This page intentionally left blank Insights into Game Theory Fewbranchesofmathematicshavebeenmoreinfluentialinthe socialsciencesthangametheory.Inrecentyears,ithasbecomean essentialtoolforallsocialscientistsstudyingthestrategicbehavior ofcompetingindividuals,firms,andcountries.However,the mathematicalcomplexityofgametheoryisoftenveryintimidating forstudentswhohaveonlyabasicunderstandingofmathematics. InsightsintoGameTheoryaddressesthisproblembyproviding studentswithanunderstandingofthekeyconceptsandideasof gametheorywithoutusingformalmathematicalnotation.The authorsusefourverydifferenttopics(collegeadmissions,social justiceandmajorityvoting,coalitionsandcooperativegames,anda bankruptcyproblemfromtheTalmud)toinvestigatefourareasof gametheory.Theresultisafascinatingintroductiontotheworldof gametheoryanditsincreasinglyimportantroleinthesocial sciences. ein-yaguraisaSeniorLecturerattheRothbergInternational SchoolandamemberoftheCenterfortheStudyofRationalityat theHebrewUniversityofJerusalem. michaelb.maschlerisaProfessorofMathematicsandamember oftheCenterfortheStudyofRationalityattheHebrewUniversity ofJerusalem.ProfessorMaschlerisaworld-renownedgametheorist. HehashadalongandfruitfulcollaborationwithRobertAumann (co-winnerofthe2005NobelPrizeforEconomics),includingtheir solutiontoa2000-year-oldpuzzleoninheritancelawsinthe Talmud,discussedinthisbook. Insights into Game Theory An Alternative Mathematical Experience ein-ya gura and michael maschler CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521874229 ©Ein-Ya Gura and Michael B. Maschler 2008 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2008 ISBN-13 978-0-511-45538-4 eBook (EBL) ISBN-13 978-0-521-87422-9 hardback ISBN-13 978-0-521-69692-0 paperback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. ThisbookisdedicatedtothememoryofMichaelMaschler, whopassedawayonJuly20,2008. Contents Preface page xi Introduction xii 1 MathematicalMatching 1 1.1 Introduction 1 1.2 TheMatchingProblem 2 1.3 Exercises 7 1.4 FurtherExamples 10 1.5 Exercises 13 1.6 AProcedureforFindingStableMatchingSystems (TheGale–ShapleyAlgorithm) 15 1.7 Exercises 18 1.8 AStableMatchingSystemAlwaysExists 19 1.9 TheMaximumNumberofCourtshipStagesinthe Gale–ShapleyAlgorithm 21 1.10 Generalization 26 1.11 Exercises 33 1.12 TheGale–ShapleyAlgorithmandthe AssignmentProblem 37 1.13 Exercises 40 1.14 Optimality 43 1.15 Exercises 49 1.16 ConditionfortheExistenceofaUniqueStable MatchingSystem 52 1.17 Exercises 54 1.18 Discussion 55 1.19 ReviewExercises 56 viii contents 2 SocialJustice 59 2.1 PresentationoftheProblem 59 2.2 MathematicalDescriptionoftheProblem 62 2.3 Exercises 64 2.4 SocialChoiceFunction 67 2.5 AxiomsfortheSocialChoiceFunction 77 2.6 Exercises 80 2.7 WhatFollowsfromAxioms1–4? 81 2.8 Exercises 85 2.9 Arrow’sTheorem 87 2.10 WhatNext? 92 2.11 ReviewExercises 93 3 TheShapleyValueinCooperativeGames 97 3.1 Introduction 97 3.2 CooperativeGames 98 3.3 ImportantExamplesofCoalitionFunctionGames 101 3.4 Exercises 105 3.5 AdditiveGames 106 3.6 SuperadditiveGames 107 3.7 MajorityGames 108 3.8 Exercises 112 3.9 SymmetricPlayers 113 3.10 Exercises 115 3.11 NullPlayers 116 3.12 Exercises 117 3.13 TheSumofGames 118 3.14 Exercises 121 3.15 TheShapleyValue 124 3.16 Exercises 133 3.17 DissolvingaPartnership 133 3.18 Exercises 141
Description: