Nucleic Acids and Molecular Biology Volume 21 Series Editor H.J. Gross, Institut für Biochemie, Biozentrum, Am Hubland, 97074 Würzburg, Germany, [email protected] Holger Heine Editor Innate Immunity of Plants, Animals, and Humans Dr. Holger Heine Department of Immunology and Cell Biology Research Center Borstel Parkallee 22 23845 Borstel Germany [email protected] ISBN 978-3-540-73929-6 e-ISBN 978-3-540-73930-2 Nucleic Acids and Molecular Biology ISSN 0933-1891 Library of Congress Control Number: 2007935972 © 2008 Springer-Verlag Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, roadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg, Germany Printed on acid-free paper 9 8 7 6 5 4 3 2 1 springer.com Preface All living organisms are in a constant battle against their environment. Since uncontained microorganisms would simply overgrow all higher animals, from the beginning of the evolution of multicellular organisms the need was clearly evi- dent for adequate and efficient defense mechanisms to protect their own integrity and to ensure their own survival. Usually, the first encounter with pathogens occurs at epithelial interfaces, which present the first barrier against invading pathogens and already comprises a number of mechanical and chemical defense mechanisms. However, in addition to these passive mechanisms an arsenal of active weapons also evolved. As it turned out, some of them were so efficient that basically all organisms rely at least partly on them: there is no known species that does not produce antimicrobial peptides, which represent very likely the most ancient immune defense molecules and the most common effector molecules of the innate immune response. Over recent decades, the appreciation of the innate immune system has vastly increased. A pivotal event and possibly the beginning of the modern era of innate immunity was Charles Janeway’s opening lecture at the annual Cold Spring Harbor Symposium of Quantitative biology in 1989. He hypothesized that recognition of certain patterns or characteristics of infectious microorganisms through pattern recognition receptors whose specificity is “hard-wired” into the genome is vitally important for the immune response. However, it took about seven years before the involvement of the Drosophila Toll protein in the immune response was discovered by Jules Hoffmann’s group in Strasbourg. One year later, the first human counter- part was discovered by Medzhitov and Janeway and the era of mammalian Toll-like receptors and the search for their ligands began. Finally, people began to understand just how specific the so-called “unspecific” innate immune response really is. Since then, these receptors has been found and investigated in many species. It became clear that in higher animals the innate and the adaptive immune system is strongly intertwined and that the activation of the innate immune system is required for the activation of adaptive immune system. However, one has to remember that for many species the innate immune system is the sole active defense system and that it comprises many more mechanisms than only the detection of pathogen-associated molecular patterns through Toll-like receptors. This book wants to give an overview of our current knowledge about the innate immune system of plants, animals and humans. In the first six chapters, the innate immune v vi Preface mechanisms and responses of so diverse organisms such as plants, Cnidaria, Drosophila, urochordates and zebrafish are presented and reviewed in great detail. Shunyuan Xiao presents an overview about the evolution of plant resist- ance genes, which evolved as a response to the recognition of pathogen effector proteins in plants. The next chapters cover organisms that are at critical places on the evolutionary tree. First, Thomas C.G. Bosch et al. provide fascinating infor- mation about one of the earliest multicellular species, the ancient group of Cnidaria, which diverged from the so-called Bilateria long before insects and worms evolved. Since the innate immune system of the fruitfly Drosophila melanogaster is among the best studied of all species, two chapters cover the field. Neal Silverman’s group discusses the molecular mechanisms of pathogen recognition and signal transduction that leads to the elimination of invading microbes, whereas the group of Louisa Wu further elucidates two very important aspects of the cellular innate immunity: the encapsulation and phagocytosis of pathogens by Drosophila hemocytes. Next, Konstantin Khalturin et al. present an overview of the innate immune responses of the urochordates, which present the vertebrates closest relatives and thus provide insight into innate immune mecha- nisms just before the sudden appearance of adaptive immunity. Moving along the evolutionary tree, Con Sullivan and Carol H. Kim provide a review about innate immune responses of the zebrafish, Danio reo. In contrast to all species covered so far, the zebrafish is the first species that in addition to its innate immune defenses also contains an adaptive immune system. The last four chapters deal with different aspects of the mammalian innate immune system: Andrei Medvedev and Stefanie Vogel provide detailed information about the human and mouse Toll-like receptor (TLR) family including their ligands and signal transduction. Besides the family of TLRs that all are expressed on cell or endosomal membranes, a new family of intracellular and cytosolic pattern rec- ognition receptors has recently emerged. Named after the unifying expression of the nucleotide oligomerization domain (NOD) and with respect to the TLRs the members of this family are called NOD-like receptors. This family consists of 22 members and a number of mutations have been found in these proteins that are surprisingly often linked to inflammatory diseases. Finally, two chapters present the major effector mechanisms of the innate immune system: Regine Gläser, Jürgen Harder, and Jens-Michael Schröder provide an up-to-date overview about human antimicrobial peptides; and Bob Sim et al. review the complement system. Contents 1 Evolution of Resistance Genes in Plants . . . . . . . . . . . . . . . . . . . . . . . . 1 Shunyuan Xiao, Wenming Wang, and Xiaohua Yang 1 Evolution of the Plant R Gene System . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Conservation and Diversity of Plant R Genes . . . . . . . . . . . . . . . . . . 3 3 NBS, LRR and TIR – Domains of Defense . . . . . . . . . . . . . . . . . . . . 6 4 Proliferation and Diversifi cation of NBS-LRRGenes in Plants . . . . . 9 5 Mechanisms of R-Avr Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.1 Direct R-Avr Interaction – the “Gene-For-Gene” Hypothesis . 10 5.2 Indirect R-Avr Interaction – the “Guard” Hypothesis . . . . . . . . 11 6 Patterns of R-Avr Coevolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6.1 Diversifying Selection Results from Direct R-Avr Recognition? 14 6.2 Balancing Selection Results from Indirect Recognition? . . . . . 15 6.3 A General Model for Evolution of the Plant R Gene System . . 17 7 New Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 The Path Less Explored: Innate Immune Reactions in Cnidarians . . 27 Thomas C.G. Bosch 1 Cnidaria Are Among the Earliest Multicellular Animals in the Tree of Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 Immune Reactions in Invertebrates . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 Immune Reactions in Cnidaria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.1 How to Fight for a Space to Live? Intraspecies Competition in Sea Anemones . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 How to Detect Approaching Allogeneic Cells as Foreign and to Eliminate Them? Allorecognition and Cell Lineage Competition in Colonial Hydractinia . . . . . . 32 3.3 How to Detect and Disarm Microbial Attackers? Antimicrobial Defense Reactions in the Freshwater PolypHydra and the Jellyfi sh Aurelia . . . . . . . . . . . . . . . . . . . . 34 vii viii Contents 3.4 How to Distinguish Between Friends and Foes: Symbiotic Relationships in Corals and Hydra . . . . . . . . . . . . . 36 4 How to Explore the Path They Went? Why Cnidarians Matter . . . . . 38 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3 Bug Versus Bug: Humoral Immune Responses inDrosophila melanogaster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Deniz Ertürk-Hasdemir, Nicholas Paquette, Kamna Aggarwal, and Neal Silverman 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 1.1 A Brief History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 1.2 Overview of the Drosophila Immune Response . . . . . . . . . . . . 45 2 Microbial Recognition – the Peptidoglycan Recognition Proteins . . 45 2.1 Peptidoglycan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.2 NF-kB Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3 The Toll Pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4 The IMD Pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5 Down-Regulation of the IMD Pathway by PGRP Amidases . . . . . . . 60 6 JAK/STAT Pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4 Cellular Immune Responses in Drosophila melanogaster . . . . . . . . . . 73 Adrienne Ivory, Katherine Randle, and Louisa Wu 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 2.1 Recognition Centers on Membrane Differences . . . . . . . . . . . . 76 2.2 Lamellocyte Proliferation: Necessary for Successful Encapsulation Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 2.3 Adhesion Requires Integrins, Rac, and Rho . . . . . . . . . . . . . . . 78 2.4 Encapsulation Terminates with the Formation of Basement Membrane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3 Phagocytosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.1 Proteins Opsonize Invading Bacteria and Fungi to Promote Phagocytosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.2 Transmembrane and Circulating Peptidoglycan Recognition Proteins are Involved in the Recognition of Bacteria . . . . . . . . 85 3.3 Receptors with Scavenger-Like Activity Recognize a Variety of Microbes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.4 Phagocytosis Requires Reorganization of the Actin Cytoskeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.5 Engulfed Pathogens are Degraded in Phagolysosomes . . . . . . . 89 3.6 Interactions Between Cellular and Humoral Immune Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Contents ix 5 Immune Reactions in the Vertebrates’ Closest Relatives, the Urochordates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Konstantin Khalturin, Ulrich Kürn, and Thomas C.G. Bosch 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 2 Urochordates are at the Root of Vertebrate Evolution . . . . . . . . . . . . 100 3 Natural History and Ecology of Urochordates . . . . . . . . . . . . . . . . . . 101 4 Immunity in Urochordates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.1 Antimicrobial Peptides from Urochordates . . . . . . . . . . . . . . . . 103 4.2 Allorecognition in Urochordates . . . . . . . . . . . . . . . . . . . . . . . . 104 4.3 Complement in Urochordates . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.4 Despite the Absence of MHC, Urochordate Blood Contains NK-Like Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6 Innate Immune System of the Zebrafi sh, Danio rerio . . . . . . . . . . . . . 113 Con Sullivan and Carol H. Kim 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 2 Components of Innate Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 2.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 2.2 Drosophila Toll: Identifi cation and Recognition of a Dually Functioning Pathway . . . . . . . . . . . . . . . . . . . . . . . 116 2.3 TLRs and TIR-Bearing Adaptor Proteins . . . . . . . . . . . . . . . . . 117 3 Zebrafi sh as a Model for Infectious Disease and Innate Immune Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 3.2 Forward and Reverse Genetics . . . . . . . . . . . . . . . . . . . . . . . . . 119 3.3 An Infectious Disease and Innate Immunity Model . . . . . . . . . 120 4 NK-Like Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5 Additional Innate Immunity Receptors in Zebrafi sh . . . . . . . . . . . . . 124 6 Zebrafi sh Phagocytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7 Toll-Like Receptors in the Mammalian Innate Immune System . . . . 135 Andrei E. Medvedev and Stefanie N. Vogel 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 2 TLRs as Primary Sensors of Pathogenic PAMPS and Endogenous “Danger” Molecules . . . . . . . . . . . . . . . . . . . . . . . . 137 3 TLR Signaling Pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 3.1 Interaction of TLRs with PAMPs and Co-Receptors Initiates Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 3.2 Role of TIR-Containing Adapter Molecules in TLR Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 x Contents 3.3 TLR Specifi city for PAMPs in the Ectodomain and Adapters in the TIR Domain Underlie a Dual Recognition/Response System . . . . . . . . . . . . . . . . . . . . . . . . . 146 3.4 The IRAK Family: Key Regulators of TLR Signaling . . . . . . . 147 4 Mutations in TLRs and IRAK-4: Implications for Disease . . . . . . . . 149 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 8 NLRs: a Cytosolic Armory of Microbial Sensors Linked to Human Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Mathias Chamaillard 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 2 NLRs, a Conserved Cytosolic Arm of the Innate Immune System . . 171 3 Physiological Role of NLRs in Innate and Adaptive Immunity: NLRs Join TLRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 3.1 Host Sensing of Non-TLR PAMPs: Lessons from NOD1 and NOD2 Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 3.2 NLRs Promote Maturation of TLR-Induced Il-1(cid:1) and IL-18 Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 4 What Can we Learn from NLRs Linked to Human Diseases? . . . . . . 177 4.1 NOD1 and NOD2 Mutations Linked to Chronic Infl ammatory Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 4.2 Auto-Infl ammatory Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . 179 4.3 Reproduction Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 5 Concluding Remarks: Towards the Development of “Magic” Bullets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 9 Antimicrobial Peptides as First-Line Effector Molecules of the Human Innate Immune System . . . . . . . . . . . . . . . . . . . . . . . . . 187 Regine Gläser, Jürgen Harder, and Jens-Michael Schröder 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 2 Epithelial Antimicrobial Peptides and Proteins . . . . . . . . . . . . . . . . . 189 2.1 Lysozyme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 2.2 Human Beta Defensins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 2.3 Human Alpha Defensins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 2.4 RNases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 2.5 S100 Proteins: S100 A7 (Psoriasin) . . . . . . . . . . . . . . . . . . . . . 196 2.6 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 3 Phagocyte Antimicrobial Peptides . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 3.1 Human Alpha Defensins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 3.2 Cathelicidins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 3.3 S100 Proteins: S100 A8/9 (Calprotectin) and S100A12 (Calgranulin C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 3.4 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Contents xi 4 Putative Action of Antimicrobial Peptides in the Healthy Human . 202 5 Antimicrobial Peptides and Diseases . . . . . . . . . . . . . . . . . . . . . . . 205 5.1 Skin Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 5.2 Wound Healing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 5.3 Diseases of the Airway Epithelia: Cystic Fibrosis . . . . . . . . . 207 5.4 Gastrointestinal Diseases: Infl ammatory Bowel Diseases . . . 208 5.5 Diseases Associated with Phagocyte Dysfunction . . . . . . . . . 209 6 General Conclusion and Future Aspects . . . . . . . . . . . . . . . . . . . . . 210 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 10 The Complement System in Innate Immunity . . . . . . . . . . . . . . . . . . 219 K.R. Mayilyan, Y.H. Kang, A.W. Dodds, and R.B. Sim 1 The Complement System in Mammals . . . . . . . . . . . . . . . . . . . . . 220 1.1 Classical Pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 1.2 The Lectin Pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 1.3 Alternative Pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 1.4 Regulation of the Complement System . . . . . . . . . . . . . . . . . 228 1.5 Complement Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 2 The Structure of Complement Proteins . . . . . . . . . . . . . . . . . . . . . 230 3 Complement Across Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237