accelerator. Ex- perimental chamber in the foreground. Printedby: DjaF,Kraków DIRECTORATE: General Director: Professor Andrzej Budzanowski Deputy Directors: Professor Jan Styczeń Dr Maria Pollak-Stachurowa Dr Grzegorz Polok SCIENTIFIC COUNCIL: Chairman: Professor Krzysztof Rybicki Honorary Chairman: Professor Andrzej Hrynkiewicz Secretary: Halina Szymańska, M.A. tel.: (48 12) 637-02-22, ext. 301 fax: (48 12) 637-54-41 e-mail: [email protected] A. REPRESENTATIVES OF THE SCIENTIFIC STAFF: Jerzy Bartke, Prof. Piotr Malecki, Prof. Rafał Broda, Prof. Maria Massalska-Arodź, Assoc. Prof. Andrzej Budzanowski, Prof. Krzysztof Parliński, Prof. Stanisław Drożdż, Prof. Jan Styczeń, Prof. Andrzej Eskreys, Prof. Antoni Szczurek, Assoc. Prof. Roman Hołyński, Prof. Jacek Turnau, Prof. Stanisław Jadach, Prof. Tadeusz Wasiutyński, Prof. Marek Jeżabek, Prof. Henryk Wilczyński, Assoc. Prof. Marek Kutschera, Prof. Barbara Wosiek, Prof. Jan Kwieciński, Prof. Wojciech Zając, Ph.D. Leonard Leśniak, Prof. Piotr Zieliński, Assoc. Prof. B. REPRESENTATIVES OF TECHNICAL PERSONNEL: Edmund Bakewicz, M.Sc., E.E. Stanisław Maranda Joanna Bogacz, M.Sc. Zbigniew Natkaniec, M.Sc., E.E. Barbara Brzezicka, M.Sc. Elżbieta Ryba, M.Sc., E.E. Bronisław Czech, M.Sc., E.E. Piotr Skóra, M.Sc, E.E. Jerzy Halik, M.Sc., M.E. Józefa Turzańska Zbigniew Król, M.Sc., M.E. Mirosław Ziębliński, M.Sc., E.E. C. MEMBERS OF THE SCIENTIFIC COUNCIL FROM OUTSIDE THE INSTITUTE: Tomir Coghen, Prof. – Professor Emeritus Danuta Kisielewska, Prof. – AGH University of Science and Technology, Kraków Michał Turała, Prof. – CERN, Geneva Kacper Zalewski, Prof. – Jagiellonian University, Kraków CONTENTS: Department of Nuclear Reactions ...........................................................1 Department of Nuclear Spectroscopy .......................................................25 Department of Structural Research ........................................................67 Department of Theoretical Physics .........................................................73 High Energy Physics Departments .........................................................91 Department of Particle Theory ......................................................... 91 Department of Leptonic Interactions ....................................................99 Department of Hadron Structure ......................................................107 Department of High Energy Nuclear Interactions ...................................... 115 The ALICE Experiment Laboratory ...................................................125 The ATLAS Experiment Department ..................................................133 High Energy Physics Detector Construction Group ....................................143 Common Seminars of the High Energy Physics Departments ...........................151 Department of Environmental and Radiation Transport Physics .......................... 153 Department of Radiation and Environmental Biology .....................................163 Department of Nuclear Radiospectroscopy ................................................171 Department of Nuclear Physical Chemistry ...............................................181 Department of Materials Research by Computers .........................................197 Health Physics Laboratory ...............................................................203 Technical Sections ........................................................................211 Cyclotron Section .....................................................................211 Magnetic Field Water Treatment Section ..............................................213 List of Publications .......................................................................217 IFJ Author Index ........................................................................253 Overview The year 2003 can be called a real breakthrough for our Institute. We managed to have our Institute transferred to the Polish Academy of Sciences, thus fully creating better financial conditions for basic research. Furthermore, we succeeded in joining several programmes of the European Union, whichoffersprioritysupporttointerdisciplinaryresearchcarriedoutbylargegroupsofinstitutesfrom different countries (e.g. Framework 6). These programmes are usually oriented towards improving the quality of life and applied research. They quite often bring substantial funds to the Institute. Our scientific activities throughout 2003 led to 325 publications in scientific journals registered by the Philadelphia Institute for Science Information. In addition, we published 210 conference reports and scientific articles for the general public. In the field of particle physics the outstanding result was precise determination of the φ angle 1 of the unitarity triangle, (sin2φ = 0.733±0.057), in the CP violation studies based on B-mesons 1 decays. This result was the outcome of the Belle collaboration. Here, our important contribution was the Silicon Vertex Detector, which made it possible to make full use of the high luminosity of the KEKB collider. An interesting result was obtained in the studies of the B0 → φK0 decay driven s by the b → sss transition. The time-dependent CP asymmetry in this channel measured with high statistics hinted at the CP asymmetry being inconsistent with the Standard Model prediction. This may be a sign of new physics. In central Au + Au collisions at the energy of 200 GeV per nucleon pair, the Phobos group dis- covered creation of a new type of highly excited hadronic matter which strongly absorbs jets resulting from hard collisions. This was achieved by comparing the nuclear modification factor as a function of transverse momenta of the emitted hadrons for the Au + Au and d + Au reactions. This result indicates that a sort of critical state for dense excited hadronic matter has been reached. The Coriolis splitting of the Giant Dipole Resonance components in 46Ti was observed, and a link to the low excited states of 42Co established. This may point to a kind of memory in the complex structure of the compound nucleus. Thespectraofpionsfromhadronicreactionwerecalculatedusingunintegratedpartondistributions knownfromleptoninelasticscatteringexperiments. Itwasshownthatthespectracannotbeexplained by the gluonic mechanism only. Complete Two-Loop Bosonic Contributions to the Muon Lifetime in the Standard Model were calculated, with over ten thousand Feynman graphs taken into account. These results will serve as a test of the Standard Model in future linear e+e− colliders. Within the Na49 collaboration the existence of the S = −2, Q = −2 Baryon Resonance built from five quarks (uussd) was conjectured. Isospinsymmetrybreakingwasstudiedinthep+d → 3Heπ+/3Heπ− reactionaroundthethreshold for the production of η. Using the simple model of isospin symmetry breaking based on the π0 −η mixing at the η production threshold, the mixing angle was extracted. The experiment was performed using the COSY proton synchrotron at Ju¨lich, Germany. Using the 6He and 8He radioactive beams at Dubna, Russia and Ganil, France, in the 6He+d reaction, resonance states of 5H and their isobar analogues in 5He were observed. 5H was studied by (cid:161) (cid:162) the 6He, 8Be reaction. T = 5 states in the 9Li isobaric analogue states of 9He were also obtained. The collective flow of nuclear matter was studied in heavy-ion induced reactions. Analysis of the Indra data allowed one to determine the energy at which the collective flow changes its character from a flow correlated with the reaction plane to an out-of-plane flow. The structures of 61Cu, 63Cu and 64Zn were studied using germanium multidetector Euroball IV equippedwitharecoilfilterdetectorconstructedatourInstitute. Thegoodresolutionachievedthanks tothereductionoftheDopplereffectallowedustodiscovernewbandsofsuperdeformedstatesin61Cu and 63Cu up to the excitation energy of 26 MeV and deformation parameters β > 0.5. Superdeformed states were also identified in 64Zn, with their transitions to states of normal deformation determined. Magnetic properties were tested for a family of powders in the Tb Tm FeO systems. Different x 1−x 3 reorientationtemperatureswerefoundclosetotheliquidheliumtemperatureforTbFeO , andat90K 3 for TmFeO . In this temperature range, the sign of the mutual RE-Fe coupling is positive for TbFeO 3 3 and negative for TmFeO . First AC susceptibility results suggest a dominating role of Tb3+. 3 Magnetic ordering and interactions in the family of layered molecular magnets built on (cid:110) (cid:104) (cid:179) (cid:180) (cid:105)(cid:111) CuII WV MoV (CN) complexes were characterized. The tungstate polymer presents a genuine 8 example of a quasi two-dimensional molecular nanomagnet with the Curie temperature of 34 K. In the search for multifunctional properties of molecular systems, the photomagnetic effects were studied. The charge-transfer compound based on Mn-porphyrin showed a substantial magnetization change upon irradiation with light. Using the “ab initio” method, phase coexistence was found in CuInSe and AuCu crystals. 2 Thebeamofprotonswiththeenergyof43MeV(measuredbytheabsorptionmethod)wasfocused onthetargetinstalledatadistanceof25mfromthecyclotron,intheroomtobeusedforradiotherapy. The Institute signed a special agreement on the participation in control tests of joints between segments of the Large Hadron Collider. Teams of scientists from different laboratories have been taking part in constructing large detectors, such as Atlas, Alice, LHCB, Castor and Icarus, for future experiments at CERN. Large efforts are also made in constructing the large air-shower cosmic-ray telescope within the framework of the Pierre Auger Project. The Henryk Niewodniczański prize was awarded to Dr Jan Łażewski for his achievements in computer-assisted material research. Work on SUCIMA (Silicon Ultra-Fast Cameras for electron and gamma Sources In Medical Appli- cations)continued. ThisprojectwasapprovedbytheEuropeanCommissionwithinthe5th Framework Programme. It has to be considered as an RTD (Research and Technological Development) project, encompassing intravascular brachytherapy (dose delivery control) and tumor hadron therapy (on-line beam profile imaging). The work package of the Institute of Nuclear Physics PAN in the SUCIMA projectincludesthedevelopmentofaveryfastreadoutsystem(DAQ–FastImaging),whichallowsend users to perform real-time dosimetry as well as monitoring proton or light-ion accelerator beams with the resolution of a few tens of a micrometre within integration time starting from 100 microseconds. The Maria Skłodowska Curie Prize of the Polish Academy of Sciences for the year 2003 was given to Professor Stanisław Jadach for his achievements in analysing second-order Feynman graphs contributing to e++e− collisions. In 2003, five scientists from the Institute obtained their Ph.D degrees, five more had their habili- tation titles conferred and one title of a professor was granted. ProfessorPeterWillehammerfromCERNbecameaHonoraryProfessoroftheInstituteofNuclear Physics, PAN in Kraków. The special NATO prize in Life Science & Technology was granted to Professor Antonina Cebulska-Wasilewska for editing the monograph entitled: Human Monitoring for Genetic Effects (IOS Press 2003). Finally let me take this opportunity to extend my sincere thanks to all of my colleagues for their contribution to the overall success of our Institute in 2003. Professor Andrzej Budzanowski Director of the Institute Department of Nuclear Reactions 1 DEPARTMENT OF NUCLEAR REACTIONS Head of Department: Prof. Andrzej Budzanowski Deputy Head: Prof. Stanisław Drożdż Secretary: Jadwiga Gurbiel Tel: (48 12) 662-81-10 Fax: (48 12) 662-84-58 e-mail: [email protected] PERSONNEL: Laboratory of Nuclear Reaction Mechanism Head: Professor Andrzej Budzanowski Research staff: Andrzej Adamczak, Ph.D. Ewa Kozik, Ph.D. Andrzej Budzanowski, Prof. Paweł Kulessa, Ph.D. Jerzy Cibor, Ph.D. Jerzy Łukasik, Ph.D. Bronisław Czech, E.E. Krzysztof Pysz, Ph.D. Tomasz Gburek, M.Sc. Regina Siudak, Ph.D. Elżbieta Guła, Ph.D. Artur Siwek, Ph.D. Jacek Jakiel, Ph.D. Irena Skwirczyńska, Ph.D. Grzegorz Kamiński, M.Sc. Paweł Staszel, Ph.D. Waldemar Karcz, Ph.D. Antoni Szczurek, Assoc. Prof. Małgorzata Kistryn, Ph.D. Jarosław Szmider, Ph.D. Stanisław Kliczewski, Ph.D. Roman Wolski, Ph.D. Adam Kozela, Ph.D. Technical Staff: Edward Białkowski Janina Chachura Wiesław Kantor, M.Sc., E.E. Franciszek Kościelniak, E.E. Laboratory of Nonlinear Dynamics Head: Prof. Stanisław Drożdż Research Staff: Stanisław Drożdż, Prof. Andrzej Górski, Ph.D. Jarosław Kwapień, Ph.D. Jacek Okołowicz, Ph.D. Tomasz Srokowski, Assoc. Prof. Research Students: Agnieszka Kamińska, Beata Kulessa, Paweł Oświęcimka, Tomasz Pietrycki, Marta Czech, Aleksandra Białek 2 Department of Nuclear Reactions REPORTS ON RESEARCH: Deceleration of Muonic Hydrogen Atoms in Solid D and T 2 2 at Different Temperatures A. Adamczak Deceleration of muonic hydrogen atoms dµ and tµ has been studied for different temperatures of solidD andT . SolidD/TtargetsareemployedatRIKEN-RALforstudiesmuon-catalyzedfusionin 2 2 a wide temperature range and for different tritium concentrations. In particular, experiments in pure tritium at various temperatures are carried out in order to study the ttµ branch of muon-catalyzed fusion [1]. A full set of differential scattering cross sections has been calculated for about ten values of the temperature. Then, time evolution of mean energy has been estimated by means of Monte-Carlo simulations [2]. Fig. 1 shows the mean muonic-atom energy in the steady state as a function of the target temperature. ) 2.5 V e m ( 2 gy dm +nD r 2 e n 1.5 e tm +nT 2 1 0.5 0 0 2 4 6 8 10 12 14 16 18 20 temperature (K) Fig. 1: The calculated mean energy of dµ in solid D and of tµ in solid T at large times as a function 2 2 ofthetargettemperature. TheinitialenergydistributionisMaxwellianwiththemeanenergyof1eV. References: 1. T. Matsuzaki et al., Hyperfine Interactions 138 (2001) 295 and private communication (2003); 2. A. Adamczak, IFJ PAN Report 1927/PL (2003); http://www.ifj.edu.pl/reports/1927.ps.gz. Department of Nuclear Reactions 3 Simulations of Nuclear Muon Capture in H 2 A. Adamczak A Monte Carlo program [1] for simulation of experiment concerning nuclear muon capture on proton in gaseous H at 10 bar has been developed and tested [1]. The experiment muCAP is now 2 underway at PSI [2]. Comparison of theory and a first set of experimental data will be performed at University of Illinois, Urbana-Champaign. References: 1. A. Adamczak, Fortran-77 code mchd (2003); 2. P. Kammel, “Muon Capture and Muon Lifetime Experiments”, International Workshop on Exotic Atoms – Future Perspectives, EXA-02, Vienna (2002) and private communication. Application of the Anisotropic Etching for Preparation of Thin Silicon Detectors E. Białkowski Thin silicon detectors (< 40µm) are widely used in nuclear and particle physics experiments [1] as dE/dx detectors for the registration and identification of nuclear reactions products. Such detectors are commonly manufactured from the n-type h111iHPSi. The reduction of wafer thickness is based on the isotropic etching techniques using fluoridic (HF), nitric (HNO ) and acetic 3 (CH COOH) acids, the so-called HNA-etchands. The HNA is a very complex etch solution with 3 highly variable etch rates and the etching characteristic depends on the silicon dopand concentration [2]. Therefore, the HNA does not guarantee the expected properties of a three-dimensional (3D) material structuring and the necessary homogeneity of the thickness. In our laboratory the anisotropic silicon etching was developed, as an alternative of the HNA etchand, especially for manufacturing thin silicon detectors. The etchands are alkaline solutions with a high pH-value (pH > 12) and include inorganic aqueous soutions of KOH, NaOH, LiOH, CsOH and NH OH [3], as well as organic aqueous solutions containing ethylendiamine (NH -(OH) -NH [4] or 4 2 2 2 hydrazine (N H ) [5] to which some components like pyrocatechol and pyrazine can be added. 4 2 The application of this technique allows precise 3D structuring of the FZSi wafers for large and small diameter detectors. In our case we use the KOH/H O solution to etch h100i oriented crystal through SiO masking 2 2 windows. The concentration of the etching solution is 50%. We use double-side n-type FZ-silicon wafers of 3 in. diameter, thickness of 300 µm and resistivity of 1.2 kΩcm. The etching process is always carried out at a stabilised etch bath temperature of T = 80 ±1oC. The required detector thickness (20–40) µm is obtained with typical etch rates rates. For this purpose we selected the FZSi wafers with thickness tolerances smaller than ±2 µm across the total wafer diameter. References: 1. A.G. Seamster et al., Nucl. Instr. Meth. 1459 (1977) 583499; 2. H. Huroka et al., in: Semiconductor Silicon 1973, Electrochemical Society, Princeton, NJ (1973) 327; 3. P.J. Holmes, in: The Electrochemistry of Semiconductor, ed. by J.J. Holmes, Academic Press, London (1962) 329; 4. A. Reisman et al., J. Electrochem. Soc. 122 (1975) 545.

Description:
(+) is a solution of inhomogeneos Schrödinger equation. This equation Analog Devices ADµC812, http://www.analog.com/Uploaded/Files/Data_Sheets/11291590ADµC812_e.pdf ;. 2. ELMB (Melville, New York). 0212052
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.