ebook img

Innovative Catalysis in Organic Synthesis: Oxidation, Hydrogenation, and C-X Bond Forming Reactions PDF

360 Pages·2012·3.91 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Innovative Catalysis in Organic Synthesis: Oxidation, Hydrogenation, and C-X Bond Forming Reactions

Editedby PherG.Andersson InnovativeCatalysisinOrganicSynthesis RelatedTitles Beller,M.,Renken,A.,vanSanten,R.A. Bullock,R.M.(ed.) (eds.) Catalysiswithout Precious Catalysis Metals FromPrinciplestoApplications 2010 2012 ISBN:978-3-527-32354-8 ISBN:978-3-527-32349-4 Cybulski,A.,Moulijn,J.A.,Stankiewicz,A. Christmann,M.,Bra¨se,S.(eds.) (eds.) AsymmetricSynthesis NovelConceptsinCatalysisand MoreMethodsandApplications ChemicalReactors ImprovingtheEfficiencyfortheFuture 2013 ISBN:978-3-527-32921-2 2010 ISBN:978-3-527-32469-9 Pignataro,B.(ed.) NewStrategiesinChemical Blaser,H.-U.,Federsel,H.-J.(eds.) SynthesisandCatalysis AsymmetricCatalysison IndustrialScale 2012 Challenges,ApproachesandSolutions ISBN:978-3-527-33090-4 2010 Yudin,A.K.(ed.) ISBN:978-3-527-32489-7l CatalyzedCarbon-Heteroatom Ojima,I.(ed.) BondFormation Catalytic AsymmetricSynthesis 2011 ISBN:978-3-527-32428-6 2010 ISBN:978-0-470-17577-4 Ba¨ckvall,J.-E.(ed.) Mizuno,N.(ed.) ModernOxidationMethods ModernHeterogeneous 2011 OxidationCatalysis ISBN:978-3-527-32320-3 Design,ReactionsandCharacterization 2009 ISBN:978-3-527-31859-9 Edited by Pher G. Andersson Innovative Catalysis in Organic Synthesis Oxidation, Hydrogenation, and C–X Bond Forming Reactions TheEditor AllbookspublishedbyWiley-VCHare carefullyproduced.Nevertheless,authors, Prof.Dr.PherG.Andersson editors,andpublisherdonotwarrantthe UppsalaUniversity informationcontainedinthesebooks, DepartmentofBiochemistryand includingthisbook,tobefreeoferrors. OrganicChemistry Readersareadvisedtokeepinmindthat Husargatan3 statements,data,illustrations,procedural 75123Uppsala detailsorotheritemsmayinadvertentlybe Sweden inaccurate. LibraryofCongressCardNo.:appliedfor BritishLibraryCataloguing-in-Publication Data Acataloguerecordforthisbookisavailable fromtheBritishLibrary. Bibliographicinformationpublishedbythe DeutscheNationalbibliothek TheDeutscheNationalbibliothek liststhispublicationintheDeutsche Nationalbibliografie;detailedbibliographic dataareavailableontheInternetat <http://dnb.d-nb.de>. ©2012Wiley-VCHVerlag&Co.KGaA, Boschstr.12,69469Weinheim,Germany Allrightsreserved(includingthoseof translationintootherlanguages).Nopart ofthisbookmaybereproducedinany form–byphotoprinting,microfilm,orany othermeans–nortransmittedortranslated intoamachinelanguagewithoutwritten permissionfromthepublishers.Registered names,trademarks,etc.usedinthisbook, evenwhennotspecificallymarkedassuch, arenottobeconsideredunprotectedbylaw. CoverDesign Adam-Design,Weinheim Composition LaserwordsPrivateLimited, Chennai,India PrintingandBinding betz-druckGmbH, Darmstadt PrintedinFederalRepublicofGermany Printedonacid-freepaper PrintISBN:978-3-527-33097-3 ePDFISBN:978-3-527-64661-6 ePubISBN:978-3-527-64660-9 mobiISBN:978-3-527-64659-3 oBookISBN:978-3-527-64658-6 V Contents Foreword XI ListofContributors XIII PartI OxidationReactions 1 1 PolyoxometalatesasHomogeneousOxidationCatalysts 3 MauroCarraro,AndreaSartorel,MasoomaIbrahim,NadeenNsouli, ClaireJahier,SylvainNlate,UlrichKortz,andMarcellaBonchio 1.1 SolubleMetalOxidesasOxidationCatalysts 3 1.2 HomogeneousOxidationswithPOMsBasedOnlyonMo(VI),W(VI), V(V)AddendaIons 6 1.2.1 OxidationwithHydrogenPeroxideby Peroxopolyoxotungstates-Dendrimers 8 1.2.2 HomogeneousOxidationwithHydrogenPeroxideinthePresenceof VacantandHybridPOMs 10 1.3 HomogeneousOxidationswithTMS-POMs 12 1.3.1 PeroxopolyoxometalatesofHf/Zr 13 1.3.2 AerobicOxidationswithPolyoxopalladates 16 1.3.3 TMSPsasOxygen-EvolvingCatalysts 17 1.4 Conclusions 19 Acknowledgments 19 References 20 2 BioinspiredOxidationsCatalyzedbyNonhemeIronandManganese Complexes 27 IsaacGarcia-Bosch,IrenePrat,XaviRibas,andMiquelCostas 2.1 Introduction 27 2.2 CatalyticOxidationofC=CBondsbyNonhemeIronandManganese Complexes 27 2.2.1 Epoxidation 27 2.2.1.1 Iron-BasedCatalysts 27 2.2.1.2 Manganese-BasedCatalysts 30 2.2.2 cis-Dihydroxylation 34 VI Contents 2.2.2.1 Iron-BasedCatalysts 34 2.2.2.2 Manganese-BasedCatalysts 37 2.3 CatalyticOxidationofC–HBondsbyNonhemeIronandManganese Complexes 38 2.3.1 Hydroxylation 38 2.3.1.1 Iron-BasedCatalysts 38 2.3.1.2 Manganese-BasedCatalysts 40 2.3.2 Desaturation 41 2.3.2.1 Iron-BasedCatalysts 41 2.3.2.2 Manganese-BasedCatalysts 42 References 43 3 TheFabulousDestinyofSulfenicAcids 47 MariaChiaraAversa,PaolaBonaccorsi,DavidMadec,GuillaumePrestat, andGiovanniPoli 3.1 Introduction 47 3.2 SynthesisofStableSulfenicAcids 48 3.3 GenerationofTransientSulfenicAcids 52 3.4 ReactivityofSulfenicAcidsinthePreparationofSulfoxidesand UnsymmetricalDisulfides 57 3.5 SynthesisofStableSulfenateAnions 62 3.6 GenerationofTransientSulfenateAnionsLeadingtoSulfoxides 65 3.7 Conclusions 73 References 73 4 SustainableCatalyticOxidationswithPeroxides 77 IsabelW.C.E.Arends,ValeriaConte,andGiuliaLicini 4.1 Introduction 77 4.2 Metal-BasedSelectiveOxidations 78 4.2.1 BrominationReactions 78 4.2.2 OxidationofNitrogen-ContainingSubstrates 85 4.2.3 OxidationofSulfur-ContainingSubstrates 85 4.2.4 OxidationofAlkenes 89 4.3 BiocatalyticOxidationswithHydrogenPeroxide 92 4.3.1 WhyEnzymesandHOOH? 92 4.3.2 BiocatalyticSulfoxidation 95 4.3.3 BiocatalyticAlkenesEpoxidation 96 4.3.4 BiocatalyticAlcoholsOxidation 98 4.4 Conclusions 99 Acknowledgments 99 References 100 Contents VII PartII HydrogenationandReductionReactions 103 5 AsymmetricHydrogenationofDehydroaminoacidDerivativesby Rh-CatalystswithChiralMonodentateP-Ligands 105 SerafinoGladiali,ElisabettaAlberico,andIlyaGridnev 5.1 Introduction 105 5.2 ChiralMonodentatePhosphorusLigandsinAsymmetric Hydrogenation 108 5.3 CatalystPrecursors 112 5.4 MechanisticInsights 117 5.5 FormationoftheMACAdducts 121 5.6 EvolutionofMAC-AdductsandOriginofEnantioselection 124 References 126 6 RecentAdvancesintheSynthesisandCatalyticHydrogenationof DehydroaminoAcidDerivativesandBicyclo[2.2.2]octenes 131 Ve´roniqueMichelet,VirginieRatovelomanana-Vidal,VasileI.Paˆrvulescu, andMarijanKocˇevar 6.1 Introduction 131 6.2 SynthesisofDDAADerivativesandBicyclo[2.2.2]octenes 133 6.3 Ligands 133 6.4 HomogeneousHydrogenationandHydrogenolysisReactionswith DehydroaminoAcidDerivativesandBicyclo[2.2.2]oct-7-enesover Nanocolloids-ModifiedCatalysts 136 6.4.1 NanometalColloids-ModifiedCatalysts 136 6.4.2 NanooxideColloids-ModifiedCatalysts 140 6.5 HeterogeneousCatalystsforHydrogenolysisof Bicyclo[2.2.2]oct-7-enes 142 6.5.1 HeterogeneizedLigand-ModifiedNanoclusters 142 6.6 Layered-DoubleHydroxidesasaSupportforRh(TPPTS)3and Rh-(m-TPPTC)3HomogeneousCatalysts 144 6.7 Conclusions 147 Acknowledgments 147 References 148 7 Ir-CatalyzedHydrogenationofMinimallyFunctionalizedOlefinsUsing Phosphite–NitrogenLigands 153 MontserratDie´guez,PherG.Andersson,andOscarPa`mies 7.1 Introduction 153 7.2 ApplicationofPhosphite–NitrogenLigands 155 7.3 Conclusions 161 Acknowledgments 163 References 163 VIII Contents 8 ModelinginHomogeneousCatalysis:aTutorial 167 EricClotandPer-OlaNorrby 8.1 Introduction 167 8.2 MolecularModeling 167 8.3 WaveFunctionTheory,WFT 168 8.4 DensityFunctionalTheory,DFT 169 8.5 Orbitals 170 8.6 BasisSets 172 8.7 Solvation 174 8.8 AnalyzingtheReactionEnergies 175 8.9 AnalyzingtheElectronicStructure 177 8.9.1 TheNBOMethod 178 8.9.1.1 HowDoesItWork? 178 8.9.1.2 DeparturefromtheLewisStructure 180 8.9.1.3 NBOandTransitionMetalComplexes 183 8.9.2 TheAIMMethod 187 8.9.2.1 HowDoesItWork? 187 8.9.2.2 NatureoftheBondedInteraction 189 References 190 PartIII C–CandC–HeteroBond-FormingReactions 193 9 GoldenTimesforAllenes 195 NorbertKrause 9.1 Introduction 195 9.2 CyclizationofHydroxyallenes 196 9.3 CyclizationofAminoallenes 203 9.4 CyclizationofThioallenes 206 9.5 Conclusion 206 References 207 10 CopperCatalysisinAreneandHeteroareneFunctionalizationthrough C–HBondActivation 211 SandroCacchi,GiancarloFabrizi,andAntonellaGoggiamani 10.1 Introduction 211 10.2 C–CBond-FormingReactions 212 10.2.1 Via(Hetero)aryl-H/R-XCoupling 212 10.2.1.1 R–X=(Hetero)arylHalides 212 10.2.1.2 R–X=AlkenylBromides 215 10.2.1.3 R–X=BrCH Ar 216 2 10.2.2 Via(Hetero)aryl-H/Ar I+X−Coupling 217 2 10.2.2.1 Direct(Hetero)arylationofHeteroarenes 217 10.2.2.2 DirectArylationofArenes 218 10.2.3 Via(Hetero)aryl-H/C–HCoupling 219 10.2.3.1 Dimerizationof(Hetero)arenes 219 Contents IX 10.2.3.2 CyclizationofAnilides 220 10.2.3.3 CyclizationofN-arylβ-Enaminones 221 10.2.4 ViaAryl-HAdditiontoTerminalAlkynes 223 10.3 C–NBond-FormingReactions 223 10.4 C–OBond-FormingReactions 227 10.5 C–HalogenBond-FormingReactions 229 References 230 11 LigatedOrganocuprates:anA–ZRoutemapofMechanismand Application 233 SimonWoodwardandDarrenWillcox 11.1 Introduction 233 11.2 AcceptedMechanisticProposals 233 11.2.1 KineticandNMRStudies 235 11.2.2 ComputationalStudies 242 11.2.3 NonlinearEffects 243 11.2.4 Challenges 245 11.3 SelectiveApplicationsinPrivilegedCopper(I)Catalysis 245 11.3.1 ConjugateAddition 245 11.3.2 AdditionstoAllylicHalides 250 References 252 12 Rh-,Ag-,andCu-CatalyzedC–NBondFormation 257 PhilippeDauban,CamilleLescot,M.MarDiaz-Requejo,and PedroJ.Perez 12.1 Introduction 257 12.2 HistoricalBackground 258 12.3 Copper-andSilver-CatalyzedC–NBondFormation 260 12.4 Rhodium-CatalyzedC–NBondFormation 265 12.5 Conclusions 273 References 274 13 DevelopmentoftheAsymmetricNozaki–Hiyama–KishiReaction 279 Gra´inneC.HargadenandPatrickJ.Guiry 13.1 Introduction 279 13.2 DevelopmentofaCatalyticNozaki–Hiyama–KishiReaction 279 13.3 CatalyticEnantioselectiveNozaki–Hiyama–KishiReaction 281 13.4 ApplicationofSalen-DerivedLigandsintheEnantioselective Nozaki–Hiyama–KishiReaction 283 13.5 ApplicationofOxazoline-ContainingLigandsintheCatalytic EnantioselectiveNozaki–Hiyama–KishiReaction 286 13.6 ApplicationofTetheredBis(8-quinolinato)ChromiumComplexesin theCatalyticEnantioselectiveNozaki–Hiyama–Kishi 299 13.7 ApplicationofChiralSpirocyclicBorateLigandstotheCatalytic EnantioselectiveNozaki–Hiyama–KishiAllylation 303 X Contents 13.8 ApplicationsofCatalyticNozaki–Hiyama–KishiReactioninTotal Synthesis 303 13.9 Conclusions 305 References 306 14 ChiralImidateLigands:SynthesisandApplicationsinAsymmetric Catalysis 309 TimothyNo¨el,KatrienBert,PieterJanssens,andJohanVanderEycken 14.1 Introduction 309 14.2 CyclicImidates 311 14.3 SynthesisofImidates 312 14.4 SynthesisofImidateLigands 313 14.5 SynthesisofImidate–Copper(I)Complexes 313 14.6 ApplicationofChiralImidateLigandsinEnantioselective Catalysis 315 14.6.1 Copper(I)-CatalyzedAsymmetricAziridination 315 14.6.2 AsymmetricDiethylzincAddition 316 14.6.3 AsymmetricPalladium(0)-CatalyzedAllylicAlkylations 316 14.6.4 AsymmetricIridium(I)-CatalyzedHydrogenations 318 14.7 NovelSyntheticApplicationsofCyclicImidates 320 14.7.1 One-StepSynthesisofChiralOxazoline–AlcoholLigands 320 14.7.2 SynthesisofChiralspiro-2-Alkoxy-Imidazolidines 321 14.8 Conclusions 322 References 324 15 CatalyzedOrganicReactionsinBallMills 327 AchimStolle,BerndOndruschka,AnkeKrebs,andCarstenBolm 15.1 Introduction 327 15.2 Acid-orBase-CatalyzedReactions 328 15.3 OrganocatalyticMethods 333 15.3.1 AsymmetricAldolReactions 333 15.3.2 CycloadditionandRelatedReactions 335 15.4 Metal-CatalyzedReactions 338 15.4.1 Suzuki–MiyauraReaction 338 15.4.2 Mizoroki–HeckReaction 340 15.4.3 SonogashiraReaction 341 15.4.4 Cu-CatalyzedReactions 343 15.4.5 MiscellaneousMetal-CatalyzedReactions 345 15.5 ConclusionandPerspective 347 References 348 Index 351

Description:
C-H, C-O, C-C, and C-Heteroatom bond forming processes by using metal-ligand approaches for the synthesis of organic compounds ofbiological, pharmacological and organic nanotechnological utility are the key areas addressed in this book. Authored by a European teamof leaders in the field, it brings t
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.