ADVISORY BOARD L. H. Gade D. Darensbourg UniversitätHeidelberg TexasA&MUniversity Germany CollegeStation,Texas,USA M. L. H. Green H. B. Gray UniversityofOxford CaliforniaInstituteofTechnology Oxford,UnitedKingdom Pasadena,California,USA A. E. Merbach P. A. Lay LaboratoiredeChimieetBioanorganiqueEFPL, UniversityofSydney Lausanne,Switzerland Sydney,Australia P. J. Sadler J. Reedijk UniversityofWarwick LeidenUniversity Warwick,England Leiden,TheNetherlands K. Wieghardt Y. Sasaki Max-Planck-Institut HokkaidoUniversity Mülheim,Germany Sapporo,Japan AcademicPressisanimprintofElsevier 50HampshireStreet,5thFloor,Cambridge,MA02139,USA 525BStreet,Suite1800,SanDiego,CA92101-4495,USA TheBoulevard,LangfordLane,Kidlington,Oxford,OX51GB,UK 125LondonWall,London,EC2Y5AS,UK Firstedition2016 Copyright©2016,ElsevierInc.Allrightsreserved Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyand thesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein. ISBN:978-0-12-803526-9 ISSN:0898-8838 ForinformationonallAcademicPresspublications visitourwebsiteathttp://store.elsevier.com/ CONTRIBUTORS EricaAndreozzi DivisionofImagingSciencesandBiomedicalEngineering,St.ThomasHospital,King’s CollegeLondon,London,UnitedKingdom StephenJ.Archibald DepartmentofChemistry,PositronEmissionTomographyResearchCentre,Universityof Hull,Hull,UnitedKingdom JuliaBagunya-Torres DivisionofImagingSciencesandBiomedicalEngineering,St.ThomasHospital,King’s CollegeLondon,London,UnitedKingdom PhilipJ.Blower DivisionofImagingSciencesandBiomedicalEngineering,St.ThomasHospital,King’s CollegeLondon,London,UnitedKingdom EwenBodio InstitutdeChimieMol(cid:1)eculairedel’Universit(cid:1)edeBourgogne,UMR6302,CNRS,Univ. BourgogneFranche-Comt(cid:1)e,Dijon,France C(cid:1)eliaS.Bonnet CentredeBiophysiqueMol(cid:1)eculaire,CNRS,UPR4301,Universit(cid:1)ed’Orl(cid:1)eans,Orl(cid:1)eans, France RossW.Boyle DepartmentofChemistry,UniversityofHull,Hull,UnitedKingdom FrancescaBryden DepartmentofChemistry,UniversityofHull,Hull,UnitedKingdom BenjaminP.Burke DepartmentofChemistry,PositronEmissionTomographyResearchCentre,Universityof Hull,Hull,UnitedKingdom DavidG.Calatayud ChemistryDepartment,UniversityofBath,Bath,UnitedKingdom FranckDenat InstitutdeChimieMol(cid:1)eculairedel’Universit(cid:1)edeBourgogne,UMR6302,CNRS,Univ. BourgogneFranche-Comt(cid:1)e,Dijon,France PaulS.Donnelly SchoolofChemistryandBio21MolecularScienceandBiotechnologyInstitute, TheUniversityofMelbourne,Parkville,Victoria,Australia GilbertFruhwirth DivisionofImagingSciencesandBiomedicalEngineering,St.ThomasHospital,King’s CollegeLondon,London,UnitedKingdom ix x Contributors DipGill DepartmentofChemistryandCentreforAdvancedStudiesinChemistry,PanjabUniversity, Chandigarh,India ChristineGoze InstitutdeChimieMol(cid:1)eculairedel’Universit(cid:1)edeBourgogne,UMR6302,CNRS,Univ. BourgogneFranche-Comt(cid:1)e,Dijon,France CinziaImberti DivisionofImagingSciencesandBiomedicalEngineering,St.ThomasHospital,King’s CollegeLondon,London,UnitedKingdom PierreLeGendre InstitutdeChimieMol(cid:1)eculairedel’Universit(cid:1)edeBourgogne,UMR6302,CNRS,Univ. BourgogneFranche-Comt(cid:1)e,Dijon,France KennethKam-WingLo DepartmentofBiologyandChemistry,CityUniversityofHongKong,HongKong, PRChina MichelleT.Ma DivisionofImagingSciencesandBiomedicalEngineering,St.ThomasHospital,King’s CollegeLondon,London,UnitedKingdom HelmutR.Maecke DepartmentofNuclearMedicine,UniversityHospitalFreiburg,Freiburg,Germany BoyangMao ChemistryDepartment,UniversityofBath,Bath,UnitedKingdom LeventeK.Meszaros DivisionofImagingSciencesandBiomedicalEngineering,St.ThomasHospital,King’s CollegeLondon,London,UnitedKingdom VincenzoMirabello ChemistryDepartment,UniversityofBath,Bath,UnitedKingdom GregoryE.D.Mullen DivisionofImagingSciencesandBiomedicalEngineering,St.ThomasHospital,King’s CollegeLondon,London,UnitedKingdom SubhaniM.Okarvi CyclotronandRadiopharmaceuticalsDepartment,KingFaisalSpecialistHospitaland ResearchCentre,Riyadh,SaudiArabia SofiaI.Pascu ChemistryDepartment,UniversityofBath,Bath,UnitedKingdom BrettM.Paterson SchoolofChemistryandBio21MolecularScienceandBiotechnologyInstitute, TheUniversityofMelbourne,Parkville,Victoria,Australia VivekPathania DAVCollege,Sector10,Chandigarh,India Contributors xi JohannaSeemann DepartmentofChemistry,PositronEmissionTomographyResearchCentre,Universityof Hull,Hull,UnitedKingdom RichardSouthworth DivisionofImagingSciencesandBiomedicalEngineering,St.ThomasHospital,King’s CollegeLondon,London,UnitedKingdom RafaelTorresMartindeRosales DivisionofImagingSciencesandBiomedicalEngineering,St.ThomasHospital,King’s CollegeLondon,London,UnitedKingdom (cid:1) EvaTo´th CentredeBiophysiqueMol(cid:1)eculaire,CNRS,UPR4301,Universit(cid:1)ed’Orl(cid:1)eans,Orl(cid:1)eans, France JamesA.Tyson ChemistryDepartment,UniversityofBath,Bath,UnitedKingdom JenniferD.Young DivisionofImagingSciencesandBiomedicalEngineering,St.ThomasHospital,King’s CollegeLondon,London,UnitedKingdom PREFACE Volume 68 of Advances in Inorganic Chemistry has a predominant theme of metal ions in medical imaging. Colin D. Hubbard of the University of NewHampshireisservingascoeditor.Thereisaconsiderableamountoftra- ditional inorganicchemistry in thesense ofthe rationale forchoiceofmetal ionsinparticularcontexts,andtherelevantcoordinationchemistry.Inmany contributions,thedesignofsuitablechelatingligandsfortheproposedappli- cationofthemetalcomplexisdebated.Thisleadstocreativeideasoforganic synthesisthatwouldleadtocomplexesofthedesiredproperties.Beyondwhat maybethoughtofastraditionalinorganicchemistry,thereispresentationofa widearrayofmethodsandtechniquesthatareusedinthebiomedicalscience fieldtoexploitthepropertiesofthespeciesproducedforimaging.Complexes for magnetic resonance, luminescent metal complexes, metalloporphyrins, and radiopharmaceutical complexes are among the species highlighted in these contributions from experts. The scientific content ranges from in vitro coordinationchemistrytoinvivotreatmentinclinicalpractice,arangeman- ifest in the titles of the different contributions. It is emphasized that the research advances described, beside their intrinsic authoritative value, are of inestimable value in the areas of diagnosis and therapy within biomedical science and public health services. InChapter1,PhilipBlowerandcollaboratorspresentanexpertoverview andassessmentofthecurrentstatusofmetalchemistryinmedicalimaging;it includesaninsightintothechallengesandpathstosuccessesandpossibilitiesfor futureprogress.ThisisfollowedbyacontributionfromE(cid:1)vaTo´thandC(cid:1)elia Bonnet (Chapter 2) that describes recent progress in the development of molecular magnetic imaging probes based upon lanthanide complexes, a chapter illustrating the subtleties of preparing Ln3+ complexes with suitable chelating molecules that provide optimal results. Kenneth Kam-Wing Lo, inChapter3,presentsafascinatingaccountofhisrecentdevelopmentofboth iridium(III)andrhenium(I)complexesthatexhibitluminescentpropertiesthat maybeexploitedasbiomolecularprobesandimagingreagents.InChapter4, Francesca Bryden and Ross Boyledemonstratetheir successes in usingmet- alloporphyrins for medical imaging applications. A contribution from Brett PatersonandPaulDonnelly,Chapter5,drawsinspirationfromtheliterature of organic chemistry in creating macrocyclic bifunctional chelators; they indicate their conjugation strategies for the development of copper-64 xiii xiv Preface radiopharmaceuticals. Christine Goze and colleagues have described their approachtothedevelopmentofanticanceragents,basedonmetalcomplexes, whoseprogresscanbetracked,inChapter6.StephenArchibaldandcollab- oratorshavedescribedinChapter7thedesignfeaturestheyemployinprepar- ingchelatingmoleculesformetalcomplexesinimagingapplicationsinvolving radiopharmaceuticals, protein targeting, and conjugation aspects. Subhani Okarvi and HelmutMaecke takereaders ona journeyfrom thepreparation of radiometallo-labeled peptides to their use in tumor diagnosis in models and in targeted radionuclide therapy in clinical practice, within Chapter 8. Onthetopicofimaging,SofiaPascuandcolleaguesreview,inChapter9,very recentactivitiesinthefieldoflabelingofgraphene,grapheneoxide,andtheir congenersforimagingandbiosensingapplicationsthatareofrelevancetocan- certheranostics.InVolume58ofAdvancesinInorganicChemistrypublishedin 2006,severalreviewsweredevotedtotheroleofcopper-dioxygencomplexes in biomimetic substrate oxidation reactions. As a complementary contribu- tion, a presentation of Cu(I) chemistry in nonaqueous solvents, principally nitriles,byDipGillandVivekPathaniawasreceived,edited,andisincluded inthisvolume(Chapter10).Incontrasttoaqueousmedia,Cu(I)isstabilized bythesesolvents. The editors are most appreciative of the efforts of the authors and their colleagues who have provided informative, instructive, and authoritative contributions for this thematic volume. It will be a valuable resource for both newcomers and established investigators in the biomedical science community, and particularly, for those who are directly involved in the overallfieldofimaging,aswellasotherbioinorganicchemistryinvestigators. We invite readers in other fields of chemistry to acquaint themselves with the fascinating and intriguing challenges awaiting further developments in various forms of imaging, in the years to come. RUDI VAN ELDIK Editor of Advances in Inorganic Chemistry Emeritus Professor of Inorganic Chemistry, Professor of Inorganic Chemistry, Jagiellonian University, Krakow, Poland COLIN D. HUBBARD Coeditor of this volume Emeritus Professor of Chemistry, University of New Hampshire, USA December 2015 CHAPTER ONE Opportunities and Challenges for Metal Chemistry in Molecular Imaging: From Gamma Camera Imaging to PET and Multimodality Imaging Richard Southworth, Rafael Torres Martin de Rosales, Levente K. Meszaros, Michelle T. Ma, Gregory E.D. Mullen, Gilbert Fruhwirth, Jennifer D. Young, Cinzia Imberti, Julia Bagunya-Torres, Erica Andreozzi, Philip J. Blower1 DivisionofImagingSciencesandBiomedicalEngineering,St.ThomasHospital,King’sCollegeLondon, London,UnitedKingdom 1Correspondingauthor:e-mailaddress:[email protected] Contents 1. Introduction 2 2. Technetium-99m:SmallComplexes 4 2.1 FromSerendipitytoDesign 4 2.2 Tc(I)tricarbonyl 5 2.3 Tc(V)Complexes 6 2.4 Bioconjugates:ANewChallenge 8 2.5 BioconjugationwithHynic 8 2.6 BioconjugationwithOtherBifunctionalChelators 10 2.7 Bioconjugationwiththe“TricarbonylCore”Tc(CO) + 10 3 2.8 BioconjugationbyDirectLabelingViaCysteine 12 2.9 RheniumAnalogs 13 2.10 Summary:ChallengesinTc-99mChemistry 13 3. TheTransitionTowardPET 14 3.1 TheNeedforMetallicPositronEmitters 14 3.2 Gallium-68:“TheNewTechnetium-99m” 14 3.3 Zirconium-89:“TheNewIndium-111”—ImmunoPETandCellTracking 17 4. Copper:ExploitingRedoxChemistry 19 4.1 CopperIsotopesandBioconjugates 19 4.2 BioreductiveTrapping—ImagingBloodFlowandHypoxia 21 4.3 CellTrackingwithCopper 28 4.4 CopperTraffickingPathwaysinHealthandDisease 29 5. InorganicElementsasBindingSitesfor18F-Fluoride 31 AdvancesinInorganicChemistry,Volume68 #2016ElsevierInc. 1 ISSN0898-8838 Allrightsreserved. http://dx.doi.org/10.1016/bs.adioch.2015.09.001 2 RichardSouthworthetal. 6. MultimodalityImagingandNanoparticulateContrastAgents 32 7. SummaryandConclusion 35 Acknowledgments 36 References 36 Abstract Thedevelopmentofmedicalimagingisahighlymultidisciplinaryendeavorrequiring the close cooperation of clinicians, physicists, engineers, biologists, and chemists to identify capabilities, conceive challenges and solutions and apply them in the clinic. Thechemistry described in this chapter illustrates howsynergistic advances in these areasdrivethetechnologyanditsapplicationsforward,witheachdisciplineproducing innovations that in turn drive innovations in the others. The main thread running through the chapter is the shift from single photon radionuclide imaging toward PET,andinturntheemergingshiftfromPET/CTtowardPET/MRIandfurther,combina- tionofthesewithopticalimaging.Chemistrytosupportthesetransitionsisexemplified bybuildingonasummaryofthestatusquo,andrecentdevelopments,intechnetium- 99mchemistryforSPECTimaging,followedbyareportofrecentdevelopmentstosup- portclinicalapplicationofshort-lived(Ga-68)andlong-lived(Zr-89)positron-emitting isotopes, copper isotopes for PET imaging, and combined modality imaging agents basedonradiolabeledironoxide-basednanoparticles. 1. INTRODUCTION Nuclear medicine is a primarily diagnostic medical imaging specialty in which tracer molecules targeted toward specific molecular processes are labeled with radioisotopes, and used to spatially and temporally map phys- iologicalandmolecularprocessesinthebody,todiagnosediseaseandmake patient managementdecisions (1,2).Theuseofunsealedartificial radionu- clidesformedicalpurposesinhumanscanbetracedbacktotheexperimental use of 24Na-sodium chloride by Hamilton and Stone in 1936 (3), closely followed by administration of 32P-phosphate by John Lawrence in 1937–1939 (3) to patients with hematological diseases and 131I-iodide by Hamilton to patients with thyroid disease. Later 131I-iodide became established for treating thyroid disease. However, the use of radioisotopes for diagnostic medical imaging did not become routine in hospitals until the1970s,followingtheintroductionofthefirstcommercialgammacamera in 1968 (4) (and later, its evolution into single photon emission computed tomography (SPECT)). Equally important in the rise of nuclear medicine was the 99mTc generator, first used for medical purposes in 1961 (4) and OpportunitiesandChallengesforMetalChemistryinMolecularImaging 3 firmlyestablishedinroutinepracticebythe1970s.Thissimpledevicesolved theproblem of world-widedistribution ofshort half-life radionuclidesand enabled hospitals, for the first time, to have daily access to a radionuclide withexcellentimagingproperties:agammaemissionspectrumwithasingle photopeak at 140KeV, offering a good balance between low attenuation and efficient detection outside the body, low radiation dose to patients becauseofitslackofparticulateemissionsandshorthalf-life(6h),andver- satilechemistry.Bymeansofthegenerator,99Mo,anuclearreactor-derived beta-emitting radionuclide with a half-life of 60h, could be transported to hospitalsaroundtheworldintheformofmolybdate(MoO 2(cid:1))ionsbound 4 toasolidphase(alumina).Asthe99Modecaysto99mTc,thedaughterprod- uctpertechnetate(99mTcO (cid:1))canbeelutedfromthesolidphasewithsterile 4 physiological saline and converted into a variety of different tracers for a rangeofdiagnosticapplications.Therangeof99mTc-radiolabeledchemical entitiesthatquicklybecameaccessiblefollowingtheavailabilityofthegen- erator, combined with the ease of their synthesis on the hospital site by means of simple kits (vials containing the chemical ingredients needed to convertthe99mTcfromthe“raw”pertechnetateintotherequiredchemical form)firmlyestablished99mTcasthemostwidelyusedradionuclideinmed- icine, and brought a focus on metallic radionuclides as a field in which metallochemistry could find valuable biomedical applications. Early tracers rangedfromsimplelipophiliccomplexesforhepatobiliaryimagingtosimple anionic hydrophilic complexes for renal function imaging, and bis- phosphonate complexes for skeletal imaging. Although the conceptof positronemission tomography (PET) evolved aroundthesametimeasgammacameraimaging,itdidnotdevelopfroma research tool into a widely used clinical diagnostic tool until the 1990s. Its expansionwasprimarilydrivenbytheintroductionofthefirstPETtracerof wide utility in many diseases, the glucose analog 18F-fluorodeoxyglucose, usedprimarilyforidentifyingandstagingcancer.WhilePEThastheadvan- tageofbetterresolutionandquantificationthangammacameraandSPECT imaging,theshorthalf-lifeofmanyofitstracers(e.g.,only110minfor18F) demandedsignificantinvestmentininfrastructure,requiringcyclotronfacil- itiestobeinstalledatlocationswithin2–4htravelingdistanceofPETscan- ners. The availability of the new imaging modality spawned interest in developing a much wider variety of PET tracers, to enhance its versatility. This created not only applications for organic chemists to develop tracers based on small molecule metabolites and receptor ligands labeled with the positronemitters18Fand11C,butalsoopportunitiesforinorganicchemists